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Preface

This lecture book contains the problems and answers of the exams elasticity theory from
June 1997 until January 2003. It has been assembled with care. If nevertheless a mistake
is found it would be appreciated if this is reported to the instructor.
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Technische Universiteit Delft Vermeld rechtsboven op uw werk:
Faculteit der Civiele Techniek Naam en Studienummer
Mechanica & Constructies

Tentamen Elasticiteitstheorie b16
19 juni 1997 van 9.00 -12.00 uur

Problem 1 (3 points)

A hollow tube is loaded by a shear
force. The wall thickness t is small
compared to the radius r of the tube.
In the cross-section a shear force n
per unit of circumference occurs due
to the resulting shear force Q. We
approximate the force n with the
following function.

n=Acoso

The tube material can be considered as linear elastic with a shear modulus G.

a Calculate the resulting shear force Q due to the shear force n. (The positive direction of Q
: 1
is p=—5m.)

b Give the expression of the complementary energy of a slice of the tube. The slice has a
length Az.

¢ Show that the expression of the complementary energy can be reworked to the following
result.
Ecomp/ _ nl‘ﬁz

AZ 2Gt

d Derive the formula for the shear stiffness GA,. Formulae

21

A | cose do=0

e What is the quantity of the shape factor n in A; =—. 0
n 27

cos? odp=m7

0

n

cos® odp=0

0




Tentamen Elasticiteitstheorie b16
19 juni 1997

Problem 2 (2 points)

A straight track is loaded in
compression because the rails have
expanded on a hot day. The track
might buckle as shown in the figure.
To analyse this situation an
assumption is made on the
displacement field and the potential

energy of the buckled track is 4 P
determined. The result is N 0 N
=> <=
El | / |
I I
GEI % 0°N
Eppt =4n—+101p——"—
pot B2 4 |
N normal force in the track
[ buckling length
p friction force between the track and the ballast bed
El bending stiffness of the track
u largest deflection of the track

a In relation to what parameter of parameters should the potential energy of the track be
minimal? Explain your answer. (You do not need to calculate something.)

A statically indetermined system can be analysed by the force method or the displacement
method. In the force method we choose a number of redundants as fundamental unknowns.
In the displacement method the displacements are the fundamental unknowns. The force
method is convenient if the problem is statically indetermined to a small degree. However,
modern computer programs use the displacement method without exception.

b Why is the displacement method used in computer programs for structural analysis?



Tentamen Elasticiteitstheorie b16
19 juni 1997

Problem 3 (5 points)

A square plate of room temperature has a round hole
in it. The hole is filled with a plug of the same material
and the same thickness as the square plate. The plug
exactly fits the hole if it is cooled down T degrees from

room temperature. After a while the plug assumes the
room temperature again and is stuck in the hole.

Data
Radius a of the plug is small compared to the dimensions of the plate.
The thickness of both the plate as the plug is t.

The elasticity modulus of the material is E.

The Poison’s coefficient of the material is v.
The linear expansion coefficient of the material is a.

Questions

a Derive an expression for the plate which relates the stress on the edge of the hole to the
displacement of this edge. (So, the plug is replaced by a stress on to the edge of the hole.)

b Derive an expression for the plug which relates the stress on the edge to the
displacement of the edge. (So, the plate is replaced by a stress on to the edge of the plug.)

¢ Formulate the transition conditions between the plug and the plate.
d Calculate the stress between the plate and the plug.
e Calculate the stress distribution in the plug and the plate.
Suggestions
The general solution of the radial displacement in an axial symmetrical thin plate is

u(r):A3+BL
r a

The constitutive relation of this plate is

toa)iale oo
G 1—\/2 v 1 €00 .




Tentamen b16, 19 juni 1997
Answers to Problem 1

a Shear Force
The resulting shear force Q is the integral of the
vertical component of the shear force n ds over
the circumference s of the tube.

2nr

Q= _[n ds cos
s=0

[0) nds

Evaluation gives

2n
Q= j ncoser dpcose
¢=0
2n
Q:ﬁrj' cos? ¢ do
o=0
Q=Anr=n

b Complementary Energy

The complementary energy is the shear force nds times the displacement y Az over 2,
integrated over the circumference s of the tube.

2nr

_ 1
Ecomp/ = J‘ﬁndSYAZ

s=0

¢ Evaluation of the complementary energy gives

27

E compr = j nl’d(p—tA 2Gtv[ 2d I' ICOS ¢ do .
¢=0

rAz .-
Ecompl :2_th n

d Shear Stiffness

The complementary energy due to the shear force Q is equal to the complementary

energy due to the shear flow n. From this we derive the shear stiffness GA,. (See lecture
book Energy Principles, page 14.)

E compl,Q ~ E compl,n

2
1 Q Az = rAz Al
2GAy 2Gt

Or,



Gt
2n

GA, = Q2

ri

GA, =Gtrn

Shape Factor
The section area of a thin tube is

A=2nrt

so that the shape factor n becomes

_ GA G2nrt
GA; Gtrrn’
n=2

Answers to Problem 2

Potential energy should be minimised as to the parameters that describe the displacement
field. The buckling shape of the track is described by 4 and /.

In the first computers little memory was available, therefore the system of equations that
had to be solved needed to be as small as possible. The force method often yields few
unknown and equations so that this method was used in old computer programs.
However, it proved complicated to automatically select the redundants. Many studies have
been devoted to this subject but soon computers with more memory were developed so
that the displacement method could be used. The displacement method often needs more
memory but is easier to program than the force method.

Answers to Problem 3

Because the radius a is small compared to the plate dimensions the problem can be
treated as an axial symmetric plate of which the outer edge is infinitely far from the hole.

Analysis of the Plate
For the displacement method holds that

ury=A2+8L
r a
so that
u a 1
Srr :E:_Ar_2 Bg
u 1
=—=A—+B—
£60 r r a



For very large r the stresses and strains are zero, therefore
B=0.

When the plug is at room temperature it is compressed and exerts a force p4 per unit of
edge length into the direction of the radius r.

Py =—0pt

T o= \

. . ‘ e - b
where t is the plate thickness. L — Uy |
: // Ay \
\ |
Because ! o
: \ // \
O :—2(8” +V869) : \\ // :
|
‘ \
‘ \

- -

we find forr=a

b Et_A-v)_ Et A
TV12v2  a 1+va

We define u(a) = us. Therefore u; = A. So the relation between p; and u; is

1 Et

1= Uy
1+v a
or

U, :(’I+v)%p1. (1)

b Analysis of the Plug
The plug is compressed in all directions by a distributed force p, that is directed inwards.
This gives a homogeneous stress distribution.

p
GO =Ogp = _TZ-
So
1 1-v
€rr :E(Grr _VGGG):_EPZ-

The radial displacement of edge of the plug is (directed
inwards)

ale] = (1-) 2 P2

The plug becomes T degrees warmer. If expanding feely this
would give an edge displacement of

aTa

so that the total outward directed displacement becomes

10



a
U, =olTa—(1-v)—p,|
2 =aTa—( V)Etpz

¢ Transition Conditions

(2)

The displacements of the edge of the plug and the edge of the hole need be equal.

ur=us =Uu

In addition there needs to be equilibrium

pr=p =)

d Calculation of the Temperature Problem (Force Method)

When we substitute (1) and (2) into (3) we find.

a a
aoT —(1- )2 p, =1+ v) 2 p..
ol =(1=v)g P2 =(+ V) o ps

From this and (4) it follows that the force per unit of edge length is

p = %EtocT :

Now u can be calculated with (1) or (2).

e Stress Distribution

We found already for the strains in the plate

a
e =—-A—
r2
a
899 :A—
r2

Substitution in the constitutive relation gives the stresses

-E , a
S
o 1+v 2
E a

- = A2
00 1+v 2

The constant A is

A=uy= %(1 +v)aoT

3)

(4)

11



so that

1 a’
Grr(r) = —fE(XTr—Z
2
a
Gee(r) = %E(X,Tr—2

On the edge of the hole the stress is
G, = —%EOLT

so that the homogeneous and isotropic stress in the plug is

—%EOLT.

Remarks
The solution is independent of the thickness t and the Poison’s ratio v.
The stress in the plug is approximately halve the value that would occur in a completely

restrained plug.

Alternative Answer to Problem 3d (displacement method)
When we substitute (1) and (2) in (4) we find

up  Uup-oala

(1+ v)l:f’l (- v); |

From this and (3) it follows that the displacement of the edge is
u=2(1+vjaaT .

Now p can be calculated with (1) or (2).

p= %EtocT

12
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Faculteit der Civiele Techniek Naam en Studienummer
Mechanica & Constructies

Tentamen Elasticiteitstheorie b16
12 januari 1998 van 14.00 -17.00 uur

Problem 1 (3 points)

A box-girder beam is loaded at torsion. The thickness of all walls is h as shown in the
figure.

We calculate the box-girder with the membrane analogy. The weightless plates in the
corners of the box-girder will have the same displacement because of rotational symmetry

You can assume that the wall thickness h is small compared to the width of the box-girder.

a Calculate the displacements wy and w, of the weightless plates.

b Calculate the torsion stiffness Gl,, of the cross-section.

¢ Calculate the shear stresses in the cross-section and draw them in the correct direction.

d

Suppose that warping (Dutch: welving) of the box-girder is locally restrained by a clamped
boundary condition. Will this cause the torsion stiffness to be larger, smaller or will it
remain unchanged?

13



Tentamen Elasticiteitstheorie b16
12 januari 1998

Problem 2 (2 points)

A structural engineer calculates the stresses in a reinforced concrete floor using the finite
element method. He uses linear elastic elements. Underneath a concentrated load very large
moments appear. What is your advise for this structural engineer? Choose from the following
options and explain your answer.

A Calculate the moments again with a finer element mesh around the concentrated load.

B Replace the concentrated load by a distributed load over a small area.

C Use the moments at some distance of the concentrated load to calculate the reinforcement.

D Use the resultant of the moment over some width around the concentrated load to
calculate the reinforcement.

Problem 3 (2 points)

An oil company drills a hole in deep rock layer. Due to the geological origination a pressure p
is present in all horizontal directions of the material. The hole changes this stress distribution.

We consider the rock to be of a linear elastic material. The situation is axial symmetrical with
a coordinate rin the radial direction and the angle 9 in the horizontal plane.

The general solution of the stress distribution is
1
G, =2C5 +C3 —2+C4(1+2 Inr)
r

G a9 =2C2 —C3L2+C4(3+2 Inr)
r
Grg =0

Calculate the tangential stress G g4g in the edge of the
hole and draw the stress distribution G g4 and G;..

14



Tentamen Elasticiteitstheorie b16
12 januari 1998

Problem 4 (3 points)

A steel beam is loaded by a force F (see figure). The beam has flanges of thickness t and
width a at the upper and lower edge. The stiffeners at the middle and at the ends of the beam
have dimensions a x 2a x t. The width of the beam is a, the height is 2a and the span is 12a.

stiffener  stiffener @ F < flange stiffener
2a web web i
™ stiffener
flange 4 A
6a 6a a
section A-A

We want to calculate the deflection of the beam using complementary energy. The
approximated stress distribution in the beam is drawn below. The panels have a
homogeneous shear stress. The forces in flanges and stiffeners vary linear over the length

‘ E
L 1 4at

a Show that the complimentary energy of a flange is

1 N%
© 6 Eat

where N is the force in the end of a flange or a stiffener and [ is the length.

- 4

N[ =
j.l

b Calculate the total complementary energy of the beam. Choose a prescribed displacement u
where the force F is attached. Neglect the Poison’s effect so that the shear modulus is G =

Eil2.

¢ Express the deflection u in the force F.

15



Tentamen b16, 12 januari 1998
Answers to Problem 1

The box-girder of this problem is known in The Netherlands as nabla beam applied in the
“Deltawerken” in the dam of the “Haringvliet” estuary.

a Weightless plates

We choose w;, of the middle cell larger than w; of the corner cell.

Equilibrium of the weight less plates of the corner cell gives

Wy

p%aa%ﬁ:as%ha s h-

as

Wo —Wyq

h

Equilibrium of the weight less plates of the middle cell gives

Wo —w
pLtaalvV3=as—2—T+as

h

This we can simplify to

p%a 322(3W1—W2)
p%a\/_=%3(w2—w1)

from which w4 and w, can be solved.

W1 =%\/§%ah

Wo = %ﬁ%ah

b Torsion Stiffness

h

W2—W1+aSW2—W1

h

Section A-A

From the membrane we go to the ¢-bubble with the following substitutions.

w=¢d

p=29
1

S=—
G

So
07 =%+/3 9G ah

¢, =53 9G ah

The torsion moment equals two times the volume of the ¢-bubble.

16




M, =2 (%a a%\/3_¢1 +%a a%\/?dn +%a a%\/?dy +%a a%\/?d)g)

:82%\/5(3 (I)1 +(|)2)

Substitution of the previous relations in the latter gives

M, =a? %\/5(3 %\/5 9G ah +%\/§ 9G ah)

A2 1 1
=a 53(14'5) 3G ah

_c9 53
_G4ah8

For a wire frame model of the beam the torsion moment is

M, =Gl, §.

