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Preface 
 
This lecture book contains the problems and answers of the exams elasticity theory from 
June 1997 until January 2003. It has been assembled with care. If nevertheless a mistake 
is found it would be appreciated if this is reported to the instructor. 
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Technische Universiteit Delft   Vermeld rechtsboven op uw werk: 
Faculteit der Civiele Techniek    Naam en Studienummer 
Mechanica & Constructies     
        
Tentamen Elasticiteitstheorie b16 
19 juni 1997 van 9.00 -12.00 uur 
 
Problem 1  (3 points) 
 
A hollow tube is loaded by a shear 
force. The wall thickness t is small 
compared to the radius r of the tube. 
In the cross-section a shear force n 
per unit of circumference occurs due 
to the resulting shear force Q. We 
approximate the force n with the 
following function. 

 

n

r
ϕz

Q nn
 
 n n= cosϕ  
 
The tube material can be considered as linear elastic with a shear modulus G. 
 
 
 

a  Calculate the resulting shear force Q due to the shear force n. (The positive direction of Q 
is ϕ π= − 1

2 .) 
 

b  Give the expression of the complementary energy of a slice of the tube. The slice has a 
length ∆z. 

 
c  Show that the expression of the complementary energy can be reworked to the following 

result. 

  
E

z
r n
Gt

compl

∆
=
π 2

2
. 
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d  Derive the formula for the shear stiffness GAd. 
 
 

e  What is the quantity of the shape factor η  in A A
d =

η
. 
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Tentamen Elasticiteitstheorie b16 
19 juni 1997 
 
Problem 2 (2 points) 

 
A straight track is loaded in 
compression because the rails have 
expanded on a hot day. The track 
might buckle as shown in the figure. 
To analyse this situation an 
assumption is made on the 
displacement field and the potential 
energy of the buckled track is 
determined. The result is 
 
 
 
 

E uEI u p u N
pot = + −4

43
1
2

2 2
π

π
l

l
l

 

 

EI l

N N

p
u

 
 
N normal force in the track 
l  buckling length 
p  friction force between the track and the ballast bed 
EI  bending stiffness of the track 
u  largest deflection of the track 
 
 

a  In relation to what parameter of parameters should the potential energy of the track be 
minimal? Explain your answer. (You do not need to calculate something.) 

 
 
 
 
 
 
 
 

A statically indetermined system can be analysed by the force method or the displacement 
method. In the force method we choose a number of redundants as fundamental unknowns. 
In the displacement method the displacements are the fundamental unknowns. The force 
method is convenient if the problem is statically indetermined to a small degree. However, 
modern computer programs use the displacement method without exception. 
 

b  Why is the displacement method used in computer programs for structural analysis? 
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Tentamen Elasticiteitstheorie b16 
19 juni 1997 
 
Problem 3  (5 points) 
 
A square plate of room temperature has a round hole 
in it. The hole is filled with a plug of the same material 
and the same thickness as the square plate. The plug 
exactly fits the hole if it is cooled down T degrees from 
room temperature. After a while the plug assumes the 
room temperature again and is stuck in the hole. a

E
ν
α

 
 
 
 
Data 

 
Radius a of the plug is small compared to the dimensions of the plate. 
The thickness of both the plate as the plug is t.  
The elasticity modulus of the material is E. 
The Poison’s coefficient of the material is ν. 
The linear expansion coefficient of the material is α. 
 

Questions 
 

a Derive an expression for the plate which relates the stress on the edge of the hole to the 
displacement of this edge. (So, the plug is replaced by a stress on to the edge of the hole.) 

 
b Derive an expression for the plug which relates the stress on the edge to the 

displacement of the edge. (So, the plate is replaced by a stress on to the edge of the plug.) 
 
c Formulate the transition conditions between the plug and the plate. 
 
d Calculate the stress between the plate and the plug. 
 
e Calculate the stress distribution in the plug and the plate. 
 

Suggestions 
 

The general solution of the radial displacement in an axial symmetrical thin plate is 
 

  u r A a
r

B r
a

( ) = +  

 
The constitutive relation of this plate is 
 

  
σ
σ ν

ν
ν

ε
εθθ θθ

rr rrE






=

−















1

1
12 . 
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Tentamen b16, 19 juni 1997 
Answers to Problem 1 
 

a  Shear Force 

r
ϕ

ϕ
nds

 

The resulting shear force Q is the integral of the 
vertical component of the shear force  over 
the circumference s of the tube. 

n ds

 

  Q n ds
s

r

=
=
∫ cosϕ
π

0

2

 
Evaluation gives 

  
π

ϕ=

= ϕ ϕ∫
2

0

ˆ cos cosQ n r d ϕ

ϕ  
π

ϕ=

= ϕ∫
2

2

0

ˆ cosQ n r d

 Q nr= π  
 

b  Complementary Energy 
The complementary energy is the shear force nd  times the displacement s γ ∆z over 2, 
integrated over the circumference s of the tube. 
 

 E ndscompl
s

r

=
=
∫ 1

2
0

2π

γ ∆z  

 
c  Evaluation of the complementary energy gives 

 

 E nr d n
Gt

z r z
Gt

n d r z
Gt

n dcompl = = =
=
∫ ∫ ∫1

2
0

2
2

0

2
2 2

0

2

2 2
ϕ

π π

ϕ ϕ∆
∆ ∆ cos

π

ϕ ϕ . 

 

 E r z
Gt

ncompl =
∆

2
2π  

 
d  Shear Stiffness 

The complementary energy due to the shear force Q is equal to the complementary 
energy due to the shear flow n. From this we derive the shear stiffness GAd. (See lecture 
book Energy Principles, page 14.) 
 
  E Ecompl Q compl n, ,=
 

 1
2

2
2

2
Q

GA
z r z

Gt
n

d
∆

∆
= π  

 
Or, 
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 GA Gt
r n

Qd = 2
2

π
 

 
 GA Gt rd = π  
 
 

e  Shape Factor 
The section area of a thin tube is 
 
  A r= 2π t
 
so that the shape factor η becomes 
 

 
π

η = =
π

2
d

GA G r t
GA Gt r

. 

 
 η = 2  
 
 
Answers to Problem 2 
 

a  Potential energy should be minimised as to the parameters that describe the displacement 
field. The buckling shape of the track is described by u  and  l. 
 

b  In the first computers little memory was available, therefore the system of equations that 
had to be solved needed to be as small as possible. The force method often yields few 
unknown and equations so that this method was used in old computer programs. 
However, it proved complicated to automatically select the redundants. Many studies have 
been devoted to this subject but soon computers with more memory were developed so 
that the displacement method could be used. The displacement method often needs more 
memory but is easier to program than the force method. 
 
 
Answers to Problem 3 
 
Because the radius a is small compared to the plate dimensions the problem can be 
treated as an axial symmetric plate of which the outer edge is infinitely far from the hole. 
 

a  Analysis of the Plate 
For the displacement method holds that 
 

 = +( ) a ru r A B
r a

 

 
so that 

 
ε

εθθ

rr
du
dr

A a
r

B
a

u
r

A a
r

B
a

= = − +

= = +

2

2

1

1
. 
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For very large r  the stresses and strains are zero, therefore 
 
 . B = 0
 
When the plug is at room temperature it is compressed and exerts a force p1 per unit of 
edge length into the direction of the radius r. 
 
  p trr1 = −σ
 

p1

u1where t is the plate thickness. 
 
Because  

 σ
ν

ε νεθθrr rr
E

=
−

+
1 2 ( )  

 
we find for r = a 
 

 p Et A
a

Et A
a1 21

1
1

=
−

−
=

+ν
ν

ν
( )

. 

 
We define u(a) = u1. Therefore u1 = A. So the relation between p1 and u1 is 
 

 p Et
a

u1 1
1

1
=

+ ν
 

or 

 u a
Et

p1 1= +( )ν 1 .      (1) 

 
 

b  Analysis of the Plug 
The plug is compressed in all directions by a distributed force p2 that is directed inwards. 
This gives a homogeneous stress distribution. 

p1

T

 

 σ σθθrr
p
t

= = − 2 . 