Therefore, the torsion stiffness is

Gly =G % a°h

Shear stress

The shear stress is the slope of the ¢-bubble. We first rewrite the relation of the torsion

moment

M
9G ah =470
9 .2
a
and express ¢ and ¢, in the torsion
moment

M
b= s
a
M
b2 =335

In the outside walls of the box-girder
is the shear stress

(o 4\/_Mw
$1_4 3Vw _o,
n o2V 2,

In the interior walls is the shear stress

2 MW 4 MW
*ﬁT‘ﬁﬁaT

b2-97_%  a

h h

17



d Warping (Dutch: welving)
When warping is locally restrained the box-girder will locally be stiffer than calculated in
this problem (see lecture book Direct Methods, page 197).

Answer to Problem 2

Underneath a concentrated load the bending moment goes to infinity (see lecture book
Direct Methods, Figure 4.20). Probably the element mesh that was selected by the
structural engineer was very fine because otherwise the local peak would not have shown
up. It is not useful to select an even finer mesh (answer A) because this will result in even
larger moments. The explanation for the very large moments is that around the
concentrated load the plate theory is not accurate over a distance of approximately the
plate thickness.

Redistributing the concentrated load over an area (answer B) will indeed reduce the
moments, however this takes much effort. The resulting moment over a distance of two
times the plate thickness (answer D) is very suitable to dimension the reinforcement
because this does not compromise equilibrium. This can be seen as spreading the peak
moment. However, this also takes much effort to calculate. The moment is accurate at a
distance of approximately the plate thickness (answer C).

So, only answer A is really wrong. Answer B and D are impractical but possible. Answer C
is the best.

Answer to Problem 3

We can solve the constants using the boundary conditions. The boundary conditions for
this case are.

- On the edge of the hole r = a are no normal stresses c,.

- Far from the hole the stresses o, and o33 equal -p.

When r becomes very large In( r ) does not approach a specific value. Instead it continues
to grow. The stress should become equal to -p for large r. This can only be if C, equals
zero.

Cys=0
1
When r becomes very large than > becomes very small. So
r
2Cy = - Cy=-L
Grr|r_)oo 2=-P 2= 2

The same result would have been found if we had considered cgs.

If r=athan

oy =2Cy +C3aL2:_p+C3aL2:0 Cs =pa?

So

18



1 5 1 a2
Orr :2C2+C3r—2=—P+Pa r—2=—p(1—r—2)

1 2 1 a?
Ggy =2C2-C3—F5=-p-pa”—=-p(1+—)
r r r
On the edge of the hole
82
099=—P(1+a—2) Ggg =—2p

The stress distribution becomes

Answers to Problem 4

a Complementary Energy

The force in a bar is linear from zero to some value N

N==N

The complimentary energy in a bar is

X - 2
) I(Nj ~ D / ~ D / ~ D
Ec—le—d —1I / dx = N Ixzdx:—N 1x3 :1—N !
20 EA 2, Eat 2°Eat 21Eat3 o b Eat
The complementary energy in a panel is
F
2 ( )2 3F2

Cylay oyl 1 dat
EC—VZIy_VZG_6aZat2 6 "8at

b The total complementary energy is the energy in the bars plus the energy in the panels
minus the energy of position.

19



3ry\2 1.2
SF)“6a ~F)“2a 2 2
1(2 ) 21(2 ) F 23+23F

E.=41"2 "~ 4 1
€6 Eat 6 FEat 6 Eat 8 Gt

Using G = %E this becomes

2
E, =11t _Fu
Et

¢ Inour minds u is a prescribed displacement and F is the resulting support reaction. The
complete stress distribution in the beam is expressed in F. The complementary energy
must be minimal as to the parameter F

= dEc =22i—u
dF Et

0

Therefore, the relation between force and displacement is

u:22i
Et

20
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Tentamen Elasticiteitstheorie b16
18 juni 1998 van 9.00 -12.00 uur

Problem 1 (4 points)

A prismatic beam is loaded by torsion. The cross-section of the beam is square with
dimension h (see figure). We want to calculate the torsion stiffness of the beam. Therefore,
we consider a slice of length Ax.

The torsion moment causes shear stresses in the cross-section, which can be derived from a
function ¢. We choose the following function as an approximation.

2
<w:Am—4%§x1—4——)

>
N
[

where A is a yet unknown constant. The shear
stresses in the cross-section are calculated by.

_ 9% h -y
AP

29

GXZ = —

oy Y

Show that ¢ fulfils the boundary conditions.

Give a formula with which the resulting torsion moment can be calculated (You do not need to
evaluate the formula).

The formula is evaluated for you with the following result
My, =8 An?

Calculate the largest stress in the cross-section and express this in the torsion moment.

Give the formula for calculating the complimentary energy of the slice (You do not need to
evaluate the formula).

The formula has been evaluated for you with the following result

2
E, =184 5y

45 G
where G is the shear modulus of the material.

Calculate the torsion stiffness Gl,, of the beam.
Suggestion: Make the complementary energy of the slice equal to the complimentary energy
of a part of the wire frame model.

21



Problem 2 (2 points)

Elasticity theory in three dimensions has a number of variables for describing displacements,
strains and so forth. Write these quantities in the framework below and and write the names
of the relations. (You do not need to give formula).

Problem 3 (4 points)

A storage tank for liquid needs to be jacked up for maintenance (see the figure at the next
page). The steel bottom plate is elevated from the foundation at which it is normally resting.
We want to check the stresses in the bottom plate.

The bottom plate is axial symmetrical and the edges can be assumed clamped. The liquid is
removed from the tank so that only the self-weight p of the plate is relevant. The radius of the
tank is a, the plate thickness is h, the elasticity modulus is E and the Poison’s ratio is v.

The differential equation of the deflection w of the plate is

li(ri[li(rd_wm _P
rdr\ dr\rdr\ dr K
where K is the plate stiffness. The general solution of this differential equation is

4
W=Cq+Cor2+Calnr+C rzlnr+pr
1 2 3 4 64 K

a Give the boundary conditions of the bottom plate (You do not need to solve the constants.).

22



The boundary conditions have been
processed for you and we find the

|

deflection f
|

|

|

W = p (82 _r2 )2 tank :

64 K ! | bottom plate
jacks — foundati
b Calculate the extreme moment in the | ounaation

plate.

side elevation
¢ Calculate the steel stress based on

the extreme moment in question b.
Use the following quantities:

a=15m

p =900 N/m?
h=0.012m

E =210 10° N/m?
v=0.1

top view

Calculate also the largest deflection of

the plate.

Probably you will notice that the calculated stress in question ¢ is much larger than can be
carried by normal structural steel. An obvious conclusion is that jacking up cannot take place
in this way. However, recently this project has been executed in the described way to the
complete satisfaction of the owner (Dutch: opdrachtgever).

d Explain why the bottom plate does not fail in the jack up process.

23



Tentamen b16, 18 juni 1998
Answers to Problem 1

Boundary Conditions
The stresses are found by differentiating ¢.

2
V4
oy =A(1-4 2/—2)(—8 )

z

y 2
Oxz = —A (_8h_2)(1_4h2)

The stress o,, at the edges y = h/2and y =-h/2 is

4l
Gyy = A (1—45—2)(—8,7%) =0
The stress oy, at the edges z=h/2 and z=-h/2 is
4l
Gyy = A (—8%)(1—45—2) =0

Therefore, the shear stress perpendicular to the edge of the beam is zero. This is indeed
necessary because at the surface of the beam, are no shear stresses and shear stresses

at perpendicular planes are equal.

Torsion Moment

The torsion moment is the resultant of the shear stresses

over the section area

hh
2 2
M, = J chsxz dydz-zcGy, dydz

As proved in the lecture book this is equal to two times
the volume of the ¢-bubble (Direct Methods, page 169).

Largest Stress

24
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The stress o, is largest if y = 0 and z = -h/2.

h
0> .2, A
Cyy = A (1—4h—2)(—8h—22)= 4’

The stress oy, has the same extreme value.
We can rewrite the expression for the moment as

M

_ w
A= h2

o|©

Using this the largest stress becomes

M

o=w
2p3
9

This result is 6% smaller than an accurate computation by the finite element method.

Complementary Energy
The complimentary energy is the integral of the energy in all particles in the slice. The
force at a particle is 6 dy dz and the displacement of the force is ¥ Ax .

h-h
2 2
E. = J. I%ny dy dz 7y, AX +%zedydz Y xz AX
_h_h
2 2

Torsion Stiffness
The moment in the wire frame model is

M,, =Gl, 9

The energy in a length Ax of this model is

2h4

2
8 Ap2
8 An
Ec=aMy 9Ax = 1= Ax i )A -2/

2
Miy py=210"" ] Ax
Gl, 2 al, 81 Gl,

The energy in the slice must be equal to the energy in the wire frame part

128A% s A’h® Ax
45 G 81 Gl,,

Or
Gly =G2h*

A computation with the finite element method is just 1% stiffer (Lecture book, Direct
Methods, Fig. 6.38).

25



Answer to Problem 2

€ XX c$XX
Eyy Oyy
Uy Px
€ zz cTZZ
y G Py
Y Xy Xy
u, P,
y Xz cFXZ
N e e
kinematic constitutive equilibrium
relation relation relation

Answers to Problem 3

a Boundary Conditions

On the edge (r = a) the plate is clamped, therefore, the local displacement and slope both
equal zero.

w=0
aw

—=0
ax

In the origin of the reference frame (r = 0) the slope is zero because of symmetry. In the
origin the shear force q is also zero because a small cylinder in the origin must be in
equilibrium.

aw _
dx
q=0

0

b Extreme Moment
The deflection line is

p

WP _(a2_r2y
64 K

(@ —r

Differentiation gives

dw p 2 2 - 2 3
—=——2(@%-r°)-2ry=——(@“r-r

dr 64K ( )2r) 16K( )
W -p 2 a2

R

dr? 16K( )

Substitution in the kinematic relations gives

26



d’w p

2 2
Kyy=——5=——(a“-3r
rr qr2 16K( )
_ldw _p 2 2
Res =7, _16K(a %)

Substitution in the constitutive relations gives

My = K(Kyr +VK99)=KL(a2 ~3r%+v(a®-r?))

%(a2(1+v)—r2(3+v))

Mgg = K(V Ky +Kgg) =K —2—(v (@2 - 3r2)+ (@2 - r?)) = 2 (@2(1+ v)=r2(1+ 3v))

16K
16K
The moments in the middle of the plate (r=0) are
2
pa
m, = 1+v
rr 16 ( )

The moments at the edges of the plate (r = a) are

pa’
16

my = @1+ v -a’ @+ v)=L2(-2)

2
a
Mgy = %(a2(1+ v)—a2(1+3v)) = %(—2 V)

Therefore, the extreme moment is

2
a
My =22 (-2)
My = '%Paz

Steel Stresses
Stress is moment over section modulus

We consider a plate part with a width of 1 m.
W =1bh*=110.012*=2410"m°

Therefore

__Amy _%paz _%900152

w W 24107

16
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o =105510% N/m?

The larges deflection of the plate is

4
L
64K

where the plate stiffness is

En®  21010° 0.012°

- 5= — 30545 Nm
12(1-v2)  12(1-0.07)

The deflection becomes

900154
W=———
64 30545

!

Explanation
Membrane stresses (Dutch: zeilwerking) in the bottom plate cause the deflection and

stresses to be much smaller than follows from the plate theory. However, even if these
geometrical nonlinear effects are taken into account the calculated edge stresses will be
larger than the yield stress. Therefore, at the edges plastic deformation occurs during the
jack up process of the tank.

Consequently we need to conclude that the applied linear elastic model is not suitable to
analyse this problem due to the large deflections.
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Technische Universiteit Delft Vermeld rechtsboven op uw werk:
Faculteit der Civiele Techniek Naam en Studienummer
Mechanica & Constructies

Tentamen Elasticiteitstheorie Ctme5141
15 oktober 1998 van 12.00 -15.00 uur

Problem 1 (1 point)

In the force method one or more compatibility equations can be derived by
1 adding the kinematic equations

2 eliminating the strains from the kinematic relations

3 eliminating the displacements from the kinematic relations

Problem 2 (5 points)

We consider two axial symmetrical elements, a ring and a disk loaded in their plane. These
elements will be analysed separately and subsequently connected.

Ring

The radius of the ring is 2a (Figure 1). The
cross-section area is A. It is loaded by a

pressure p per unit of circumference. The p : p
ring material has an elasticity modulus E, . 2 < i — A
Disk

The radius of the disk is 2a and its thickness l 2a i 2a l

is t (Figure 2). The disk has a hole in the
middle of radius a. The disk is loaded by a Figure 1. Cross-section of the ring
pressure p per unit of circumference. The
material of the disk has an elasticity
modulus E and a Poison’s ratio v = 0.

Kinematic equations of the disk

Err :%
ar

_u
€06 T

Equilibrium equation of the disk

d
5 \For)=009 =0

Using the force method the solution is . a | a | a | a |

Figure 2. Disk
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Q

O'rr:%
_d¢
Jge_dr
2
¢=C1a—+C2r
r

Derive the kinematic equation of gy for the disk. (Suggestion, consider how the shape

changes due to displacement u).

b Derive the equilibrium equation for the disk. (Suggestion, draw an elementary part of the

(¢}

o

o®

disk).

Calculate the stresses in the disk due to the load p.

Derive the following equation for the disk. u4 is the displacement of the outer edge.

__1opa
TR R

Derive the following equation for the ring.

pa’

up, =4
27"EA

The ring is heated T degrees. It now fits exactly around the disk. Subsequently the ring is
cooled down to its normal temperature. The linear expansion coefficient of both materials is

a. E, =30E and A=lat.

Calculate the stresses in the connected disk and the ring.

Problem 3 (4 points)

Consider the structural system of Figure 3. It
consists of two beams, which are connected
by a hinge. The left beam has an infinite
bending stiffness. The right-hand beam has
a bending stiffness El. The left support is a
free hinge and the right-hand support is a
clamp. The left beam is supported by a
spring. The spring stiffness is K. The system
is loaded by a force F at the middle hinge
and a moment T at the left beam.

The system will be calculated using the

principle of minimum potential energy. The
following displacement is assumed for the

30

" 232 '1/3a a

Figure 3. Structural system




deflection of the right-hand beam. (Note that the x-axis starts at the middle hinge.)

3
w:%["—B—stlc
a a

The following expression can be derived for the potential energy of the system.

(2,  3El)A2 T

What is the unit of the constant C? How can it be interpreted?
Derive the expression of the potential energy of the system.
In the following we assume the values.

K= 24—7§ T=2Fa
Calculate the constant C.

Make a drawing of the moment line and give its extreme values.

Are the calculated results approximations or exact solutions of the system? Explain your

answer.
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Tentamen b16, 15 oktober 1998
Answer to Problem 1

The correct answer is answer 3. The compatibility equations are derived by eliminating the
displacements from the kinematic equations.

Answers to Problem 2

Kinematic Relation

Consider a circle of radius r. The circle increases due to the loading to a radius r + u. The
circle length before loading is 2nr. The circle length after loading is 2n(r + u). Therefore,
the strain is

2z(r+u)-2zr _u
2xr r

€00 =

Equilibrium Equations
The resulting force in the left section is —o - t r d& . The resulting force in the right-hand

d
section is o, t rdo +d—(0',, t rd@)dr . The resulting forces in the top and bottom section
r

are ogpt dr . The latter produce a force —oyyt dr d@ due to the angle dé .
Equilibrium in the r direction gives

%(a,, trd@)dr—ocgytdrdd=0.

This can be simplified by division byt dr d@

d Uggt ar
—(o, r)—ogg =0.
dl’( m ) 00 ar
r
Stresses
We know that ag
_
32 trdé d trd@)dr
¢ = C1 T + C2r Oyr trdo J Crr +E(O-rl’ )
Substitution gives oopt dr
2
a
Orr 4 =C1—+Cy
r r
2
d¢ a
opp =—=-C1—+C
00 =", 172+

Applying the boundary conditions we obtain two equations with two unknown.
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2
r:a—)O'rr=0=C1a—2+C2 —)0=C1+C2

a
r =280y =-Poc T iy s-P_glic
rr t 1(23)2 2 t 14 2
The solution is
4P
C1_3t
__4P
Cy = 3
Therefore, the stresses are
2
2 p|a
apa 4p o _i—(——q
Opp =o——— = — - rr
mT3 2 3 Stir
2 2
__4abPa 4P __4bh|a
Opp = 3tr2 3[’_)0-09_ 3t(r2+1J

d Displacement of the Disk Edge

We know thategg = L Therefore,
r

Note that v is directed inwards.

e Displacement of the Ring
We assume that the ring is thin in the radial direction. Therefore, moments can be
neglected.

The normal force N in a cross-section of the ring can be found from equilibrium of a
segmentdd . The resultant of the load p is p2a d@ . The resultant of the normal forces N at

both sections is —N d@ . Equilibrium gives
N=2ap.
The ring has the same kinematic equation as the disk.

us

gy =Y _U2
00 r 2a
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The constitutive equation is
N = ErA 80(9 .
From the previous three equations we can derive

2
u2=2aggg=2aENA=2a2EaZ=4Z 5\’.
r r r

System of Ring and Disk
The temperature rise of the ring is included in the constitutive equation.

N = ErA( Eop —CZTr)

From the equilibrium equation, kinematic equation and constitutive equation we derive

Uy = 2ac5p = 28| =+ aT, |=2a| 22P 1 oT.
EA E,A

After the ring is fitted its temperature drops T degrees. Therefore,

Uy = 2a@aﬁ\’ —aTj

r

The displacements of disk and ring will be equal.

ug=us
_1opa_,r2ap_ -
3 tE E.A

Using, E, =30E and A :%at we derive

_%E =2a 2a—p—ozT = Za(i—aTj :za—p—ZaaT
tE 30E at 3Et SEt

2aaT :%’_pJFEE _128p

3Et 3 tE 3 Et

aT =22
Et
p=—~aTEt.

Subsequently, the displacement and stresses can be calculated.
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Stresses in the disk

2 TaTEt( 52
a 420( a 2 a
—-1(== —-1|-> oy =%2alTE| — -1
(rz J 3 ¢ (rz ] T3 2
2 1aTEt( 52
B a_ 1 :_iZ— 8_+1 —|0gg = — aoTE
t\ r? 3 r

Stresses in the ring

N

4
3

O =

+
wlN

Coo = —

[MEN
|m
NN
+
—
N—

N =2ap=2a %aTEt = aaTEt

—>|0gp = 5«TE

Remarks

The internal radius of the ring has been used in all
calculations. We could also have used the radius to
the centreline of the ring cross-section. However, 1 2 r
this has very little effect on the results when the ring 0 g
is thin in the radial direction.

Damaged train wheels are often turned off on a
lathe (Dutch: afdraaien op een draaibank) and fitted
with steel tyres. The method of this problem can be
used to model this process.

Answers to Problem 3

Constant C
C has the unit of length. For example meter [m].

When x = 0 then w(0) = C. Therefore, C is the displacement of the middle hinge.

Potential Energy

T
Epot =Es +Ep C ) F

E; consists of two parts, due to the right-

hand beam and due to the spring.
E p consists of two parts, due to the force F | 4
and due to the moment T. " 2/3a  1/33 ! a

Together this gives

a
Epot =2KvZ+1 [ ElxPdx—Fw-Tp
x=0

35



where,

V= %C is the shortening of the spring,

w=C is the displacement of the force F,

Q= —9 is the rotation of the left beam,
a
d?w 3x

k = ———==———C s the curvature of the right-hand beam.
dx? a’

Substitution in the equation of the potential energy gives.

a
2 9 2. C
Epot = 3KeC?+3 [ EI=x°C dx-FC+T =

a  y-0
2
%%%:ﬁ ~FC+T=
a a
3 EIC? C

=3 ~FC+T~

(2, .3EA2 T
Epot—[§K+§a—3jC —(F—ch

Epot =K2C? +

Epot =K2C?+

¢ Constant C

El
Using K = %—3 and T = %Fa the potential energy becomes

1Fa
Epot = [§Z7E+%Elj02 —{F—“—}C

d Deflections and Moments

Largest deflection \‘/’
1Fa’

w(0)=C=4— e

Moment in the right-hand beam
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3
M=Eix=-E13Xc——p3X1F _ 3,
a3 a3 8 El 8

The force in the spring is

El 5 1 Fa®
- _Ky=-K2C=_21="21"9 __9
F=-Kv=-K3C= 4 338 F 16"

Moment equilibrium of the left beam
gives the shear force D left of the

middle hinge ZFa Fl

tFa_pa 9 F2 4 |

2 Fa=Da 16 F 58 YaN T |

D=35F 9

8 %F

. . 5 ~3Fa
from which the moment at the spring can —ﬂFa
be calculated. —%Fa

‘ Y M

__5p1,__5
M= 8F3a 24Fa

Approximation or Exact
The results are exact if the assumed displacement function w(x) gives a moment line
which is in equilibrium with the load and fulfills the dynamic boundary conditions.

2 2
Equilibrium q = - d 1\24 = d—Z%FX =0, which is correct.
ax ax

Dynamic boundary condition M = %Fx x=0—>M =0, which is correct.

Therefore, the results are exact.
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Technische Universiteit Delft Vermeld rechtsboven op uw werk:
Faculteit der Civiele Techniek Naam en Studienummer
Mechanica & Constructies

Tentamen Elasticiteitstheorie Ctme5141
29 oktober 1999 van 14.00 -17.00 uur

Problem 1 (5 points)

A non-prismatic beam has a length L
and is simply supported at both ends
(Figure 1). The bending stiffness at

the left support is El, and at the

right-hand support %Elo. Between

the supports the bending stiffness
varies linear. The beam is loaded by

A structural designer calculates the rotation ¢¢ of the beam at the left support. He or she

uses the standard formula (Dutch: vergeet-mij-nietje) for prismatic beams and the average
bending stiffness of the beam.

What is the percentage error that the structural designer makes?
Apply one of Castigliano’s theorems to calculate the rotation ¢4. In this problem you can

use either the displacement method or the force method. Explain your selection of the
interpolation function.

If the displacement method were used: Would the force method give a larger or smaller
value for the rotation?
If the force method were used: Would the displacement method give a larger or smaller
value for the rotation?

Suggestion
If you need to calculate an integral for

which you do not know the solution, use
Simpson’s rule for numerical integration £
(Figure 2.). 2

L
[f(x)ax =3L(f+4f+ 1) X
0 | \

Figure 2. Simpson’s rule
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Problem 2 (5 points)

Consider the composite bridge shown
in Figure 3. The continuous lines are
reinforced concrete plates and the
dotted lines are steel trusses. Figure 4
shows part of one of the trusses. The
thickness of all concrete walls is t and
the shear modulus of the concrete is
G.

Ta
34 Ja 2a Ja | 33
4 TS T T - 4
N 'l

Figure 3. Cross-section of a composite bridge

We need to calculate the torsion stiffness and the torsion stresses in the cross-section.
Therefore, we replace the trusses by homogenous isotropic plates with the same shear

modulus G as the concrete plates and a fictitious thickness f¢. The extension stiffness of the

truss bars is EAg.

The fictitious thickness of the wall is
EAs
tr =
2aG
fictitious thickness (Figure 5).

. Use energy to derive this

Assume that tf = %\/Et Calculate the

torsion stiffness of the cross-section of
the bridge.

Calculate the shear stresses due to a
torsion moment M;.

40
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Figure 4. Elevation of one of the trusses

e L,
g ! |
J2 F Mxy ny
a Tj;Q g
— — —

xy

Figure 5. Truss and isotropic plate




Tentamen Ctme5141, 29 oktober 1999
Answers to Problem 1

Method of the Structural Designer

Formula of the prismatic beam Q= ML
3El
Average bending stiffness El = 1(El, +0.75El,)=0.875El,
M.L
Substitution 0= ML ___ ML 0, =0.381=—
3El 3*0.875El, El,

Force Method (Minimum complementary energy or Castigliano 2)
Moment line M =M, (1 —%)

The linear moment line is in equilibrium with the load. Therefore, it can be used in
complementary energy. The beam is statically determined. Therefore, we can easily see
that the linear moment line can describe the exact solution too. Consequently,
approximations are not introduced here.

Bending stiffness El=El,( —ﬁ)
L M2
Complementary energy E, = %Jﬁdx
0
X
L MZ(1-2)? y2 L
Substitution E, =1 L™ gy [f(x)ax
X 2E]|
0ElL,(1-—) °0
4L
(1-2)?
f(x) = LX
(1-—)
4L
Approximation of the integral
_ 2
using Simpson’s rule f(0)= (1-0) =
(1- 0)
- _,
f(z ) - (1 _ ) -7
“1-1?
f(L)=
-5
2 2 2
. M L(1+4*2+0)_—M1L =O.179M1L
2EI 6 El, El,
Intermezzo The integral can also be calculated exactly
M? M2L
E, = (72In2-36In3-10)L =0.178
2El, El,
oE oE
Complementary energy Ecomp =Ec —Myo, 0= a;;r:p/ _ aMC o,
(P1:aEC: _ . ML O358ML
M, El, El,
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Error of the structural designer % *100% = 6% too large

Displacement Method (Minimum potential energy or Castigliano 1) Alternative answer

Deflection line w(x)=C(1 _%)%
This is the simplest function that still fulfils the kinematic boundary conditions
w(0)=0
w(L)=0
. dw 1x x, 1
The rotation of the beam Q= =C—-=+C(1-2)—
dx LL L'L
1
¢ =0(0)= CZ
2
Curvature o dwW _ 11 11 ,C e
dx? LL LL L2 L
L
Strain energy E, = ;jElxzdx
0
L
Substitution Es =1 [El,(1 ~ X221y =
2 0 4L
Pry2fiq X P12 7 07
=2E1, (1) [(1-—-)dx = 2El (1) —L = ZEl, -~
L ! 4L)d o L ) 8 T
oE
Potential energy Epot =Es —Mipy 0= pot _OEg M,
op  opy
M, =%=2%Eloﬂ o, —0.286 ik
0P L El,
Error of the structural designer % *100% =33% too large

Displacement versus Force Method

The displacement method gives a too stiff solution, so a too small ¢,. The force method gives
the exact solution except for the approximation of the in the integration rule.