So 

 ε σ νσ
ν

θθrr rrE E
p= − = −

−1 1
2( )

t
. 

 
The radial displacement of edge of the plug is (directed 
inwards) 
 

 a a
Et

prrε ν= −( )1 2  

 
The plug becomes T degrees warmer. If expanding feely this 
would give an edge displacement of 
 
  αTa
 
so that the total outward directed displacement becomes 
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 u Ta a
Et

p2 1= − −α ν( ) 2 .     (2) 

 
 

c  Transition Conditions 
The displacements of the edge of the plug and the edge of the hole need be equal. 
 
 u u1 2= = u        (3) 
 
In addition there needs to be equilibrium 
 
 p p1 2= = p .       (4) 
 
 

d  Calculation of the Temperature Problem (Force Method) 
When we substitute (1) and (2) into (3) we find. 
 

 a T a
Et

p a
Et

pα ν ν− − = +( ) ( )1 12 1. 

 
From this and (4) it follows that the force per unit of edge length is 
 
 p Et= 1

2 αT . 
 
Now u can be calculated with (1) or (2). 
 
 u a= +1

2 1( )ν αT  
 
 

e  Stress Distribution 
We found already for the strains in the plate 
 

 
ε

εθθ

rr A a
r

A a
r

= −

=

2

2

. 

 
Substitution in the constitutive relation gives the stresses 
 

 
σ

ν

σ
νθθ

rr
E A a

r
E A a

r

=
−
+

=
+

1

1

2

2

. 

 
The constant A is 
 
 A u a T= = +1

1
2 1( )ν α  
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so that 
 

 
σ α

σ αθθ

rr r E T a
r

r E T a
r

( )

( )

= −

=

1
2

2

2

1
2

2

2

. 

 
On the edge of the hole the stress is  
 
 σ αrr E T= − 1

2  
 
so that the homogeneous and isotropic stress in the plug is 
 
 − 1

2 E Tα . 
 
Remarks 
 
The solution is independent of the thickness t and the Poison’s ratio ν. 
 
The stress in the plug is approximately halve the value that would occur in a completely 
restrained plug. 
 
 
Alternative Answer to Problem 3d (displacement method) 
When we substitute (1) and (2) in (4) we find 
 

 
u

a
EI

u T
a
EI

1 2

1 1( ) ( )+
=

a−

− −ν

α

ν
. 

 
From this and (3) it follows that the displacement of the edge is 
 
 u a= +1

2 1( )ν αT . 
 
Now p can be calculated with (1) or (2). 
 
 p Et= 1

2 αT  
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Technische Universiteit Delft   Vermeld rechtsboven op uw werk: 
Faculteit der Civiele Techniek    Naam en Studienummer 
Mechanica & Constructies     
        
Tentamen Elasticiteitstheorie b16 
12 januari 1998 van 14.00 -17.00 uur 
 
Problem 1  (3 points) 
 
A box-girder beam is loaded at torsion. The thickness of all walls is h as shown in the 
figure. 
 
We calculate the box-girder with the membrane analogy. The weightless plates in the 
corners of the box-girder will have the same displacement because of rotational symmetry 
 
You can assume that the wall thickness h is small compared to the width of the box-girder. 
 
 

a  Calculate the displacements w1 and w2 of the weightless plates. 
 

b  Calculate the torsion stiffness GIw of the cross-section. 
 
c  Calculate the shear stresses in the cross-section and draw them in the correct direction. 
 
d Suppose that warping (Dutch: welving) of the box-girder is locally restrained by a clamped 

boundary condition. Will this cause the torsion stiffness to be larger, smaller or will it 
remain unchanged? 
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Tentamen Elasticiteitstheorie b16 
12 januari 1998 
 
Problem 2 (2 points) 
 
A structural engineer calculates the stresses in a reinforced concrete floor using the finite 
element method. He uses linear elastic elements. Underneath a concentrated load very large 
moments appear. What is your advise for this structural engineer? Choose from the following 
options and explain your answer. 
 
A Calculate the moments again with a finer element mesh around the concentrated load. 
B Replace the concentrated load by a distributed load over a small area. 
C Use the moments at some distance of the concentrated load to calculate the reinforcement. 
D Use the resultant of the moment over some width around the concentrated load to 
    calculate the reinforcement. 
 
 
 
 
 
Problem 3 (2 points) 
 
An oil company drills a hole in deep rock layer. Due to the geological origination a pressure p 
is present in all horizontal directions of the material. The hole changes this stress distribution. 
 
We consider the rock to be of a linear elastic material. The situation is axial symmetrical with 
a coordinate r in the radial direction and the angle ϑ in the horizontal plane. 
 
The general solution of the stress distribution is 

ϑ
r

 

 

( )

( )

σ

σ

σ

rr 2 3 2 4

2 3 2 4

r

2C C 1
r

C 1 2 r

2C C 1
r

C 3 2 r

0

= + + +

= − + +

=

ln

lnϑϑ

ϑ

 

 
Calculate the tangential stress  in the edge of the 
hole and draw the stress distribution σ  and 

σϑϑ

ϑϑ σrr . 
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Tentamen Elasticiteitstheorie b16 
12 januari 1998 
 
Problem 4  (3 points) 
 
A steel beam is loaded by a force F (see figure). The beam has flanges of thickness t and 
width a at the upper and lower edge. The stiffeners at the middle and at the ends of the beam 
have dimensions a x 2a x t. The width of the beam is a, the height is 2a and the span is 12a. 
 

6a 6a

2a

a

F

A

A

section A-A

stiffenerstiffener flange

web

flange

stiffener

web
stiffener

6a 6a

2a

a

F

A

A

section A-A

stiffenerstiffener flange

web

flange

stiffener

web
stiffener

 
We want to calculate the deflection of the beam using complementary energy. The 
approximated stress distribution in the beam is drawn below. The panels have a 
homogeneous shear stress. The forces in flanges and stiffeners vary linear over the length 
 

F

1 F2
1 F23 F2

3 F2

3 F2
3 F2

F
4at

F
4at

  
a Show that the complimentary energy of a flange is 
 

 E N
E a tc = 1

6

2l
 

 
where is the force in the end of a flange or a stiffener and l is the length. N
 

b Calculate the total complementary energy of the beam. Choose a prescribed displacement u 
where the force F is attached. Neglect the Poison’s effect so that the shear modulus is G = 
E/2. 
 

c Express the deflection u  in the force F. 
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Tentamen b16, 12 januari 1998 
Answers to Problem 1 
 
The box-girder of this problem is known in The Netherlands as nabla beam applied in the 
“Deltawerken” in the dam of the “Haringvliet” estuary. 
 

a  Weightless plates 
We choose w2 of the middle cell larger than w1 of the corner cell. 
 
Equilibrium of the weight less plates of the corner cell gives 
 

 p a a 3 a s w
h

a s w
h

a s w w
h

1
2

1
2

1 1 2= + − 1−
 

 
Equilibrium of the weight less plates of the middle cell gives 
 

 p a a 3 a s w w
h

a s w w
h

a s w w
h

1
2

1
2

2 1 2 1 2 1=
−

+
−

+
−

 

 
This we can simplify to 

 
( )

( )

p a 3 s
h

3 w w

p a 3 s
h

3 w w

1
4 1 2

1
4 2 1

= −

= −
 

 

w1 w1

w2

A

A

Section A-A

w1w1 w1w1

w2

A

A

Section A-A

 
from which w1 and w2 can be solved. 
 

 
w = 3 p

s
ah

w = 3 p
s

ah

1
1
6

2
1
4

 

 
 

b  Torsion Stiffness 
From the membrane we go to the φ-bubble with the following substitutions. 
 