Answers to Problem 2

Fictitious Thickness
The energy in the plate parts should be equal to the energy in the truss walls. From this we
calculate the fictitious thickness fr .

Energy in a plate part
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=71 G (av2)t; = G,
Nyyav2=F
F 2
[‘92] 2 _ F?
Fo = Gt 2G t;

N2 N2
E.=1"1 254,12 54
¢ 2EA 2 EA,
~1FV2 Ny =1F\2
1 2
g _1(C3FV2P  (GFV2)  Fa
.= -
2 E s T2 EAs EAs
To equate
F2  F2a
2Gt;  EA
EAs
te =
2aG

b Torsion Stiffness
We use the membrane analogy.

S| ay2 |+ S(maj—s(waj =1a’p
ts t t 2
(o[ "a)-o 227 -

Simplified

4 1 atp
W1 —Ww3 275 _ a | 2a L a |
I~ ™ T
atp |
—Wq+ 3wy =—— N ! X
S \\ ‘ " E
\ 4
\ ! ’
From which we can solve \
5 atp wWq W2 | 2
W1 = 22°g |
g atp
"2 tumy

Substituting S = é and p = 26 we obtain the ¢-bubble.
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¢ =>atoG
¢p = =atoG

The torsion moment M;is two times the volume of the ¢ -bubble.

My = 2(a®q +28°¢;) = 28% (1 + 20 ) = 2a° (2 at0G + 2.2 at0 G)
_ 46 .3
Mt —ﬂa t0G

Therefore,
M
Iy =—
GO
/t = %ast

¢ Shear Stresses

The shear stress is the slope of the ¢ -bubble. At the previous page we found

¢ = atoG
b =2 atoG

. M . .
To eliminate 6 we substitute %—zt = atoG, which gives
a

=5
a

b =G5k
a

46 2,
o M s My
&, 46 .2 46 2 M
The shear stresses in the vertical plates are t = b2-01 _Ta a _4 7t
5 M,

46 .2 M
The shear stresses in the fictitious trusses are t = -1 a _10_ "7t

_ _wo M _s
%\/Et %\/Et 46 \/EaZt 46

5 9 5
[ R — «— «— ]
4
Nw T /5J§
3 1 M
X__
46 2,
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Technische Universiteit Delft Vermeld rechtsboven op uw werk:
Faculteit der Civiele Techniek en Geowetenschappen Naam en Studienummer
Mechanica & Constructies

Tentamen Elasticiteitstheorie Ctme5141
Dinsdag 11 januari 2000, 9:00 —12:00 uur

Problem 1

A high-rise building has a tube frame structure. The cross-section is modelled as a tube
loaded in torsion (Figure 1). The walls are plates of a homogenous isotropic material of
thickness h and shear modulus G.

We calculate the tube using the membrane analogy. You can assume that the wall thickness
is small compared to the width of the tube.

p L
a
h h
h
2a
h
a a
I I
Figure 1. Cross-section of the tube Figure 2. Alternative cross-section

Calculate the position of the weightless plates.
Calculate the torsion stiffness GI; of the cross-section.

Calculate the shear stresses in the cross-section due to a torsion moment M; and draw the
stresses in the correct direction.

As an alternative it is suggested to leave out the interior wall. This cross-section has been
drawn in Figure 2.

Does the interior wall contribute much to the torsion stiffness? Explain your answer.
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Problem 2

An arch and a tension bar are idealised according to the figure below. The materials are
linear elastic. The bending stiffness of the arch is El and the tension stiffness of the arch is
infinitely large. The tension stiffness of the tension bar is EA.

The structure is calculated by complementary energy. We choose the force in the tension
bars as redundant ¢ (Dutch: statisch onbepaalde).

El

IF/ 2 IF/ 2

Express the arch moment as a function of ¢, r, F and y. (Due to symmetry only halve the arch
needs to be considered.)

Give the formula for the complimentary energy of the structure.

Evaluation of the complimentary energy gives the following result. Derive this result.

r3 (I)Zr n/2

Ecompl =E[¢2%TC—%¢F+F2(%R—%)]+§ Isinydy=1
0
/2
Calculate ¢. J.COSy dy =1
Calculate the deflection w of the arch top. 752
: Isinz ydy = I
Assume that the calculation would have been made by the 4

direct method instead of complementary energy. Would we n(;z

have found different answers to question d and e? Explain J‘ cos? ydy = k3
your answer. 5 4
/2 1
IsinyCOSydy =—
5 2
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Tentamen Ctme5141, 11 januari 2000

Answer to Problem 1 —_—
a Weightless plates 1 a
S 2
e .
sW
\ 4 h
/
| a | a
I I
h . -

W, — W,
h

Equilibrium plate 1 pa2a =Zas%+as%+asm+asm—as

Equilibrium plate 2  pa2a-= 233% + Zas% + as% + as%

This can be simplified to

2ah§ = 6w, — W,

2aht - 6w, —w,
S

From which w; and w, can be solved.

W, =%2ah§

w, =%Zah§

b Torsion Stiffness
From the bubble we go the ¢-bubble using the following substitutions.
w=2¢d
p=29

S=—
G

Therefore
o =0, = %2ah28G = %ahSG

The torsion moment is two times the volume of the ¢-bubble.
M, =2(a2ad, +a2ad,)=4a*(9; +¢,)=4a*(% +%)ah9G = 2a°h3G

For a wire frame model of the beam we have

|

4

w2




M, =Gl 9

Therefore the torsion stiffness is
Gl, = G3—52a3h

¢ Shear Stresses
The shear stress is the slope of the ¢-bubble. First we rewrite the equation for the torsion
moment

M
ahdG = 3%8—;' T
. . l 1 T
and express ¢4 and ¢, in the torsion moment. T
T
by =4; ~4ah9G -3
a — —
0 T
This gives for the shear stress
o _1 M
T=—= 1w . T
h ®a%h l 2 T
T
d Alternative
The interior wall does not contribute to the torsion

stiffness. After all ¢, and ¢, are equal and the shear
stress in the wall is zero. T

Answers to Problem 2

a Moment line

M =¢rsiny—F/2(r —rcosy) 0<y<g

b Complementary energy

~ /2 2 2r ¢2
Eoomn =2 | 2E T J J2EA™ | [ | [
Y X _____4_
r-rcosy

¢ Evaluation

/2

E j M2ds + ¢ de
vy=0 x=0

1
compl :igi 2EA

/2

2
1 [M?rdy+ O o
El Y,

2EA

nl2 2

r . ; 2 o°r

=— -2 F(r- dy+—
5 :f£¢rsmy > F(r—rcosy)|“dy + 7
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r3 n/2 (I)zr
=EJ[¢siny 1F(1-cosy)] 2dy +

o EA
3 n/2 ¢2r
sin®y —2¢siny4 F (1-cosy) + L F?(1-cosy)’]dy + —
=5 f[¢ y—2¢siny4 F( )+ ( v)1dy 7
3 n/2 (|)2r
=_ J'[¢ sin? —¢Fsiny +¢Fsinycosy + g 1F2 F CoSYy + 4 1F?cos? y]dy+§

r 2T 1 12T 4 2 1 2T (1)/'
R I gF+oF S+ 12 I _1F2 1F
ERAV IR LN 2T EA

_rS 21 16F + F2(3 1 ¢2I’
_E[(I) 2T 0F +Fo (5% _5)]+EA

Therefore, the answer provided in question 2c¢ is wrong. We continue with the correct
answer.

Redundant
0 — aEcompl
o0
0= 3[ ton—1F]+ 28
El? EA
F
b=E
2a T
r°eEA
Deflection

For this we assume that the deflection w of the arch top is imposed. The complementary
energy becomes

P24 4 2,3 1y, 9T
ECOI’Tlp|:E[¢ ZTC—E(I)F‘FF (ﬁﬂ_i)]+a_FW

We can calculate the support reaction F by minimising the complimentary energy.

aEcom I I’3
0=—2M __ [_1442F g IN-w
T = g0+ 2R (-3 -
We now know the relation between w and F. It does not matter any longer which has been
imposed.
CFla g1 EA
T El 2 4El +nr’EA

We would have found the same answers because the moment line of question a is not a
approximation.

n
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Technische Universiteit Delft Vermeld rechtsboven op uw werk:
Faculteit der Civiele Techniek en Geowetenschappen Naam en Studienummer
Mechanica & Constructies

Tentamen Elasticiteitstheorie Ctme5141
Vrijdag 27 oktober 2000, 14:00 —17:00 uur

Problem 1

A four-cell box-girder is loaded in torsion (Figure 1). All wall parts have the same thickness t.
The centre to centre (Dutch: hart-op-hart) distances are all a. The thickness t can be
considered very small compared to a.

Which parts of the four cell box-
girder can be neglected in
calculating the torsion stiffness?

How many weightless plates do we
need to consider in calculating the
torsion stiffness by the membrane
analogy?

Calculate the torsion stiffness.

Determine the shear stresses in all
wall parts due to a torsion moment
M.. Express the stresses in M/(a*t).

Figure 1. Cross-section of a box-girder

Problem 2

Consider an axial symmetrical plate which is loaded perpendicular to its plane (Figure 2). The

2
curvature in the radial direction is «,, = —C;—VZV . What is the curvature xgg in the tangential
r
direction?
A Kpg = 0 o
1dw A
B «xgg=—>""
00 r dr
w
C Kpo -
2
Figure 2. Axial symmetric plate

51



Problem 3

A non-prismatic beam is loaded by a
moment M; (Figure 3). At the left end
the beam is simply supported and at
the right-hand side it is clamped. The
bending stiffness E/ varies according
to

X X
El(x)=Eh(1- 1)+ 1El, T

Figure 3. Non-prismatic beam

The following function is proposed for the moment line.
X X
M(x)=M;(1-—)+ A—
(x) = M ( L) 1
where A is a constant that will be determined later.

Draw the moment line. To do so make an estimate of constant A.

Is the proposed moment line suitable or application in the principle of minimum
complimentary energy? Is this moment line an approximation? Explain your answer.

Give the formula of the complimentary energy of the beam.

Show that the complimentary energy can be evaluated to the following result. Use
Simpson’s rule (Figure 4).

Ecompl =Eil1(o.194 M? +0.222 M{A+0.278 A?)

Calculate constant A.

Calculate the rotation ¢4 of the left end of
the beam.

£(0) f(5L) f(L)

L
J'f(x)dx = LL(F(0)+ 4f(L L)+ F(L))
x=0

Figure 4. Simpson’s rule for approximation
of the integral of f(x)
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Tentamen CTme5141, 27 oktober 2000
Answers to Problem 1 (4 points)

The cells at the left top and right bottom are not closed. The contribution of these wall
parts is calculated as that of a strip () /t° =2x3at”). This is much smaller than the
contribution of the closed cells, therefore the open cells can be neglected.

For the calculation is just one weightless plate required. After all, when we rotate the

cross-section over © rad we obtain the same shape. Would the weightless plates of the
closed cells have different displacements than the drawn cross-section and the rotated
section would have different solutions. This is not possible, so the weightless plates will

have the same displacements.

We consider the weightless plate as draw below. The total circumference O of the plate is

O =2(2a)+6(a)=10a

The surface A of the plate is
A =2(2a a) = 4a°

Equilibrium of the plate gives
%S 10a=p 432

Therefore
_ 2 pat
W5 s

Transition fromwto ¢ .
p=20
1

S=—
G

_4
d=2Gato

The torsion moment is two times the volume of the volume of the ¢-bubble.

My =2A¢=2(4a)2Gat0 = G32a% 0

We also know that M; = G/; 0
Therefore I = %a?’t

The shear stress in the wall parts is equal to
the slope of the ¢-bubble. In all wall parts is
the size of the shear stress the same.

4Gato
c_9_5 _4Ga0-4Ga_ Mt
5
M
1 t
C=g—5
832t

a

a

—
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Answer to Problem 2 (1 point)

The correct answer is B. (Lecture book, Direct Methods, page 122)

Answers to Problem 3 (5 points)

a The constant A is the moment at the right-hand side of the beam. From the expected
curvature of the beam we can conclude that A will be negative.

= -A

M, -

b Yes, the proposed moment line is suitable for complementary energy because it is in

2
equilibrium with the loading M,=M(0) and Z_Az/l =—-q =0. The moment line is not an
X

approximation because it can describe the real moment line.

¢ In general the complimentary energy of beam consists of an internal part and an external
part.

2 F
=0
where uy1, Uz and 0,, are imposed displacements (free support and clamp) and F;4, F, and
M, are the corresponding support reactions. The complimentary energy of the beam in this
problem is

L
2
Ecompr = j 1=dx - Fiuon — Falioy — Ma9o2
e

After all, the imposed displacements u,1, U,z and 6,, equal zero.

d Evaluation of the complimentary energy

2
L [M1(1—X) AX)
E. = [41 L L)y
compl — 2 X ] X X
o EW(1=T)+3ELT

2
L (M1(1—X)+ij
d

1
Ecompl = 2El, .[
X=0

1 X
2
L (M1(1—Z)+A)L(j
Ecomps = 32 [ -
X=0 2 L
f(0)= M7
(L) =1(M, + AY
f(L)=2A2?
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1
Egompl ~ fh%L(f(O) +4f(LL)+F(L)

1 2 2 2
E compl =fl1%L(/\/11 +2(My+ A)° +24A ))

_ Va2 .8 10 p2
Ecompi —ﬁgL(g/W +§M1A+?A )
Ecompl =Eil1(o.194 M? +0.222 M1A+0.278 A%)

Intermezzo
The integral can also be calculated exactly. The result is

Ecompt = 57 2 ~ VA + (M ~24(2In(2) - 1)

Ecompl = Eih(on 93 M? +0.227 M4A +0.273 A?)

Complementary energy needs to be minimal with respect to the parameters of the moment
line.
dEcompl _
dA
From this A is solved.
dEcompl _ L
dA  El

_—0222M, _ ~0.399M,
0.556

0

(0.222 M4 +0.556 A) =0

The rotation ¢, is not part of the expression of the complementary energy. Therefore we
use a trick. We assume that ¢4 is imposed, so ¢4 = ¢,1. The complementary energy

becomes
E compl = 5(0.194 M? +0.222 MiA +0.278 A2) — Mgt
1

Two parameters determine the moment line. These are A and the support moment M,.
The complimentary energy again needs to be minimal with respect to these parameters.

dE
ol _ é(o_zzz M, +0.556 A) = 0
1
dE
ooyl 5(0.388 My +0.222 A) — 9oy = 0
1 1

In principle, form these two equations we can solve the unknown A and M,. However, since
we know the relation between ¢,1 and M, it does not matter which was imposed and which
was calculated. Therefore we can also write

A" 0.222 M, _

_ _0.399M,
0.556
01 = —=—(0.388 My +0.222 A) = 0.209 1L
El, El4
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Technische Universiteit Delft Vermeld rechtsboven op uw werk:
Faculteit der Civiele Techniek en Geowetenschappen Naam en Studienummer
Mechanica & Constructies

Tentamen Elasticiteitstheorie Ctme5141
Dinsdag 9 januari 2001, 9:00 — 12:00 uur

Problem 1 (3 points)

A new software tool has become available for calculation of circular plates”. We want to check
the program with a manual calculation. Therefore, the computation of Figure 1 has been
performed.

2 ,
Formulae " 100 psi (pound /inch?)
VWYYV VIV VIV YT VvYYvY | | R AAiiAAAAAAAALALALS
[
1d, d 1d, dw I
PP et E=2510°psi [tin) 6in (inch) |
v=0.3
My = -D(W" +Xw’) thickness = 0.2 in i
r
mgg = —D(1W'+VW") \ i / w
r 1 1 70.219
qr = —D(W'"+7W”——2W') i 207
r | mer
,_pr Cs / 645 \
w'= +2rCo +—2 +(r +2rin(r))Cq | -607
16D r / i \
2 | m
. 3pr Cs = | ~ Mo
w'=——+2Cy ——=+(3+2In(r))C
16D 2 rz ( (r))Cs | -182
I
w" = 3pr + 2C3 + 2C4 |
8D f'3 r i aqr
3 -343
D- Lz
12(1-v*<) Figure 1. Computation results of the software tool

a What are the units of w, m,,, mgs and g, in Figure 1.

b Clearly an axial symmetrical plate can be modelled by a differential equation. The total

solution of this differential equation is

4

w(r)= g4rD +C,+Cyr2 +CyIn(r) + Cyr2in(r)

Give the boundary conditions that can be used to calculate the constants C, , C,, C; and C,.
Are the graphs of Figure 1 in agreement with these boundary conditions? Explain your
answer.

Derive the four equations from which the constants can be solved. (You can leave D, v and p
in the equations. You do not need to solve the constants.)

" WinPlate, Archon Engineering, Columbia, Missouri, U.S.A. Shareware, http://www.archoneng.com/
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d The constants have been solved for you. The result is

C1=0.2248 C, =-0.006428 C3 =-0.02548 C4 =-0.0006825

Use this to check the largest deflection in Figure 1. Explain possible differences.

Problem 2 (4 points)

A prismatic tube with thick walls is loaded by
torsion. The cross-section of the tube is square h
with dimension h and wall thickness t (Figure 2). " ¢
We want to calculate the torsion stiffness and
the largest shear stress. Therefore, we
considerer a slice of length Ax.

The torsion moment causes shear stresses in h
the cross-section, which can be derived from a
function ¢ . We select the following function as

an approximation. Figure 2. Cross-section of the tube
)2
All-4-7) v|>l2| en Zh-t<ly|<h
2
o= A(1—4,Z7—2) 2>]y] en 1h-t<|zg<in
t
A(1—(1—2F)2) vlld<1h-t

where A is a jet unknown constant. Function ¢
has been drawn in Figure 3. The shear stresses
in the cross-section are calculated by

o9
o =5
0

Oxz =~ Ojj

Figure 3. The ¢ bubble

a Use Figure 3 to show that ¢ fulfils the boundary conditions.

b Give the formula for calculating the resulting torsion moment (You do not need to evaluate
the formula).

The formula has been evaluated for you with the following result.
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M,, = Ah2[1 -1 —21)4J
h

¢ Calculate the largest stress in the cross-section and express this in the torsion moment.

d Give the formula for calculating the complementary energy of the slice of length Ax (You do
not need to evaluate the formula).

The formula has been evaluated for you with the following result

A? t.4
E.=4—|1-(1-2-)" |A
c G( ( h) J X

where G is the shear modulus of the material
e Calculate the torsion stiffness Gl,, of the beam.

Suggestion: Make the complementary energy of the slice equal to the complementary energy
of a part of wire frame model.

Problem 3 (3 points)
A statically indetermined truss is loaded by a concentrated load F (Figure 4). All bars have a
cross-section area A and an elasticity modulus E. The bars are connected with hinges to the

nodes. The diagonal bars are not connected in the middle. The complementary energy of the
truss is

Eoompt = o (3+ 1V2)F2 + (5 + 2020 - 2+ 32)F)

a Explain the parameter ¢ in the equation of the complementary energy. How can ¢ be
calculated?

b Calculate the deflection of the concentrated load.

/
ZaN
A7 * . =
/ | /
x
Figure 4. Statically indetermined truss
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Tentamen Ctme5141, 9 januari 2001
Answers to Problem 1

Units
w inch; in
My, Mgg inch-pound / inch; pound; Ib
qr pound /inch; Ib/in

Boundary Conditions

1. w(7)=0
dw

2. ?(7)=0

3. m,(1)=0

4. q,(1)=0

In Figure 3 we see that the deflection line w at the clamped support (r = 7) does not have a
slope. This agrees with boundary conditions 1 and 2. We also see that m,- and g, equal zero
at the free edge (r = 1). This agrees with boundary conditions 3 and 4. Therefore the graphs
fulfil the boundary conditions.

System of Equations

v
m,, =-D[w" +7W']

3pr2 vpr Cs Cs v Y
=-D +— +2Cy +— 2C r—-— +——+2C Inr +2C4 +Cyq +—2Cyrinr + —Cyr
TR M 22y aTTaT el
2
:-%(v+3)—2D(v+1)C2—D(V2_1)C3—D[2Inr(v+1)+v+3]C4

1 1
=-Dw"+—-w"-—Ww
q[’ [ r r2 ]

:—D[3pr 2Cs, s 130r% 150 18,1 “2C4Inr+— 3C4
B3 r r16D r rr2
1 prd 1 1 Cq
-———-—2Cr-——2-— ZC rInr——C4r]
;216D 2% 2 27t
__pr_4p
2 ro4
w(7)—ﬂ+c +Cy72 +C3INT +C472IN7 =0
64D 1 2 3 4
3
w(?) =P 20,7+ 83 20,774 C47 =0
16D 7

m,, (1) = —%(v+3)—2D(v+1)C2 ~D(v-1)C3 -D[2In1(v+1)+v+3]Cq =0

Gr(1)=—5 -4DC4 =0
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d Numbers

x406 % 93

D =u =18315in-Ib (Pronounce: inch-pound)
12(1-0.3%)

_100*1*

w(l) 64D

+Cy+Cp1? +C3In1+C412In1=0.218 in

The graph shows a deflection of —0.219 in. Apparently the program uses a different

positive sign convention than the lecture book. The small difference in the number is
definitely caused by round off errors.

Encore (not an exam question)

The other values in the figure are checked below. From the figure we estimate the
maximum moment at r= 2.2 in.

x5 52 .
my(2,2) = 1007227 5 3 5+18315+1.3 Co 18315707
16 2.2?

=-99.83-47619 Cp +2649 C3-97985 C4 =205 Correct

C3 -18315 [2In2.2*1.3+3.3] C4

* 2 * o
m,,(?):-moT73.3—2*1 8315 *1.3 02—18315;—20’7 C3-18315 [2In7*1.3+3.3] C4

=-1010.6-47619 Cp +261.6 C3-153102 C4 =-607 Correct

Mgy =-D [%W' +vw']

1 pr’
- _p[-(P
r 16D
——D[p—r2+ZC +g+(l+2ln(r))C +3vpr2

16D 2,2 7 16D

2
+2rCy + Bk (r2rn(r)Cy) + v(i’;; +2C, —C—§+ (3+2In(r))Cy)]
r r

+2vCy — @ +v(3+2In(r))Cy]
r

2 N

—_D[(1+ 3v)% +2(141)Cy + 1—2V03 1+ 21n(r) + v(3 + 21n(r))IC, ]
r
100

1618315
100 * 72 0.7 .
T6 1a815 " 28 G273 Co +I1+2I(7)+0.3" 3+ 2(7))] Cy)
_ _581.9-47619 C,-261.6 C;—127461 C,
=-182 Klopt

mgg(1)=-18315 [1.9 +2.6 Cp+0.7C3+1.9 C4]=645 Correct

Myy(7)=-18315 [ 1,9

100*7 4*18315
(7=

C, =-343 Correct too
2 7
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Answers to Problem 2

a Boundary Conditions

At the internal and external edges the shear stresses that are perpendicular to the edge
should be zero.

oxy =0 if |y|=%h and |z|<|y|, |y|=%h—t and |z|<|y|

Gyy =0 if |z|=%h and |y|<|Z, |z|=%h—t and |y|<|]

This follows from moment equilibrium of
infinitesimal cubes in the edges.

The formulae of the stress shows that the shear
stress is zero when the ¢ bubble does not have a
slope in the direction perpendicular to the stress.
The thick lines in the right-hand figure show that the
¢ bubble correctly does not have a slope at the
edges. Therefore, the boundary conditions are
fulfilled.

Equilibrium of infinitesimal cubes
in the edges of the tube

b Torsion Moment
The torsion moment is the resultant of the shear
stress over the cross-section area.

h h

My = _[ J Yo xzdydz - zo, dydz

2 2

As shown in the lecture book, this equals two times .
the volume of the ¢ bubble (Direct Methods, page The ¢ bubble does indeed not
169). have a slope at the edges of the
tube.

¢ Largest Stress
The stress is largest where the slope of the ¢ bubble is largest. For example, o, is largest
wheny = h/2.

AshL2 y|>[2 en Zn-t<ly|<in
oe=-2_do " |g2ly| en ih-t<|d<in
0 |y|,|z|<%h—t
A
oxly =zhz=2)=47 -
Yol .y
The expression for the torsion moment can be -
reworked as pa Xy | dz
Mt V
A:h2(1—(1—2t)4j ‘ H
h dy
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This makes the largest stress
4My 1

P o_a-2by

( h)

O =

Complimentary Energy
The complementary energy is the integral over a slice Ax of the energy in all particles. The
force at one particle is o dy dz and the displacement of this force is y Ax.

Ec

Il
e LI
e N[

20 xy Ay 027 AX +36,,0y Az, AX

|

NS>
|

N>

Torsion Stiffness
The torsion moment is

M; =G0

The energy in a length Ax of this model is

2
E, =1Monx = lM—tAx

2 S 2 Gl
The energy of the slice can also be expressed in the torsion moment
M¢
4 t 4 :
h* | 1-(1-2—
A2 t 4 ( =2 j t 4
Ec=4—|1-(1-2—)" |Ax=4 1-1-2—)" |[Ax=
G h G h

_aM}? 1
Gh* |_a-2 5y
( h)

AX

The energy of a part of the wire frame model should be equal to the energy of the slice.