 

w
p 2

s 1
G

=

=

=

φ
ϑ  

So 

 
φ

φ

1
1
3

2
1
2

= 3 G ah

= 3 G a

ϑ

ϑ h
 

 
The torsion moment equals two times the volume of the φ-bubble. 
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( )
( )

M 2 a a 3 a a 3 a a 3 a a 3

a 3 3

w
1
2

1
2 1

1
2

1
2 1

1
2

1
2 1

1
2

1
2 2

2 1
2 1 2

= + + +

= +

φ φ φ φ

φ φ
 

 
Substitution of the previous relations in the latter gives 
 

 

( )M a 3 3 3 G ah 3 G ah

a G ah

G a h

w
2 1

2
1
3

1
2

2 1
2

9
4

3

= +

= +

=

ϑ ϑ

ϑ3 1 1
2( )

ϑ

 

 
For a wire frame model of the beam the torsion moment is 
 
 . M GIw w= ϑ
 
Therefore, the torsion stiffness is 
 

 GI G a hw
9
4

3=  

 
c Shear stress 

The shear stress is the slope of the φ-bubble. We first rewrite the relation of the torsion 
moment  
 

 ϑG ah M
a

4
9

w
2=  

 
and express φ1 and φ2 in the torsion 
moment 
 

 
φ

φ

1
1
3

4
9

w
2

2
1
2

4
9

w
2

= 3 M
a

= 3 M
a

 

 
In the outside walls of the box-girder 
is the shear stress  
 

 
φ

τ1 4
27

w
2h

3 M
a h

2= =  

 

1

2

1

1

2τ

τ

τ
τ

2τ
2τ

2τ2τ

2τ

 
In the interior walls is the shear stress 
 

 
φ φ

τ2 1
2
9

w
2

4
27

w
2 2

27
w

2h

3 M
a

3 M
a

h
3 M

a h
−

=
−

= =  
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d  Warping (Dutch: welving) 
When warping is locally restrained the box-girder will locally be stiffer than calculated in 
this problem (see lecture book Direct Methods, page 197). 
 
 
 
Answer to Problem 2 
 
Underneath a concentrated load the bending moment goes to infinity (see lecture book 
Direct Methods, Figure 4.20). Probably the element mesh that was selected by the 
structural engineer was very fine because otherwise the local peak would not have shown 
up. It is not useful to select an even finer mesh (answer A) because this will result in even 
larger moments. The explanation for the very large moments is that around the 
concentrated load the plate theory is not accurate over a distance of approximately the 
plate thickness. 
Redistributing the concentrated load over an area (answer B) will indeed reduce the 
moments, however this takes much effort. The resulting moment over a distance of two 
times the plate thickness (answer D) is very suitable to dimension the reinforcement 
because this does not compromise equilibrium. This can be seen as spreading the peak 
moment. However, this also takes much effort to calculate. The moment is accurate at a 
distance of approximately the plate thickness (answer C). 
 
So, only answer A is really wrong. Answer B and D are impractical but possible. Answer C 
is the best. 
 
 
 
Answer to Problem 3 
 
We can solve the constants using the boundary conditions. The boundary conditions for 
this case are. 
- On the edge of the hole r = a are no normal stresses σrr. 
- Far from the hole the stresses σrr and σϑϑ equal -p. 
 
When r becomes very large ln( r ) does not approach a specific value. Instead it continues 
to grow. The stress should become equal to -p for large r. This can only be if C4 equals 
zero. 
 
  C4 = 0

When r becomes very large than 
1
2r

becomes very small. So  

 σrr r C→∞ = = −2 2 p   C p
2 2
= −  

 
The same result would have been found if we had considered σϑϑ. 
 
If r = a than 
 

 σrr C C 1
a

p C 1
a

= + = − + =2 2 3 2 3 2 0   C p a3
2=

So 

 18 



 
σ

σϑϑ

rr C C
r

p p a
r

p ( a
r

)

C C
r

p p a
r

p a
r

= + = − + = − −

= − = − − = − +

2 1 1 1

2 1 1 1

2 3 2
2

2

2

2

2 3 2
2

2

2

2( )

 

 
On the edge of the hole  
 

 σϑϑ = − +p ( a
a

)1
2

2   σϑϑ = −2 p  

 
The stress distribution becomes 
 
 

  

r

σϑϑ

σrr

-2p
-p

 
 
 
Answers to Problem 4 
 

a  Complementary Energy 
The force in a bar is linear from zero to some value N  
 

 N x
l

N=  

 
The complimentary energy in a bar is 

E N
EA

dx

x
l

N

E at
dx N

l E at
x dx N

l E at
x N

E atc
2

0

l
2

0

l 2

2
2

0

l 2

2
1
3

3
0

l 2
= =







= = =∫ ∫ ∫1
2

1
2

1
62 2

l
 

 
The complementary energy in a panel is 
 

 E V V
G

6a 2a t

F
4at

)

G
F
Gtc

1
2

1
2

2
1
2

2
3
8

2
= = = =τ γ τ (

 

 
b The total complementary energy is the energy in the bars plus the energy in the panels 

minus the energy of position. 
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 E
( F a

E at

( F a

E at
F a
E at

F
Gt

Fuc

2 2 2 2
= + + +4

6
2

2 2 21
6

3
2 1

6

1
2 1

6
3
8

) )
−  

 

 E F
E t

F
E t

F
E t

F
Gt

Fuc
2 2 2 2

= + + + −9 1
6

1
3

3
4  

 

 E F
E t

F
Gt

Fuc
2 2

= + −19 3
42  

 
Using G this becomes E= 1

2
 

 E F
E t

Fuc
2

= −11  

 
c In our minds u is a prescribed displacement and F is the resulting support reaction. The 

complete stress distribution in the beam is expressed in F. The complementary energy 
must be minimal as to the parameter F 

 

 0
dE
dF

F
E t

uc= = −22  

 
Therefore, the relation between force and displacement is 
 

 u F
E t

= 22   
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Technische Universiteit Delft   Vermeld rechtsboven op uw werk: 
Faculteit der Civiele Techniek    Naam en Studienummer 
Mechanica & Constructies     
        
Tentamen Elasticiteitstheorie b16 
18 juni 1998 van 9.00 -12.00 uur 
 
Problem 1  (4 points) 
 
A prismatic beam is loaded by torsion. The cross-section of the beam is square with 
dimension h (see figure). We want to calculate the torsion stiffness of the beam. Therefore, 
we consider a slice of length ∆x. 
 
The torsion moment causes shear stresses in the cross-section, which can be derived from a 
function φ. We choose the following function as an approximation. 
 

 φ = − −A y
h

z
h

( )(1 4 1 4
2

2

2

2 )  

 
where A is a yet unknown constant. The shear 
stresses in the cross-section are calculated by. 
 

 
σ

∂
∂

σ
∂
∂

φ

φ

xy

xz

z

y

=

= −
 

 
a Show that φ fulfils the boundary conditions. 

 
b Give a formula with which the resulting torsion moment can be calculated (You do not need to 

evaluate the formula). 
 
The formula is evaluated for you with the following result 

 

y

z

h

h

 
 M Aw = 8

9
2h  

 
c Calculate the largest stress in the cross-section and express this in the torsion moment. 

 
d Give the formula for calculating the complimentary energy of the slice (You do not need to 

evaluate the formula). 
 
The formula has been evaluated for you with the following result 
 

 E A
G

xc = 128
45

2
∆  

 
where G is the shear modulus of the material. 
 

e Calculate the torsion stiffness GIw of the beam. 
Suggestion: Make the complementary energy of the slice equal to the complimentary energy 
of a part of the wire frame model. 
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Problem 2  (2 points) 
 
Elasticity theory in three dimensions has a number of variables for describing displacements, 
strains and so forth. Write these quantities in the framework below and and write the names 
of the relations. (You do not need to give formula). 
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Problem 3  (4 points) 
 
A storage tank for liquid needs to be jacked up for maintenance (see the figure at the next 
page). The steel bottom plate is elevated from the foundation at which it is normally resting. 
We want to check the stresses in the bottom plate. 
 
The bottom plate is axial symmetrical and the edges can be assumed clamped. The liquid is 
removed from the tank so that only the self-weight p of the plate is relevant. The radius of the 
tank is a, the plate thickness is h, the elasticity modulus is E and the Poison’s ratio is ν. 
 