2 2
I ME L AM 1

Ax
2Glt Gh* 1_(1_25)4
h

Or
Gly = Gé(h“ —(h-2ty%

Encore (not an exam question)
The calculated tube is situated between two extreme tubes. If the walls are thin (t << h) we

can calculate the torsion stiffness simply using a weightless plate G/; = t i°G . If the cross-

section is monolithic (t = h/2) we can find the torsion stiffness in a table G/; =0.141 h*G
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(See lecture book Direct Methods at page 183) (See also this book page 25). With this we
can plot the following graph.

0.14 4 monolithic

Gl,
0,12 4 Gh*

0,10

thin walled derived

0,08
0,06 —
0,04
0,02 t
h

0 01 0.2 03 04 05

The derived formula appears to be accurate for thin and thick wall tubes. However, the
formula is not accurate for very thick wall tubes and monolith cross-sections.

Answers to Problem 3

Parameter ¢
Parameter ¢ is the redundant (Dutch: statisch onbepaalde) in the force flow of the truss. ¢
can be solved from the equation

dEcompl -0
do '

Deflection
We impose the deflection u® . The complementary energy becomes

Evompt =2 (3 4 TV +(3 + 2202 - 2.+ 32 )Fb) - Fu.

The force F is an unknown support reaction, which also determines the force flow. The
complementary energy needs to be minimal with respect to the parameters that determine
the force flow.

dEcompl -0
dé

dEcompl -0
dF

From this the deflection can be solved.

I
EA
I
EA

265 + 2v2)0- 2+ 342)F)=0

2+ 1V2)F -2+ 342))-u° =0
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(5+4v2)p=(2+342)F
(G20 -2+ 342)0)-u°

2+%\/§

L I (243
EA{(2+\/§)F (2+2ﬁ)5+4ﬁ

o T+5V2F I _ o F |

" 5+4J2 EA T EA

F|=u®
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Technische Universiteit Delft

Faculteit der Civiele Techniek en Geowetenschappen

Mechanica & Constructies

Tentamen Elasticiteitstheorie Ctme5141
Vrijdag 26 oktober 2001, 14.00 — 17.00 uur

Vermeld rechtsboven op uw werk:
Naam en Studienummer

Problem 1 (4 points)

Consider a symmetric structural system
consisting of three high walls in one plane
(Figure 1). The extension stiffness’ are EA;,
2EA, and EA; respectively. The walls are
supported by springs at the bottom. (pile
foundation). The spring stiffness’ are K, 2K,
and K respectively. The two rows of horizontal
connection beams between the walls are each
modelled as a system of distributed springs of
stiffness k. The height of the structural system
is /. The x-as start at the bottom of the wall
(x=0) and end at the top of the wall (x=/).

The two outside walls have a temperature of T
degrees higher that the middle wall. The linear
extension coefficient of the walls is a.

A structural designer wants to calculate the
shear force s in the connection beams. The
structural designer uses symmetry and uses
only the left part of the structure.

x

EA| k= 2EA; == k— EA4

v

Figure 1. Three connected high walls

Give the framework that shows the degrees of freedom, deformations, stress quantities
and loading in the structural system. (Make drawings that explain the quantities and their

positive directions).

Which is most suitable to solve this problem, the force method of the displacement

method? Explain your answer.

Formulate for the structural system
- the kinematic equations

- the constitutive equations

- the equilibrium equations

(if need be supplement the drawings of question a).

The structural designer uses the displacement method.

Using the kinematic, constitutive and equilibrium equations he derives two differential
equations. The solution of the differential equation has four coefficients that need to be
determined by four boundary conditions. Two boundary conditions occur at the top (x =1/)
of the wall and two boundary conditions occur at the bottom (x =0 ) of the wall.

Formulate the boundary conditions at the top of the wall? Evaluate these to an equation in

the wall displacements u; and u..

Formulate the boundary conditions at the bottom of the wall. (Draw a small finite slice at
the bottom of each wall with a height d. Thus, the slice goes from x=0 to x=d. d is small
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compared to /. Draw the forces on the slices. Formulate the equilibrium conditions of the
slices and subsequently let d approach to zero.) Evaluate the equilibrium equations to
equations in the wall displacements u4 and u,.

Bonus Question (one point if completely correct)

Two descending exponential functions appear in the solution of the displacements and
stress quantities. One of them is descending from the bottom of the system and the other
from the top of the system. We select the stiffness such that exponential functions can be
neglected at a distance of //3 form the bottom or the top respectively.

Questions

- Consider the situation that K is infinitely large and K; has a finite value. Draw the
expected distribution of the normal forces in the walls and shear forces in the
connection beam. (You do not need to calculate something. It is sufficient to just
reason). Write down whether the normal forces are tension or compression.

- Draw the direction of the shear force s in the distributed springs on each of the walls.

- Write down on which position(s) the normal forces N; and N, (in absolute sense) are
equal.

Problem 2 (3 points)

A hollow core slab (Dutch: kanaalplaat) with 11 cells is modelled as a thin wall cross-section
(Figure 3). Just six webs are taken into account in the model. All walls have a thickness t.

00000000000

Figure 2. Cross-section of a hollow core slab

t \

|
i
e : oo

Figure 3. Model of the hollow core slab for calculation of the torsion properties

Why are some of the webs left out of the model?

Formulate the equations for calculation of the torsion stiffness according to the membrane
analogy. Use symmetry. (You do not need to evaluate the equations.)

The equations are evaluated for you with the following result.

_s pat .~ _tespat 115 pat
M=o W2=o23 5 Wa=a3:2
where w;y is the displacement of the plate above cell 1, w;, that of cell 2 and wj; that of cell
3. sis the membrane stress and p is the pressure underneath the weightless plates.
Calculate the torsion stiffness GI; of the cross-section.
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d Calculate the shear stresses in the cross-section as function of the torsion moment. Draw the
shear stresses in the correct direction.

Problem 3 (3 points)

A square plate of thickness t carries an evenly distributed load q (Figure 4.). At each edge the
plate is simply supported. According to elasticity theory we assume that the kinematic,
constitutive and equilibrium equations are linear. As you know an exact solution of the
deflection of this plate does not exist. However, it can be approximated. A calculation using
potential energy is very suitable because we can accurately estimate the deformation of the
plate.

o —

cross-section G-G

Y —
Q

cross-section C-C

Figure 4. Square plate with distributed load

The following deflection function is assumed
2 2 4 4
2x 2 2x 2
wix)=A-(2 a2 )sa-( 2 -2 )
a a a a
where A and B are coefficients that need to be determined later.
a Show that the deflection function fulfils the kinematic boundary conditions of the plate.

b Give the formula for calculation of the potential energy of the plate. (You do not need to
evaluate the formula.)

¢ Using the deflection function the potential energy Epot of the plate can be calculated. This
has been done for you. The following equations have been used.
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82W

mXX = D(KXX +VKyy) KXX = —ax—z D _ Et3 i
52 12(1-v<)
=D(xy + VKyy) o, =W
myy %% XX %% 2
oy
2
o“w
Myy Z%D(1_V)pxy Pxy =2 oxdy
The result is
_ 256 D 2 2. 4 .2
EPOt_ma_z(WﬂZB +10248 BA + 2695A )—qua (36B+25A)

Solve the coefficients A and B from the equation of the potential energy.
Calculate the deflection in the middle of the plate as a function of a, D and q.

Since now A and B are known the potential energy of the plate can be calculated. This has
been done for you with the following result.

£ . ___103 9°a
pot = 7421760 p

This potential energy is an approximation of the exact potential energy because the assumed
deflection function in the beginning of this problem is an approximation.

Will the exact potential energy of the plate be larger of smaller than the approximation?
Explain your answer. (You do not need to make calculations.)

70



Tentamen Ctme5141, 26 oktober 2001
Answers to Problem 1

a Framework

U 81 N1 f
{ 1 } "2 "2 { 1 }
Up )
e S

N~ S

kinematic  constitutive  equilibrium
equations equations equations

f
of] o
l

=
S| "
ﬁET‘h :2@ fi:‘Lz

¢N1 N2¢

(The positive directions of s and e can also be chosen differently.)

dN; dN>
N1+deX N2+de

f

b Method
The force method is most suitable. The displacement method results in two differential
equations (because two degrees of freedom, so two equilibrium equations). The force
method results in one differential equation. (because one redundant, because two equilibrium
equations and three stress quantities).

¢ Equations
Kinematic equations

duy
dx
dU2
dx
e=Uy—U

€1 =

€o =

Constitutive equations
N1 = EA1 (81 - OLT)

N2 = EA2 €92

s=ke

Equilibrium equations

ﬂ+s+f1 =0

ax ﬁl_fz_o
dNs

=2 _si£,=0

ax

d Boundary Conditions x =/
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N =0 eql)=aT — [T —oT
dx x=I
dU2

Ny(l)=0—>¢5(/)=0—> |—= =0
dx x=I

Boundary Conditions x =0

N, N,

dﬂ hots sy Ny +d(fy +5)~Fy1 =0

l l N2+d(f2—S)—FV2 =0
Fv‘l FV2
Ny(0)-F,1=0 met NﬂO):EA{% —ocTJ en  F,q=Kquq(0)
limd —0: XIx=0
NQ(O)—F\/Q:O met N2(0)=EA2ﬂ en FV2=K2U2(0)
ax x=0
dU1
EAY| 1 —oT |~Kqun(0)=0
Result: X Ix=0
dU2
EA, —= -Kouy(0)=0
2 x|y 2 2(0)

Bonus Question
The described situation is in between two extremes.

Extreme 1
Ky =0 and Ky = This situation is described in the lecture book (Direct Methods, page
36).

N, N, 5

>

- +
Extreme 2
K4y = and Ky =0 The behaviour at the top and bottom is the same.
Ny Ny % pe
- +
A v
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In between
Ky =0 and K has a finite value The result is in between the extremes.

o Ny N, S

; aa
%

U/

H—

-
()
+— > —>—> —>

N1l Ny
Equilibrium of the top of the walls gives
/

[ (Fr+f)dx—Ny—Np =0
x=I-a
Since f; =f, =0, it holds |Ny(x)| =|No(x)| - So, the normal forces are equal in absolute
sense over the total height.

Answer to Problem 2

Flanges
Some of the middle webs have been left out for two reasons. 1) They probably contribute little

to the torsion properties. 2) The number of equations that need to be solved is now far less.

Equations

Equilibrium of the plate above cell 1 pa? = 333%— asu

Wo —Wq W3 —Ws

Plate 2 p32 =as ;

+2asWT2—as

Plate 3 pa7a= Zas@ + 2(7a)s%

Torsion Stiffness
The membrane is transformed into the ¢ bubble by the following substitutions.
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1
¢ p G

Therefore

85 108 115
01=2220Gat ¢, =10820Gat  ¢3 = 11520Gat

The torsion moment is two times the volume of the ¢ bubble.

My =2(2018% + 20 8° + 43 a(7a)
M, = 2(2 85 20Gata® + 2108 20Gata® + 118 20Gat a(7a))

M, = 11310Ga’t

The moment in a wire frame model of the beam is
M; =Gl;6

Therefore the torsion stiffness is
Gl = 121G’

Shear Stresses

The shear stress is the slope of the ¢ bubble. First we rewrite the equation of the torsion
moment

_M; s

and express ¢4, ¢2 and ¢3 in the torsion moment.

Mi sg 108 o M; 58 115 o Mt 58
¢1= 2322 21191 ¢ 2322 21191 ¢3_2—322a_2”91
og =85 Mt ¢_108Mt by = 115 My
1 2382 , 2 72382 3 T 2382 22

The shear stresses become

i 72 5 [§) 7
2 3 2
f1l1f3¢ Talt fizg “|fir3 " |firy
—> —> —> —> —>
T1 72 T5 72 2'1
¢ _ 85 M
t 23822
b2 108 Mt
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_b3-0 7 M

T4 = 5aa5 o
t 2382 ;2
s =93 _ 115 My
t 2382 2%

Encore (not an exam question)

In the figure below the torsion stiffness is plotted as a function of the number of webs n in the
model. It shows that a model with 4 flanges is sufficiently accurate for calculating the torsion
stiffness.

+ Gl
21+— Gadt
n=2
n=4 20.5 PY Y e 'Y Y
n==6 °
20
n=12 T | | | | | >N

2 4 6 8 10 12

The largest shear stress converges less quickly with increasing n (not plotted). The largest

shear stress in the model with 12 webs is 1., = %% which is only 0.8% larger than
a‘t

that of the model with 6 webs [1]. Therefore, the model with 6 webs is more than sufficiently
accurate.

Answers to Problem 3
a Boundary Conditions

The plate is simply supported on all edges. Therefore, the deflection w must be zero at the
edges.

18)2 2 (13)4 4
w(Gay)=AlG -G+ B =2 )= 5) =0
(-1ay? 2 (-1ay* 4
dayy=Ad-2" 1 Yy g A 2% y1_ Y y_g
w(=3ay)=Alg 22 )G az)+ (7 4 76 a4)
2 1)2 4 19)4
w(x,%a)=A(%—:—2><%—(2 ) B(%‘:T)(%‘(Za‘*) )=0
2 _1gy2 4 _1g)%
W(x,—%a)=A(%—:—Z)(%—(Z—Z))+B(%—:—4)(%—( 24) )=0

The kinematic boundary conditions are correctly satisfied.

It is noted that the dynamic boundary conditions do not need to be fulfilled for application of
the principle of minimum potential energy.

b Potential Energy
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15 1 15 1
12a 28 2% 2°
Epot=§ _[ _[ (mXXKXX+mnyyy+mepr)dXdy—q.[ .[ wdx dy
1 1, _1

11 1.1
28 2@ 28 29

¢ Coefficients
For the correct displacement field the potential energy is minimal.

OE, D
pot _ 256 __4 2 _
JA 11025 —a2 (10248 B +5390A) 55598 25=0
aEpot 956 D

(35424 B+10248 A) - 52-qa36 = 0

oB 11025 a2
From these two equations the two coefficients A and B are solved.

4
535,4B+281.6A=%

4
1285,2B+371.8A=%

4
535.4B+281.6A :%
ga’
535.48.+154.0A=0.4166 77~
qa’
535.48+2816A=2
ga”
126.7A=0583492_
D
qga’
535.48=99__281.6A
D
qa”
A =0.00460592_
D
ga’ ga’
535.48 = (1-281.6x0.004605) 12— = -0.2068 2
4
A= 0.004605%

4
B- —0.000554%

4
A =0.0046092_
D

d Deflection

2 2 4 4
W(O,O):A(1—(gj )(1—((’) )+B(1—[g) )(1—(9j )=A+B

a a

4 4
w(0,0) = 0.00460%—0.000554%
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4
w(0,0) = 0.00405%

e Larger or Smaller

[1]

[2]

We are looking for a solution with the smallest potential energy. The potential energy of a
good approximation is small. The potential energy of the exact solution is smaller.

Encore (not an exam question)
Using the coefficients A and B we can calculate the moments in the middle of the plate.

_ 897 .2
xx = 7435298 (1+ V)
_ 897 .2
Myy = 2435598 (1+v)
My, =0

Moments in plates have been published for many plate shapes and dimensions. Often
these calculations have been performed using the finite difference method. (To date the
finite element method would have been used.) For example in [2] we find the following
formula for the plate of problem 2.

My =0.03676 ga>

If we assume that v = 0 this moment is only 0.2% smaller than the calculated result.

Literature

L. Span, “Grote openingen in kanaalplaten” (“Large Openings in Hollow Core Slab
Floors”), Preliminary Graduation Report, Delft University of Technology, May 2001 (In
Dutch).

K. Stiglat, H. Wippel, “Platten”, Zweite Auflage, Verlag von Wilhelm Ernst & Sohn, Berlin
1973, p. 158 (In German).
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Technische Universiteit Delft
Faculteit der Civiele Techniek en Geowetenschappen
Mechanica & Constructies

Tentamen Elasticiteitstheorie Ctme5141
Dinsdag 8 januari 2002, 9.00 — 12.00 uur

Vermeld rechtsboven op uw werk:
Naam en Studienummer

Problem 1 (3 points)

Consider a symmetric system consisting of
three high walls that are in one plane (Figure
1). The extension stiffness’ are respectively
EA4, 2EA; and EA,. The walls are supported by
springs at the bottom (pile foundation). The
spring stiffnesses’ are respectively K;, 2K, and
Ki. Two rows of horizontal connection beams
between the walls are each modelled as
distributed springs of stiffness k. The height of
the structural system is /. The x-axis starts at
the bottom of the walls (x=0) and ends at the
top (x=1).

><

The two outer walls have a temperature that is
T degrees higher than the middle wall. The
linear extension coefficient of the walls is «.

EA{ — k— 2EA, —k— EA4

A structural designer wants to calculate the
shear force s in the connection beams. The
structural designer uses symmetry and
considers only the left part of the system.

Figure 1. Three connected high walls

Give the framework which shows the degrees of freedom, deformations, stress quantities
and load quantities of the structural system. (Make drawings that explain the quantities

and show their positive directions).

Is the force method or the displacement method most suitable to solve this problem?

Explain your answer.

Write down the

- the kinematic equations

- the constitutive equations
- the equilibrium equations

(If need be supplement the drawings that were made for question a).

The structural designer continues with the force method
- Propose the redundant(s) and show how the stress quantities can be expressed in the

redundant.

- Derive the compatibility condition(s) from the kinematic equations.

The structural designer derives one differential equation based on the redundant(s) and
the compatibility conditions(s). (You do not need to derive this differential equation.) Two
coefficients occur in the solution to the differential equation. These need to be determined
by two boundary conditions. One boundary condition can be found in the top of the system
(x =1) and on boundary condition can be found at the bottom (x = 0).
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Formulate the boundary condition in the top of the system. Evaluate this to an equation in
the redundant(s).

Formulate the boundary condition at the bottom of the system. Evaluate this to an equation
in the redundant(s).

Bonus Question (one point if completely correct)

Two descending exponential functions appear in the solution of the displacements and
stress quantities. One of them is descending from the bottom of the system and the other
from the top of the system. We select the stiffness such that exponential functions can be
neglected at a distance of //3 form the bottom or the top respectively.

Questions

- Draw the expected distribution of the normal forces in the walls and the shear forces in
the connection beams for the situation that Ky and K, both have a finite value. Write
down whether the normal forces are tension or compression. (calculation is not needed,
just understanding).

- Draw in which direction the shear force s in the distributed springs acts on each of
the adjacent walls.

- Write down shortly (only words) how the results change if the horizontal connection
beams are not present over the middle third part of the height /.

Problem 2 (4 points)

A semi circular arch and tension bar are
idealised according to Figure 2. The
materials are linear-elastic. The bending
stiffness of the arch is El and the extension
stiffness is infinitely large. The extension
stiffness of the tension bar is EA. The
distributed load q is constant per unit of arch
length (for example self weight).

The structure will be calculated using
complimentary energy. We choose the force
in the tension bar as redundant ¢. The
moment in the arch can be expressed in ¢.

Figure 2. Arch and tension bar

2 .
M(9)=qro(5n—@sine)-r(¢+qrcose
Show that the moment M(0) in the top of the arch is in equilibrium with the load.

Give the formula for the complimentary energy of the structure. (You do not need to evaluate
the formula.)

The complementary energy has been evaluated for you with the following result.

nr’ 2 2 2.5 2 $°r
ECOmp|:@[12¢ —12r¢q+r q (7TC —66)]+a

2
Calculate ¢. Use the parameter 3 = nrEA
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d Calculate the moment M(0) in the top of the arch. Can this moment have a negative value?
Explain your answer.

Problem 3 (3 points)

A tunnel is loaded by a train that does not move.
The tunnel is modelled as a ring with a bending
stiffness E/. The surrounding soil is modelled
with distributed springs of stiffness k per unit
length. The wheel load by the train is modelled
as a concentrated load F.

We assume the following function for the
displacement w of the ring.

w(s)=A cos% + Bcos(2§) + Ccos(3§)

k
where A, B and C are coefficients that are to be \
determined. w(s)
The kinematic equation for the curvature « in the
fing 1 2 Figure 3. Spring supported ring
_dwow
KS)=— 2772

a The displacement function w(s) consists of three terms. Which of the three terms give a

rigid displacement of the tube? Show that the rigid displacement does not produce a
curvature in the ring.

b Give the equation of the potential energy of the model. (You do not need to evaluate the
equation.)

¢ The potential energy has been evaluated for you with the following result.

Epot =“—E;(932 +64C%)+ Tknr(A2+ B2+ C?)-F(A+B+C)
2r

4
Solve the coefficients A, B and C op. Use the parameter 3 = % and express A, B, and C

_Fr3
in ——
nEl

d Calculate the moment M in the tube at ¢ = 0.
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Tentamen Ctme5141, 8 januari 2002
Answers to Problem 1

a Framework

u 81 N1 f
{ 1 } "2 N2 { 1 }
Up fp
e S

N~ N

kinematic  constitutive  equilibrium
equations equations equations

f
o}

_/_
it fs| =1
EA T
N N ¥

(The positive direction of s and e can also be selected differently.)

(

dNy dNo
N1+d7dX N2+de

f

b Method
The force method is most suitable. The displacement method results in two differential
equations (because two degrees of freedom, so two equilibrium equations). The force
method results in one differential equation. (because one redundant, which follows from two
equilibrium equation and three stress quantities).

¢ Equations
Kinematic equations

duy
dx
dU2
dx
€=Uy —U

&1 =

€2 =

Constitutive equations

€1 =ﬂ+aT
1

€9 =—N2

EA,

S
e=—

k
Equilibrium equations
ﬂ+s+f1 =0
ax fi=f,=0
%—Sﬁ-fz =0

dx
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d Redundant
We choose s = ¢ and substitute this in the equilibrium equations.

dNy
dx ¢
aNp _

ax =0

Compatibility Condition
We use the kinematic equations and eliminate u; and u,

de dup duy de
—_— = = — =82 — ¢
dx dx dx dx

e Boundary Conditions x =1/
N1 =0-> g1 = aT

} substitution in the compatibility condition

N2 =0 —)82 =0

%z—aT - i(gjz—oﬁ - ﬂz—kaT

ax ax\ k ax

f Boundary Conditions x =0
e=Uu—-Uup
F
Substitution of :i, Us - V2 and e =g gives
K1 Ko k

¢_F1_Fo
k Ky Ko

/
From equilibrium of wall 1 follows F1 :J'q)dx.

0
/
From equilibrium of wall 2 follows F/o = _j¢dx.

0

$_0o 0
kK~ K Ky
I
L i+i jq)dx
k \Ki Kz )3
I
1 1 1
“¢—| —+— |[¢dx =0
K (K1+K2J£¢

g Bonus Question
The described situation is in between two extremes.




Extreme 1

K4 = and K, = . This situation is described in the lecture book (Direct Methods, page

36).

Extreme 2

S

4

T

Ky =o and Ky =0. The behaviour at the top and bottom is the same.

N

—

In between

N,

S

>

:{F
Lty

K4 = and Ksis some finite value. The result is in between the extremes.

N

W= W=

W=

Ny

N,

S

4

A

I

1

z

K>

The shear force is zero over the middle 1/3 of the height. The results do not change if the
connection beams are removed over the middle 1/3 of the height.

Answers to Problem 2

a Equilibrium

The load on a little part of the arch of length ds is q ds.

The lever arm of this load is rsing. Therefore we find
mo) NP

2
M@O)=Rr—o¢r- j gadsrsing -

for the equilibrium
1

AT

o=0

The support reaction R is equal to the load g times the ¢ do
length of the semi arch.

R:q%nr
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During evaluation we use ds=rd¢.
1

*713

M(0) = q nr? —or— qr2 J. sinpdo

¢=0
2 2 a
=q4nr®—¢r-qré[-cosel?
=q% 2—¢r—qr2[—cos%n+cosoJ
=q% 2—<1)r—qr2[—0+1]
q% nr? —¢r-gqr?

According to this exam problem the moment in the top equals
M(0) = qrz(%n—OsinO)-r(¢+ qr)cos0

= qr n r(b+qr)
which indeed is the same.

b Complementary Energy
1
_T

2
Ecompl = J TMicds +Lde2r

o4

When we substitute the constitutive equations andds =r de we obtain
1

T 1 M? 1 02
Ecompl = J. 2E —rdo+1 2 EA 2r
o1

¢ Force in the Bar

3
,
Eoomp! = 48EI[12¢ 127 ¢q +r2q2(Tn? - 66)]+d;_:A
oE 3
compl g, E oag-12rq1+ 22 g
o6 48E] EA
3
nr EA
24 12r 26r=0
48EI[ ¢— ql+2¢

Br[24¢ 12rg]+2dr =0

@B¢—@BrQ+2¢=O
2B9+86=Prq
20(B+4)=Prq

p

o-Jar L

B+4

d Moment in the Top




1.2 1 B 2

—QETEI“ Equ+4I’ qr
MO)=1or2[ noo__P
(0)=3q (n B+4j

The stiffness’ El and EA are always positive. Therefore $>0. So <1.

p
+

SoM(0) > 0 provided thatq > 0.

Answers to Problem 3

Rigid Displacement
We draw the terms of the displacement function.

S S
cos— cos2—
r r

The rigid displacement is therefore w = AcosE
’

Substitution in the kinematic equation gives

Acos> I — A—cos>- r_o
p 2 200 2

K=————— _—

dw w dz(
ds? r? ds?

S S
Sj_Acos 1 Acos—

Therefore, the rigid displacement does not give a curvature of the ring.