The differential equation of the deflection w of the plate is 
 

 
1
r

d
dr

r d
dr

1
r

d
dr

r dw
dr

p
K



















 =  

 
where K is the plate stiffness. The general solution of this differential equation is 
 

 w C C r C ln r C r ln r + p r
K

= + + +1 2
2

3 4
2

4

64
 

 
a Give the boundary conditions of the bottom plate (You do not need to solve the constants.). 
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The boundary conditions have been 
processed for you and we find the 
deflection 

 

a

jacks

tank

top view

side elevation

bottom plate

foundation

a

jacks

tank

top view

side elevation

bottom plate

foundation

 

 w p
K

a r= −
64

2 2( )2  

 
b Calculate the extreme moment in the 

plate. 
 
 

c Calculate the steel stress based on 
the extreme moment in question b. 
Use the following quantities: 

 
 a = 15 m 
 p = 900 N/m2 
 h = 0.012 m 
 E = 210 109 N/m2 
 ν = 0.1 
 
Calculate also the largest deflection of 
the plate. 
 
 
Probably you will notice that the calculated stress in question c is much larger than can be 
carried by normal structural steel. An obvious conclusion is that jacking up cannot take place 
in this way. However, recently this project has been executed in the described way to the 
complete satisfaction of the owner (Dutch: opdrachtgever). 
 

d Explain why the bottom plate does not fail in the jack up process. 
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Tentamen b16, 18 juni 1998 
Answers to Problem 1 
 

a Boundary Conditions 
The stresses are found by differentiating φ. 
 

 σxy A y
h

z
h

= − −( )(1 4
2

2 28 )  

 σxz A y
h

z
h

= − − −( )(8 1 42

2

2 ) 

 
The stress σxy at the edges y = h/2 and y = -h/2 is 
 

 σxy A

h

h
z

h
= −







−( )(1 4 2 8

2

2 2 ) = 0  

 
The stress σxz at the edges z = h/2 and z = -h/2 is 
 

 σxz A y
h

h

h
= − − −





( )( 2 ) = 08 1 42

2

2  

 
Therefore, the shear stress perpendicular to the edge of the beam is zero. This is indeed 
necessary because at the surface of the beam, are no shear stresses and shear stresses 
at perpendicular planes are equal. 
 

 
b Torsion Moment 

The torsion moment is the resultant of the shear stresses 
over the section area 
 

 M y dy dz z dy dzw xz xy
h
2

h
2

h
2

h
2

= −

−−

∫∫ σ σ  

 
 
As proved in the lecture book this is equal to two times 
the volume of the φ-bubble (Direct Methods, page 169). 

y

z dz

dy

σxy

σxz

y

z

Mw

 
c Largest Stress 
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The stress σxy  is largest if y = 0 and z = -h/2. 

 σxy A
h

h

h
A
h

= − −
−

( )( 2 ) =1 4 0 8 4
2

2 2  

 
The stress σxz has the same extreme value. 
We can rewrite the expression for the moment as 
 

 A M
h

9
8

w
2=  

 
Using this the largest stress becomes 
 

 σ = M
h
w

2
9

3  

 
This result is 6% smaller than an accurate computation by the finite element method. 
 

d Complementary Energy 
The complimentary energy is the integral of the energy in all particles in the slice. The 
force at a particle is σ and the displacement of the force is dy dz γ ∆x . 
 

 E dy dz x dy dz xc xy xy xz
h

h

h

h

= +

−−

∫∫ 1
2

1
2

2

2

2

2
σ γ σ γ∆ ∆xz  

 
e Torsion Stiffness 

The moment in the wire frame model is 
 
  M GIw w= ϑ
 
The energy in a length ∆x of this model is 
 

 
( )

E M x = M
GI

x =
Ah

GI
x = A h

GI
xc w

w
2

w w
= 1

2
1
2

1
2

8
9

2 2

32
81

2 4
ϑ∆ ∆ ∆ ∆

w
 

 
The energy in the slice must be equal to the energy in the wire frame part 
 

 128
45

2
32
81

2 4A
G

x = A h
GI

x
w

∆ ∆  

Or 
 

 GI = G hw
5
36

4  

 
A computation with the finite element method is just 1% stiffer (Lecture book, Direct 
Methods, Fig. 6.38). 
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Answer to Problem 2 
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Answers to Problem 3 
 

a Boundary Conditions 
 
On the edge (r = a) the plate is clamped, therefore, the local displacement and slope both 
equal zero. 
 

 
w = 0
dw
dx

0=
 

 
In the origin of the reference frame (r = 0) the slope is zero because of symmetry. In the 
origin the shear force q is also zero because a small cylinder in the origin must be in 
equilibrium. 
 

 
dw
dx

0

q = 0

=
 

 
b Extreme Moment 

The deflection line is 
 

 w p
K

a r= −
64

2 2( )2  

 
Differentiation gives 
 

 
d
d

( )(-2 ) = - ( )w
r

p
K

a r r p
K

a r r= −
64

2
16

2 2 2 3−  

 
d
d

- ( )
2

2
2 2

16
w

r
p
K

a r= − 3  

 
 
Substitution in the kinematic relations gives 
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κ

κϑϑ

rr
w

r
p
K

a r

r
w
r

a r

= − = −

= − = −

d
d

( )

1 d
d

p
K

( )

2

2
2 2

2 2

16
3

16

 

 
Substitution in the constitutive relations gives 
 

m K K p
K

a r a r p a r

m K K p
K

a r a r p a r

rr rr= + − + − = + − +

= + − + − = − +

( ) =
16

( ( )) ( ( ) (

( ) = ( ( ) ( )) ( ( + ) (

2 2 2 2 2 2

rr
2 2 2 2 2 2

κ ν κ ν ν ν

ν κ κ ν ν ν

ϑϑ

ϑϑ ϑϑ

3
16

1 3

16
3

16
1 1 3

))

))
 

The moments in the middle of the plate (r = 0) are 
 

 
m p a

m p a

rr = +
2

2
16

1

16
1

( )

= ( +

ν

νϑϑ )

 

 
The moments at the edges of the plate (r = a) are 
 

 
m p a a p a

m p a a p a

rr = + − + −

= − +

16
1 3

16
2

16
1 1 3

16
2

2

2

( ( ) ( )) = ( )

( ( + ) ( )) = (

2 2

2 2

ν ν

ν νϑϑ − )ν

 

 
Therefore, the extreme moment is 
 

 m p a
rr = −

2

16
2( )  

 
 m = - parr

1
8

2  
 

c Steel Stresses 
Stress is moment over section modulus 
 

 σ =
M
W

 

 
We consider a plate part with a width of 1 m.  
 
 −= = =2 21 1

6 6 1 0.012 24 10 mW bh 6 3  
 
Therefore 

 σ = = = −
1 900 15

24 10

1
8

1
8

2

6
m
W

pa

W
rr

2
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 σ = 1055 10 N / m6 2  
 
The larges deflection of the plate is 

 w p a
K

=
4

64
 

 
where the plate stiffness is 
 

 K E h
=

−
=

−
=

3

2

9 3

12 1
210 10 0.012

12 1 0.01
30545 Nm

( ) ( )ν
 

 
The deflection becomes 
 

 w =
900 15
64 30545

4
 

 
 w = 23 m   ! 
 
 

d Explanation 
Membrane stresses (Dutch: zeilwerking) in the bottom plate cause the deflection and 
stresses to be much smaller than follows from the plate theory. However, even if these 
geometrical nonlinear effects are taken into account the calculated edge stresses will be 
larger than the yield stress. Therefore, at the edges plastic deformation occurs during the 
jack up process of the tank. 
 
Consequently we need to conclude that the applied linear elastic model is not suitable to 
analyse this problem due to the large deflections. 
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Problem 1  (1 point) 
 
In the force method one or more compatibility equations can be derived by 
 
1  adding the kinematic equations 
2  eliminating the strains from the kinematic relations 
3  eliminating the displacements from the kinematic relations 
 
 
Problem 2  (5 points) 
 
We consider two axial symmetrical elements, a ring and a disk loaded in their plane. These 
elements will be analysed separately and subsequently connected. 
 
Ring 

 

A A

2a2a

p p

 
 

Figure 1. Cross-section of the ring 
 
 

aa a a

t

p

r

 
 
          Figure 2. Disk 

The radius of the ring is 2a (Figure 1). The 
cross-section area is A. It is loaded by a 
pressure p per unit of circumference.  The 
ring material has an elasticity modulus E . r
 
Disk 
The radius of the disk is 2a and its thickness 
is t (Figure 2). The disk has a hole in the 
middle of radius a. The disk is loaded by a 
pressure p per unit of circumference. The 
material of the disk has an elasticity 
modulus E and a Poison’s ratio ν = 0. 
 