Potential Energy

2nr 2nr
Epot = | aMxds+ [ Jfwds—Fw(0)
s=0 s=0

where M is the moment in the ring and f is the spring force per unit of length. Using the
constitutive equations we can write this as

2nr ) 2nr )
Epot = | 4EIxds+ | Tkw?ds—Fw(0),
s=0 s=0
Coefficients
Epot = nEl (9152 +64C?)+ Lknr(A? + B +C?)- F(A+B+C)
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OF 3
ot knrA-F=0 - A=+ -1

0A knr  nEl B

OE 3

pot g “—ElgB+kan F=0 - B=— A" 1

oB /3 9 E/ knr TEIPHO
r

OE 3

et g n—El64C+kan F=0 - C= F _F

oC r3 64 ﬂEl+k "~ nEl B+64

3
Largest Moment

w=Acos + Bcos(2§) + Ccos(3§)
r r r

a_W = _1A3|n§_ZBS|n(2§)—§CS|n(3§)
ror r.r r

0s r
2
ow L Acos—— 4 Bcos(2§)—iCcos(3§)
632 r2 r? ror? r
__dw w
ds® r?

= iAcosE + chos(Zi) + %Ccos(BE)— %(AcosE + Bcos(2§) + Ccos(BE)J
r

r2 ror? r’r r’or r r

l’2
3 3
| =33+£C:iFr 1 8 Fr 1 Fr 3+ 8
B+9 p+64

= chos(2§)+%Ccos(3§)
r r r

+_ =
r2 r2 r2 nEl B+9 r2 nEl B+64 nEl

Fr{ 3 8
M|S:0 =EI1<|S:0 =] —+
n \p+9 p+64

Encore (not an exam question)
We can also select more than three 0,7
terms for the displacement function.

Alw

. _ 0,6
w=> A cos’® 05 \
; r !
i=1 \
These coefficients A; can be calculated 0,4 i1
in the same way. 1 \/ B+ (i% -
3 0,3%
Fr 1 . ' \
= i=123...0© [
nEl B+ (j% —1)? 0,21\
N\ 3 8
The largest moment becomes 0,1 7%( l3+9 B 64 .
Fra— =1 e e
M|s=0 Z [ [
—B+(i% -1 0 2oo 400 600 800 1000

The graph shows that the approximation using three terms substantially underestimates
the largest moment.
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Delft University of Technology Write your name and study number
Faculty of Civil Engineering and Geosciences at the top right-hand of your work.

Structural Mechanics Section

Exam CT5141 Theory of Elasticity
Monday 13 January 2003, 13:00 — 17:00 hours

Problem 1 (2 points)

Consider a very large plate with a circular hole made
of a linear-elastic material. Figure 1 shows a

rectangular part of this plate. Everywhere in the plate
except close to the hole the principle stresses are o4

and o5 . Around the hole this homogeneous stress
field is disturbed and peak stresses c 4 and g occur.
If 64 =05 =0 the peak stresses are 64 =og =2c.
If 64 =—-09 =0 the peak stresses arec 4 =4c and
og =—4c.

Use the provided information to determine o4 and
opg incase oy=0c and 6, =3G.

We use polar coordinates and the force method to
calculate the stress field. Which differential equation
describes the problem for 64 =-0y =0 ?

Again we use polar coordinates and the force
method. For the case 61 =05 =c a simpler

differential equation may be used than in question b.
Which is this differential equation?

Problem 2 (5 points)

A thin axisymmetric plate with an opening is simply
supported at the outer edge (Figure 2.). The plate
stiffness is D and the coefficient of lateral contraction
is v. We will consider three load cases. In the first load
case the plate is loaded by an edge moment m,

along its outer edge r=>b andinner edge r=a.
Questions a, b and ¢ are on this load case. The
remaining load cases are introduced after these
questions.

Which differential equation describes this problem?
Give the general solution having four integration
constants. What do you notice about the particular
solution?

Specify four boundary conditions from which the
constants in the general solution can be solved. (you

G2

G1 o1

K
(-
N
WAL

G2

Figure 1. Stress field around a
circular hole

Figure 2. Axisymmetric plate
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do not need to elaborate the boundary conditions into expressions of the deflection w. You do
not need not solve the constants.)

¢ Solving the four constants gives the following expression for the deflection w.

__ My 2 2
W(r)_zo(1+v)(b )

Calculate the bending moments m,, , myg and the shear force v, .

Subsequently the second load case is considered for the same plate. The edge moments
m,, are removed and a temperature gradient is applied over the thickness of the plate. The

temperature of the lower face is higher than the upper face. If the plate would be able to
deform freely a curvature «; would occur in all directions. This curvature would not give any

stress.
d Derive the following constitutive equations of the axisymmetric plate.

My = D(xp + viigg — (14 V)KT )

Mg =D (Vi +kgg — (14 V)KT)
e In this case of temperature deformation the displacement field has the shape
w(r)=Cq+ C2r2

Determine C; and C, and show that bending moments and shear force do not occur due to
this temperature loading.

Subsequently the third load case is considered. To this end the temperature load is removed,
the edge r = b is clamped and the temperature load is applied again.

f Wil the plate be free of stresses again? Explain your answer. (Analysis is not needed.)
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Problem 3 (3 points)

A triangular plate of thickness t carries an evenly distributed load g (Figure 4.). The plate is
simply supported at each edge. According to elasticity theory we assume that the kinematic,
constitutive and equilibrium equations are linear. An exact solution of the deflection of this
plate does not exist. However, it can be approximated. A calculation using potential energy is
very suitable because we can accurately estimate the deformation of the plate.

4'1 section B-B
q

section C-C

Figure 4. Triangular plate with distributed load

The following deflection function is assumed.

y X Y X_ Yy
y)=AL(1-22-L)1+22-2L
wixy)=AL(1-22-Ty1+22 -2

where A is a coefficient that needs to be determined later.
a Show that the deflection function fulfils the kinematic boundary conditions of the plate.

b Give the formula for calculation of the potential energy of the plate. (You do not need to
evaluate the formula.)

¢ Using the deflection function the potential energy £, of the plate can be calculated. This
has been done for you. The following equations have been used.

2
o‘w
Myy = D(Kyx + Vicyy ) Kyxx 2_6)(_2 b Ef3
22 12(1-v?)
=D(xy + VKyy) o = 9w
myy yy XX Y
2
ow
Myy = %D“ —V)Pxy Pxy =2 oxdy
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The result is

DA2(2+v)
_16 1 2
Epot = 9 3 2 ~ %0 V3 gAa

Solve the coefficient A from the potential energy equation.
Calculate the deflection in the middle of the plate as a function of a, D and gq.

Since now A is known the potential energy of the plate can be calculated. This has been
done for you with the following result.

V3 g%a®
Epot ="
25600 D(2+v)

The table below shows three alternative deflection functions for this problem and the
calculated potential energy. Which deflection function provides the most accurate
approximation of the plate behaviour? Explain your answer.

Deflection Function Potential Energy
i W)= A[%“ j 2%-%)(1 ’ 2% _%)f Fpot = _1;29?00 D(Z;iﬁv)
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Exam CT5141, 13 January 2003
Answers to Problem 1

a Peak Stresses
For linear-elastic materials we can apply the principle of superposition.
We have two load cases
1. G1=0,0p=0G, Gp=20,08=20

2. 61=0, 0p =—0C, 64 =40, og =—4c

From this we can make a new case that consists of two times case 1 minus case 2.
3. 61=0,09=30,0,4=0, cg=8c

b Differential Equation
The formulation in polar coordinates of a plate loaded in extension is

2 2
V2V2¢ =0 Vz - _a + 1_8 + 10
or? ror  r2 592

(See lecture book Direct Methods page 107.)

¢ Differential Equation
Since the plate is very large the far boundaries have very little influence on the problem.
Therefore, the geometry can be considered symmetric. In load case 1, the stress is equal in
all directions (Mohr’s circle reduces to a point.). Since the geometry and loading are
symmetric the differential equation can be simplified.

Lp=0 L:rilir
drrdr

(See lecture book Direct Methods page 99.)
Note that this ¢ is a different one than the ¢in question b.
Answers to Problem 2

a Differential Equation and Solution

DV?V?w =0 y2_14d,4d
rdr dr

W=C1+C2r2+C3 Inr+C4r2Inr

Since there is not a distributed load at the plate surface there is not a particular solution.
(See lecture book Direct Methods pages 124, 127.)

b Boundary Conditions

v, =0 w=0
r=a— r=b—-
My =My My =My

¢ Bending Moments and Shear Force
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:L([ﬁ_r?)
2D(1+v)

o Adw__m,

O dr T DM+ v)

; __dzw_ m,

T a2 D(1+v)

My =D (1, + Vg ) = o =My

D(1+v) YD+ v)

Mag =D + © |=m
00 =D (100 + vicr) (D(1+v) VD1+v)] o
:1d(rmrr) mee_ld(fmo) &:0
"Tr dr r r ar r

d Constitutive Equations
Without temperature the constitutive equations read

My =D (kp +vigg)
Mg = D (kgp + Vi)

Part of the curvature is due to temperature loading. This part does not cause moments.

My =D ((kpr —x7)+ V(kgg = K7)) = D(Kpr — KT +Vigg — ViT ) = D(Kpr +Vicgg — (14 V)KT)

mMgg = D((kpg — k7)+ V(i —x7)) =D (kg9 — KT + VK7 — VKT ) = D(igg + VK — (14 V)KT )

e Moments and Shear Forces

W=C1 +C2r2
1dw 1
=———=——2Cor=-2C
00 r ar r 2 2
d?w

Ky =——p =—2Cp
r df'2

My =D (ky + vigg — (14 V)7 ) = D(-2C5 —v2C, — (1+ v)xk7 ) =—D(2C; + 7 ) (1+ V)
Mgg = D(xgp + iy —(1+V)k7 ) = D(-2C5 —v2C; — (1+ v)ky ) = -D(2C, + k7 ) (1+ V)
D(2C2 +KT)(1+V)_

r

_1d(rmy) mee _1d
"Tr  dr rrdr

(-rD(2C; + k7 )(1+v)) +

D(2C2 + KT)(1+V)
r

=0

=%(—D(2C2 +x7) (14 V) +

Boundary conditions

v, =0 w=0
r=a— r=b—
mp =0 mp =0

These are fulfilled only if C, =—~ 7 and C =%b2KT.

Therefore, m,, =mgyg =v, =0
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f Clamped Edge
The displacement function that is calculated in question e is drawn below. Clearly a
rotation dw/dr occurs at the edge r = b. Preventing this rotation will lead to moments in the
plate.

1

o~

o|o T

b2KT

Answers to Problem 3

a Boundary Conditions

The plate is simply supported on all edges. Therefore, the deflection w must be zero at the
edges.

0 x 0 x 0
0)=A-(1-2=——)1+2=--)=0
w(x0)= A (127~ )(1+2~ )

hoy) _alh-y) _a(th-y)
Lah—y) y_a¥_ 2h Y 2h _Yy_aY (o_92YV0)=
w( o Y) Ah(1 2 . h)(1+2 < h) Ah(2 2h)(0) 0
ath-y) ath-y)
ath-y)

y 2h y 2h y y y
y)=AL(1-2—20 _Vyq,2 2h _Yy_AY0y2-22)=0
wi y=aLa-2—20_ Yy 22 Jy-a¥(0)2-2%)

2h
The kinematic boundary conditions are correctly satisfied.

It is noted that the dynamic boundary conditions do not need to be fulfilled for application of
the principle of minimum potential energy.

b Potential Energy

a(h-y) a(h-y)
h  2h ] h  2n
Epot = _[ f E(mXXKXX +Myy Ky + My Py, )dxdy —J' _f qwdxdy
0 a(h-y) 0 a(h-y)
2h 2h
¢ Coefficient - :
For the correct displacement field the potential A mistake has been made in the
energy is minimal. potential energy of problem 3. The

correct potential energy is

OF, DA(2 +v)
Z7pot 32 gPALtV) 1 /34422 _0 2
From this equation coefficient A is solved. a

a4 In this answer we continue with the
- %q_ incorrect potential energy as if it
D(2+v) were correct.
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d Deflection
ga* 4

Tm=aAl1-NH1-y= 44 _-_3_
w(0.3m)=Az(-3)1 3)_A27_640D(2+V)27

4
w(0,1h __1 _qa
( 3 ) 1440 D(2 + V)

e Most Accurate
The exact solution has the smallest potential energy. In the table below the fractions in the
potential energy are evaluated. Clearly, deflection function 1 gives the smallest potential
energy. Therefore it is the best of the three approximations.

2,6

E..=-0676 10492 _
1 pot D(2+v)

2.6
2 Epot =-0.201 1074 L2 __
D(2+v)

2.6
E..=-0133 107492 _
3 pot D(2+v)

Encore
The problem introduction mistakenly states that an exact solution does not exist. This
particular problem does have an exact analytical solution. The displacement function is

V3
w(x,y) =¥%(y3 —yza\/§+%ya2 —3x2y)(%a2 —y2 +%y\/§a—x2)

The deflection in the middle is

4
1py__1 94
wO.3M=7%"]

The moments in the middle are

Myx =71—2qaz(1+v)
my,, :%qa2(1+v)
My, =0

which are the largest principle moments. The minimum potential energy of the plate is

.- B ¢%ab
POt = 35840 D
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