Kinematic equations of the disk 
 

θθ

ε

ε

=

=

rr
du
dr
u
r

 

 
Equilibrium equation of the disk 
 

θθσ σ− =( )rr
d r
dr

0  

 
Using the force method the solution is 
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 θθ

φσ

φσ

φ

=

=

= +
2

1 2

rr r
d
dr
aC C
r

r

 

 
a Derive the kinematic equation of θθε  for the disk. (Suggestion, consider how the shape 

changes due to displacement u). 
 

b Derive the equilibrium equation for the disk. (Suggestion, draw an elementary part of the 
disk). 
 

c Calculate the stresses in the disk due to the load p. 
 

d Derive the following equation for the disk. u  is the displacement of the outer edge. 1
 

 = − 10
1 3

pau
Et

 

 
e Derive the following equation for the ring.  
 

 =
2

2 4
r

pau
E A

 

 
 
The ring is heated T degrees. It now fits exactly around the disk. Subsequently the ring is 
cooled down to its normal temperature. The linear expansion coefficient of both materials is 
α. E E  and = 30r = 1

5A at . 

 
f Calculate the stresses in the connected disk and the ring.  

 
 
 
Problem 3  (4 points) 
 

 
F

a2/3a 1/3a

→∞EI EI
T

x
w(x)K

 
    Figure 3. Structural system 

Consider the structural system of Figure 3. It 
consists of two beams, which are connected 
by a hinge. The left beam has an infinite 
bending stiffness. The right-hand beam has 
a bending stiffness EI. The left support is a 
free hinge and the right-hand support is a 
clamp. The left beam is supported by a 
spring. The spring stiffness is K. The system 
is loaded by a force F at the middle hinge 
and a moment T at the left beam. 
 
The system will be calculated using the 
principle of minimum potential energy. The 
following displacement is assumed for the 
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deflection of the right-hand beam. (Note that the x-axis starts at the middle hinge.) 
 

 
 

= − +  
 

3
1
2 3 3 2x xw C

aa
 

 
The following expression can be derived for the potential energy of the system. 
 

 
   = + − −   

  
232

9 2 3pot
EI TE K C F

aa
C  

 
 

a What is the unit of the constant C? How can it be interpreted? 
 
b Derive the expression of the potential energy of the system. 
 
c In the following we assume the values.  

= =27 1
4 3 4

EIK T
a

Fa  

Calculate the constant C. 
 
d Make a drawing of the moment line and give its extreme values. 
 
e Are the calculated results approximations or exact solutions of the system? Explain your 

answer.

 31



Tentamen b16, 15 oktober 1998 
Answer to Problem 1 
 
The correct answer is answer 3. The compatibility equations are derived by eliminating the 
displacements from the kinematic equations. 
 
 
Answers to Problem 2 
 

a Kinematic Relation 
Consider a circle of radius r. The circle increases due to the loading to a radius r + u. The 
circle length before loading is 2πr. The circle length after loading is 2π(r + u). Therefore, 
the strain is 
 

 θθ
π πε

π
+ −

= =
2 ( ) 2

2
r u r u

r r
 

 
b Equilibrium Equations 

The resulting force in the left section is σ θ− rr t r d . The resulting force in the right-hand 

section is σ θ σ θ+ (rr rr
dt r d t r d d
dr

) r . The resulting forces in the top and bottom section 

are θθσ t dr . The latter produce a force θθσ θ− t dr d  due to the angle θd . 
Equilibrium in the r direction gives  
 

θθσ θ σ θ− =( )rr
d t r d dr t dr d
dr

0 . 

 
This can be simplified by division by θt dr d  
 

θd

dr
r

σ θ σ θ+ ( )rr rr
dt r d t r d dr
drσ θrr t r d

θθσ t dr

θθσ t dr

θθσ σ− =( )rr
d r
dr

0 . 

 
c Stresses 

We know that  
 

 φ = +
2

1 2
aC C
r

r  

 
Substitution gives 
 

θθ

φσ

φσ

= = +

= = − +

2
1 22

2
1 22

rr
aC C

r r
d aC C
dr r

 

 
Applying the boundary conditions we obtain two equations with two unknown. 
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The solution is 
 

 
=

= −

4
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t

pC
t

 

 
Therefore, the stresses are 
 

θθ

σ

σ

= − →

= − − →

2
4 4
3 2 3
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3 2 3
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p a p
t tr

p a p
t tr
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d Displacement of the Disk Edge 

We know that θθε =
u
r

. Therefore, 

θθ
θθ

σε
 

= = = − +  
 

2
4
3 2( ) 1p a ru r r r

E t r E
 

( ) 
= → = − + = − +  

 

2
4 4

1 3 2 3 4
2 22 1

(2 )
1 1p a a pr a u

t E ta
a

E
 

= − 10
1 3

pau
t E

 

 
Note that u  is directed inwards. 1
 

e Displacement of the Ring 
We assume that the ring is thin in the radial direction. Therefore, moments can be 
neglected. 
 
The normal force N in a cross-section of the ring can be found from equilibrium of a 
segment θd . The resultant of the load p is θ2p a d . The resultant of the normal forces N at 
both sections is θ−N d . Equilibrium gives 
 

= 2N a p . 
 
The ring has the same kinematic equation as the disk. 
 

 θθε = = 2
2

u u
r a
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The constitutive equation is 
 
 θθε= rN E A . 
 
From the previous three equations we can derive 
 

 θθε= = = =
2

2
22 2 2 4

r r

N a p au a a a
E A E A E Ar

p
. 

 
f System of Ring and Disk 

The temperature rise of the ring is included in the constitutive equation. 
 

θθε α= −( )r rN E A T  
 

From the equilibrium equation, kinematic equation and constitutive equation we derive 
 

θθε α
  

= = + = +  
  

2
22 2 2r r

r r

N a pu a a T a T
E A E A

α




 

 
After the ring is fitted its temperature drops T degrees. Therefore, 
 

 α
 

= − 
 

2
22

r

a pu a T
E A

 

 
The displacements of disk and ring will be equal. 
 

=1 2u u  

α
 

− = − 
 

10
3

22
r

pa a pa T
t E E A

 

 
Using,  and = 30rE E = 1

5A at  we derive 

 α α α
    − = − = − = −     

10
3 1

5

2 22 2
3 330

pa a p p a pa T a T
t E Et EtE at

2a T  

 α = + =10 12
3 3

22
3
a p pa a pa T
Et t E Et

 

α = 2 pT
Et

 

α= 1
2p TEt . 

 
Subsequently, the displacement and stresses can be calculated. 
 

 = − = −10 10
1 3 6

pau a
t E

T  
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Stresses in the disk 
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α
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Stresses in the ring 

θθσ
αE T

σ
α
rr

E T

r
a

− 1
2

0
1 2

− 5
6

− 4
3

 
 α α= = =1

22 2N a p a TEt a TEt  

θθ
ασ = = →1
5

N a TEt
A at

θθσ α= 5 TE  

 
Remarks 
The internal radius of the ring has been used in all 
calculations. We could also have used the radius to 
the centreline of the ring cross-section. However, 
this has very little effect on the results when the ring 
is thin in the radial direction. 
 
Damaged train wheels are often turned off on a 
lathe (Dutch: afdraaien op een draaibank) and fitted 
with steel tyres. The method of this problem can be 
used to model this process. 
 
 
 
 
Answers to Problem 3 
 

a Constant C 
C has the unit of length. For example meter [m]. 
 
When x = 0 then w(0) = C. Therefore, C is the displacement of the middle hinge. 
 

b Potential Energy 
 

F

a2/3a 1/3a

T
ϕ

v w

v

= +pot s pE E E  
 

sE  consists of two parts, due to the right-
hand beam and due to the spring. 

pE  consists of two parts, due to the force F 
and due to the moment T. 
Together this gives 

κ ϕ
=

= + − −∫2 21 1
2 2

0

a

pot
x

E Kv EI dx Fw T  
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where,  
= 2

3v C   is the shortening of the spring, 

=w C    is the displacement of the force F, 

ϕ = −
C
a

  is the rotation of the left beam, 

κ = − = −
2

2 3
3d w x C

dx a
 is the curvature of the right-hand beam. 

 
Substitution in the equation of the potential energy gives. 
 

=

= + − +∫2 2 21 4 1
2 9 2 6

0

9a

pot
x

CE K C EI x C dx FC T
aa

 

=

= + − +∫
2

2 292
9 2 6

0

a

pot
x

EIC CE K C x dx FC T
aa

 

= + − +
2

2 392 1
9 2 6 3pot

EIC CE K C a FC T
aa

 

= + − +
2

2 32
9 2 3pot

EIC CE K C FC T
aa

 

   = + − −   
  

232
9 2 3pot

EI TE K C F
aa

C  

 
c Constant C 

Using = 27
4 3

EI
a

K  and = 1
4 FT  the potential energy becomes a

 
    = + − −      

1
232 27 4

9 4 3 2 3pot
FaEI EIE C F
aa a

C  

= −2 3
3 43pot

EIE C
a

FC  

= − 3
3 46 0pot

d EIE C F
dC a

=  

=
3

1
8

FaC
EI

 

x

3
1
8

Fa
EI

a 
d Deflections and Moments 

Largest deflection 

 = =
3

1
8(0) Faw C

EI
 

 
Moment in the right-hand beam 
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κ= = − = − = −
3

31
3 3 8

3 3x x FaM EI EI C EI Fx
EIa a 8  

 
The force in the spring is 
 

 = − = − = − = −
3

92 27 2 1
3 4 3 3 8 16

EI FaF Kv K C
EIa

F  

 
Moment equilibrium of the left beam 
gives the shear force D left of the 
middle hinge 
 
 = − 91 2

4 16Fa Da F a3  

9
16 F

F1
4 Fa

− 3
8 Fa

− 1
4 Fa

− 5
24 Fa

 = 5
8D F  

 
from which the moment at the spring can 
be calculated. 
 
 = − = −5 51

8 3 24M F a Fa  

 
e Approximation or Exact 

The results are exact if the assumed displacement function w(x) gives a moment line 
which is in equilibrium with the load and fulfills the dynamic boundary conditions. 
 

Equilibrium = − = =
2 2

3
2 2 8 0d M d

dx dx
q , which is correct. Fx

 
Dynamic boundary condition = = → =3

8 0M Fx x M 0 , which is correct. 

 
Therefore, the results are exact. 
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3
4 oEIoEI

L

x1M

ϕ1

 
 
Figure 1. Non-prismatic beam 

Problem 1  (5 points) 
 
A non-prismatic beam has a length L 
and is simply supported at both ends 
(Figure 1). The bending stiffness at 
the left support is and at the 

right-hand support 
oEI

3
4 EIo . Between 

the supports the bending stiffness 
varies linear. The beam is loaded by 
a moment  at the left support 1M
 
A structural designer calculates the rotation ϕ1 of the beam at the left support. He or she 
uses the standard formula (Dutch: vergeet-mij-nietje) for prismatic beams and the average 
bending stiffness of the beam. 
 

a What is the percentage error that the structural designer makes?  
Apply one of Castigliano’s theorems to calculate the rotation ϕ1. In this problem you can 
use either the displacement method or the force method. Explain your selection of the 
interpolation function. 
 

b If the displacement method were used: Would the force method give a larger or smaller 
value for the rotation? 
If the force method were used: Would the displacement method give a larger or smaller 
value for the rotation? 
 
Suggestion  

   
L

3f
2f

1f

x
 

 
     Figure 2. Simpson’s rule 

If you need to calculate an integral for 
which you do not know the solution, use 
Simpson’s rule for numerical integration 
(Figure 2.). 
 

= + +∫ 1
1 2 36

0
( ) ( 4 )

L
f x dx L f f f  
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Problem 2  (5 points) 
 
Consider the composite bridge shown 
in Figure 3. The continuous lines are 
reinforced concrete plates and the 
dotted lines are steel trusses. Figure 4 
shows part of one of the trusses. The 
thickness of all concrete walls is t and 
the shear modulus of the concrete is 
G. 
 
We need to calculate the torsion stiffness and the torsion stresses in the cross-section. 
Therefore, we replace the trusses by homogenous isotropic plates with the same shear 
modulus G as the concrete plates and a fictitious thickness . The extension stiffness of the 
truss bars is EA . 

ft
s

a

a a2a

7a

3
4 a 3

4 a

 
Figure 3. Cross-section of a composite bridge 

F1
2 F

1
2 F

1
2 F

1
2 F F

1
2 F

F

F

1
2 F

1
2 F

1
2 F

3 2a

2a

 
Figure 4. Elevation of one of the trusses 

 

xyn

xyn

xyn

xyn

γ
F

γ

F
F

2a

2a

Figure 5. Truss and isotropic plate 

 
 
 

a The fictitious thickness of the wall is 

=
2

s
f

EAt
aG

. Use energy to derive this 

fictitious thickness (Figure 5). 
 
 

b Assume that = 1
2 2ft . Calculate the 

torsion stiffness of the cross-section of 
the bridge. 

t

 
 

c Calculate the shear stresses due to a 
torsion moment M . t
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Tentamen Ctme5141, 29 oktober 1999 
Answers to Problem 1 
 

a Method of the Structural Designer 

Formula of the prismatic beam 
EI
LM

3
1

1 =ϕ  

Average bending stiffness  ( ) ooo EIEIEIEI 875.075.02
1 =+=  

Substitution    
oEI

LM
EI
LM

875.0*33
11

1 ==ϕ    
oEI
LM1

1 381.0=ϕ  

 
Force Method (Minimum complementary energy or Castigliano 2) 

Moment line    )1(1 L
xMM −=  

The linear moment line is in equilibrium with the load. Therefore, it can be used in 
complementary energy. The beam is statically determined. Therefore, we can easily see 
that the linear moment line can describe the exact solution too. Consequently, 
approximations are not introduced here. 

Bending stiffness   )
4

1(
L
xEIEI o −=  

Complementary energy  dx
EI
ME

L

c ∫=
0

2

2
1  

Substitution    dxxf
EI
Mdx

L
xEI

L
xM

E
L

o

L

o

c ∫∫ =
−

−
=

0

2
1

0

22
1

2
1 )(

2)
4

1(

)1(
 

  
)

4
1(

)1(
)(

2

L
x

L
x

xf
−

−
=  

Approximation of the integral 

using Simpson’s rule   1
)01(

)01()0(
2

=
−
−

=f  

7
2

8
1

2
2
1

2
1

)1(
)1()( =

−
−

=Lf  

0
)1(

)11()(
4
1

2

=
−
−

=Lf  

ooo
c EI

LM
EI

LML
EI
ME

2
1

2
1

28
5

7
2

2
1 179.0)0*41(

62
==++=  

Complementary energy  11ϕ−= MEE ccompl   1
11

0 ϕ−
∂
∂

=
∂

∂
=

M
E

M
E ccompl  

Intermezzo The integral can also be calculated exactly 

oo
c EI

LML
EI
ME

2
1

2
1 178.0)103ln362ln72(

2
=−−=  

o

c

EI
LM

M
E 1

1
1 2*179.0=

∂
∂

=ϕ     
oEI
LM1

1 358.0=ϕ  
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Error of the structural designer −
=

0.381 0.358 *100% 6%
0.358

 too large 

 
Displacement Method (Minimum potential energy or Castigliano 1) Alternative answer 

Deflection line    
L
x

L
xCx )1()( −=w  

This is the simplest function that still fulfils the kinematic boundary conditions 

0)(
0)0(

=
=

Lw
w

 

The rotation of the beam  
LL

xC
L
x

L
C

dx
dw 1)1(1

−+==ϕ  

L
C 1)0(1 =ϕ=ϕ  

Curvature    
LL

C
LL

C
LL

C
dx

wd 1
22

2

221111 ϕ
==+=−=κ  

Strain energy    κ= ∫ 21
2

0

L

sE EI dx  

Substitution    ϕ
= − =∫ 211

2
0

(1 )(2 )
4

L

s o
xE EI dx
L L

 

L
EIL

L
EIdx

L
x

L
EI oo

L

o

2
1

4
721

0

21

8
7)(2)

4
1()(2 ϕ

=
ϕ

=−
ϕ

= ∫  

Potential energy   ϕ= − 1 1pot sE E M    
ϕ ϕ

∂ ∂
= = −

∂ ∂ 1
1 1

pot sE E M0  

ϕ
ϕ

∂
= =
∂

17
1 41

2s
o

EM E
L

I    
oEI
LM1

1 286.0=ϕ  

Error of the structural designer  −
=

0.381 0.286 *100% 33%
0.286

  too large 

 
 

b Displacement versus Force Method 
 
The displacement method gives a too stiff solution, so a too small 1ϕ . The force method gives 
the exact solution except for the approximation of the in the integration rule. 
 
 
Answers to Problem 2 
 

a Fictitious Thickness 
The energy in the plate parts should be equal to the energy in the truss walls. From this we 
calculate the fictitious thickness t . f
 
Energy in a plate part  
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 
 
 = =

2

2
2 21

2 (a 2) a

xy

xyf
c f

f

n
nt

E t
G G t

 

=a 2xyn F  

 
  
 = =

2

2
22

2c
f f

F
a FE a
G t G t

 

 
Energy in two truss bars  
 

= +
2 2
1 21 1

2 22a 2ac
s s

N NE
EA EA

 

= − 1
1 2 2N F  = 1

2 2 2N F  

−
= +

2 21 1 2
2 21 1

2 2
( 2) ( 2)

2 2c
s s

F F F aE a
EA EA EA

=
s

a  

 
To equate 

=
2 2

2 f s

F F
G t EA

a  

=
2

s
f

EAt
aG

 

 
b Torsion Stiffness 

We use the membrane analogy. 
 
  −   + − =     

    
−     + + =     

     

21 1 2 1 1
2

22 2 2 1

2
f

w w w wS a S a S a a
t t t
w w w wS a S a S a a p
t t t

p
 

 
Simplified 

 
− =

− + =

1
1 2 2

1 2

4

3

atpw w
S

atpw w
S

 

a

a a2a

1w 2w 1w

 
From which we can solve 
 

 
=

=

5
1 22

9
2 22

atpw
S
atpw
S

 

 

Substituting =
1
G

S and we obtain the = θ2p φ -bubble. 
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φ = θ

φ = θ

5
1 11

9
2 11

at G

at G
 

 
The torsion moment is two times the volume of the tM φ -bubble. 
 
 tM a a a a at G at G= φ + φ = φ + φ = θ + θ2 2 2 2 5 9

1 2 1 2 11 112( 2 ) 2 ( 2 ) 2 ( 2 )  

 tM a t= θ346
11 G  

 
Therefore, 

 t
t

MI
G

=
θ

 

tI a= 346
11 t  

 
 

c Shear Stresses 
The shear stress is the slope of the -bubble. At the previous page we found φ
 

φ = θ

φ = θ

5
1 11

9
2 11

at G

at G
. 

To eliminate  we substitute θ tM at G
a

= θ11
46 2 , which gives 

 

t

t

M
a
M
a

φ =

φ =

5
1 46 2

9
2 46 2

. 

The shear stresses in the top and bottom plates are tM
t a t
φ

τ =  =2 9
46 2

The shear stresses in the vertical plates are 

t t
t

M M
Ma a

t t a t

−
φ − φ

τ = = =

9 5
46 462 22 1 4

46 2  

The shear stresses in the fictitious trusses are 

t
t t

M
M Ma

t t a t a t
φ

τ = = = =

5
46 21 10 5

46 462 21 1
2 2

2
2 2 2

 

 
 
 

9

1
46 2x M

a t
9

4

5 5

4 5 25 2

 
wt
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Technische Universiteit Delft Vermeld rechtsboven op uw werk: 
Faculteit der Civiele Techniek en Geowetenschappen Naam en Studienummer 
Mechanica & Constructies     
  
Tentamen Elasticiteitstheorie Ctme5141 
Dinsdag 11 januari 2000, 9:00 –12:00 uur 
 
Problem 1 
 
A high-rise building has a tube frame structure. The cross-section is modelled as a tube 
loaded in torsion (Figure 1). The walls are plates of a homogenous isotropic material of 
thickness h and shear modulus G. 
 
We calculate the tube using the membrane analogy. You can assume that the wall thickness 
is small compared to the width of the tube. 
 
 

Mw 

h

h

h

hh

h h

a

2a

aa

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Cross-section of the tube  Figure 2. Alternative cross-section 
 
 

a Calculate the position of the weightless plates. 
 

b Calculate the torsion stiffness GIt of the cross-section. 
 
c Calculate the shear stresses in the cross-section due to a torsion moment Mt and draw the 

stresses in the correct direction. 
 
As an alternative it is suggested to leave out the interior wall. This cross-section has been 
drawn in Figure 2. 
 

d Does the interior wall contribute much to the torsion stiffness? Explain your answer. 
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Problem 2 
 
An arch and a tension bar are idealised according to the figure below. The materials are 
linear elastic. The bending stiffness of the arch is EI and the tension stiffness of the arch is 
infinitely large. The tension stiffness of the tension bar is EA. 
 
The structure is calculated by complementary energy. We choose the force in the tension 
bars as redundant φ (Dutch: statisch onbepaalde).  
 

w 

EA

EI

F 

F/ 2 F/ 2 

γ

r 

φ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a Express the arch moment as a function of φ, r, F and γ. (Due to symmetry only halve the arch 
needs to be considered.) 

 
b Give the formula for the complimentary energy of the structure. 

 
c Evaluation of the complimentary energy gives the following result. Derive this result. 

 

2
1cossin

4
cos

4
sin

1cos

1sin

2/

0

2/

0

2

2/

0

2

2/

0

2/

0

=γγγ

π
=γγ

π
=γγ

=γγ

=γγ

∫

∫

∫

∫

∫

π

π

π

π

π

d

d

d

d

d

 

 
EA

rFF
EI
rE

2

4
1

16
12

2
1

4
12

3

compl )]([ φ
+−π+φ−πφ=  

 
d Calculate φ. 
 
e Calculate the deflection w of the arch top. 

 
f Assume that the calculation would have been made by the 

direct method instead of complementary energy. Would we 
have found different answers to question d and e? Explain 
your answer. 
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Tentamen Ctme5141, 11 januari 2000 
Answer to Problem 1 

2

1

w1w2

w2

w1a

2a

aa

 
a Weightless plates 

 
 
 

h 

s w 
h 

wp

s  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Equilibrium plate 1 
h

wwas
h

was
h

was
h

was
h

wasp 1211112=2aa −
−+++  

Equilibrium plate 2 
h

wwas
h

was
h

was
h

wasaap 12222 222 −
+++=  

 
This can be simplified to 

21 ww6
s

2 −=
pah  

1262 ww
s
pah −=  

 
From which w1 and w2 can be solved. 

s
pahw 25

1
1 =  

s
pahw 25

1
2 =  

 
b Torsion Stiffness 

From the bubble we go the φ-bubble using the following substitutions. 

G
s

p
w

1
2

=

ϑ=
φ=

 

Therefore 
 GahGah ϑ=ϑ=φ=φ 5

4
5
1

21 22  
 
The torsion moment is two times the volume of the φ-bubble. 
 GhaGahaaaaaaMw ϑ=ϑ+=φ+φ=φ+φ= 3

5
32

5
4

5
42

21
2

21 )(4)(4)22(2  
 
For a wire frame model of the beam we have 
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ϑ= ww GIM  
 
Therefore the torsion stiffness is 
 haGGIw

3
5

32=  
 

c Shear Stresses 
The shear stress is the slope of the φ-bubble. First we rewrite the equation for the torsion 
moment 

232
5

a
MGah w=ϑ  

τ

0

τ

τ 

τ 2

1
 τ 

τ
and express φ1 and φ2 in the torsion moment. 

28
1

5
4

21 a
MGah w=ϑ=φ=φ  

 
This gives for the shear stress 

 
ha

M
h

w
28

11 =
φ

=τ . 

τ 
d Alternative 

The interior wall does not contribute to the torsion 
stiffness. After all φ1 and φ2 are equal and the shear 
stress in the wall is zero. 
 
 
 
Answers to Problem 2  
 

a Moment line 
 

)cos(2/sin= γ−−γφ rrFrM       
2

0 π
<γ<  

M
r sin γ

r - r cos γ 

w 

EA

EI

F 

F/2 

γ

r 

φ 

F/2 

 
 

b Complementary energy 
 

dx
EA

ds
EI

ME
r

x
compl ∫∫

=

π

=γ

φ
+=

2

0

22/

0

2

22
2  

 
 

c Evaluation 
 

∫∫
=

π

=γ

φ
+=

r

x
compl dx

EA
dsM

EI
E

2

0

22/

0

2

2
1  

r
EA

drM
EI

2
2

1 22/

0

2 φ
+γ= ∫

π

=γ

 

EA
rdrrFr

EI
r 22/

0

2
2
1 )]cos(sin[ φ

+γγ−−γφ= ∫
π

=γ
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EA
rdF

EI
r 2

2
2/

0
2
1

3

)]cos1(sin[ φ
+γγ−−γφ= ∫

π

=γ

 

EA
rdFF

EI
r 22/

0

22
4
1

2
122

3

])cos1()cos1(sin2sin[ φ
+γγ−+γ−γφ−γφ= ∫

π

=γ

 

EA
rdFFFFF

EI
r 22/

0

22
4
12

2
12

4
122

3

]coscoscossinsinsin[ φ
+γγ+γ−+γγφ+γφ−γφ= ∫

π

=γ

 

π π
= φ − φ + φ + − + +

3 2
2 2 2 21 1 1

4 2 4
1[ ]

4 2 2 4
r rF F F F F
EI EA

π φ  

φ
= φ π − φ + π − +

3 2
2 2 31 1 1

4 2 16 2[ (r rF F
EI EA

)]  

 
Therefore, the answer provided in question 2c is wrong. We continue with the correct 
answer. 
 

d Redundant 
 

φ∂
∂

= compl0
E

 

EA
rF

EI
r φ

+−φπ= 2][0 2
1

2
1

3

 

π+
=φ

EAr
EI

F

2
4  

 
e Deflection 

For this we assume that the deflection w of the arch top is imposed. The complementary 
energy becomes 

r rE F F
EI EA

φ
= φ π − φ + π − + −

3 2
2 2 31 1 1

compl 4 2 16 2[ ( )] Fw  

 
We can calculate the support reaction F by minimising the complimentary energy. 

3compl 31 1
2 16 20 [ 2 (

E r F w
F EI

∂
= = − φ + π −

∂
)] −  

 
We now know the relation between w and F. It does not matter any longer which has been 
imposed. 

3 2
3 1
4 2 21

4
r F r EAw
EI EI r EA

 
= π − − 

+ π  
 

 
f We would have found the same answers because the moment line of question a is not an 

approximation. 
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Technische Universiteit Delft Vermeld rechtsboven op uw werk: 
Faculteit der Civiele Techniek en Geowetenschappen Naam en Studienummer 
Mechanica & Constructies     
  
Tentamen Elasticiteitstheorie Ctme5141 
Vrijdag 27 oktober 2000, 14:00 –17:00 uur 
 
Problem 1 
 
A four-cell box-girder is loaded in torsion (Figure 1). All wall parts have the same thickness t. 
The centre to centre (Dutch: hart-op-hart) distances are all a. The thickness t can be 
considered very small compared to a. 
 

a Which parts of the four cell box-
girder can be neglected in 
calculating the torsion stiffness? 

a a a a

a

a

a

tt t

t

t

 
Figure 1. Cross-section of a box-girder 

 
 

b How many weightless plates do we 
need to consider in calculating the 
torsion stiffness by the membrane 
analogy? 
 
 

c Calculate the torsion stiffness. 
 
 

d Determine the shear stresses in all 
wall parts due to a torsion moment 
Mt. Express the stresses in Mt /(a2t). 
 
 
 
 
 

Problem 2 

Consider an axial symmetrical plate which is loaded perpendicular to its plane (Figure 2). The 

curvature in the radial direction is 2dr
wd

rr −=κ
2

. What is the curvature  in the tangential 

direction? 

θθκ

θ
r

θ
r

 
 
Figure 2. Axial symmetric plate

 
 

A  0=κθθ

B 
dr
dw

r
1

−=κθθ  

C 2r
w

−=κθθ  
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Problem 3 
 

M

L
x

ϕ

1

1

1 2
M

L
x

ϕ

1

1

1 2

 
Figure 3. Non-prismatic beam 

A non-prismatic beam is loaded by a 
moment M1 (Figure 3). At the left end 
the beam is simply supported and at 
the right-hand side it is clamped. The 
bending stiffness EI varies according 
to 
 

L
xEI

L
xEIxEI 12

1
1 )1()( +−= . 

 
 
The following function is proposed for the moment line. 
 

L
xA

L
xMxM +−= )1()( 1   

 
where A is a constant that will be determined later. 
 
 

a Draw the moment line. To do so make an estimate of constant A. 
 
 

b Is the proposed moment line suitable or application in the principle of minimum 
complimentary energy? Is this moment line an approximation? Explain your answer. 
 
 

c Give the formula of the complimentary energy of the beam. 
 
 

d Show that the complimentary energy can be evaluated to the following result. Use 
Simpson’s rule (Figure 4). 
 

= + +2 2
1 1

1
(0.194 0.222 0.278 )compl

LE M M A
EI

A  

 

f (x)

f (0) f (L)

( ))()(4)0()( 2
1

0
6
1 LfLffLdxxf

L

x

++=∫
=

f (  L)1
2

f (x)

f (0) f (L)

( ))()(4)0()( 2
1

0
6
1 LfLffLdxxf

L

x

++=∫
=

f (  L)1
2f (  L)1
2

 
 
Figure 4. Simpson’s rule for approximation 
of the integral of f (x) 

 
e Calculate constant A. 

 
 

f Calculate the rotation ϕ1 of the left end of 
the beam. 
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Tentamen CTme5141, 27 oktober 2000  
Answers to Problem 1 (4 points) 
 

a The cells at the left top and right bottom are not closed. The contribution of these wall 
parts is calculated as that of a strip ( 33 32 taxtl =∑ ). This is much smaller than the 
contribution of the closed cells, therefore the open cells can be neglected. 
 

b For the calculation is just one weightless plate required. After all, when we rotate the 
cross-section over π rad we obtain the same shape. Would the weightless plates of the 
closed cells have different displacements than the drawn cross-section and the rotated 
section would have different solutions. This is not possible, so the weightless plates will 
have the same displacements. 

 
c We consider the weightless plate as draw below. The total circumference O of the plate is 

aaaO 10)(6)2(2 =+=  
aa

a

a

a

 

 
The surface A of the plate is 
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Equilibrium of the plate gives 
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Transition from w to φ . 
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The torsion moment is two times the volume of the volume of the φ-bubble. 

θ=θ=φ= taGatGaAMt
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5
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5
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We also know that M  θ= tt GI

Therefore tat
3

5
32=I  

 
d The shear stress in the wall parts is equal to 

the slope of the φ-bubble. In all wall parts is 
the size of the shear stress the same. 
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Answer to Problem 2 (1 point) 
 
The correct answer is B. (Lecture book, Direct Methods, page 122) 
 
 
Answers to Problem 3  (5 points) 
 

a The constant A is the moment at the right-hand side of the beam. From the expected 
curvature of the beam we can conclude that A will be negative. 

 

M1

-A

 

 
 
 
 
 

b Yes, the proposed moment line is suitable for complementary energy because it is in 

equilibrium with the loading M1=M(0) and 0
d
d

2

2
=−= q

x
M . The moment line is not an 

approximation because it can describe the real moment line. 
 

c In general the complimentary energy of beam consists of an internal part and an external 
part. 
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where uo1, uo2 and θo2 are imposed displacements (free support and clamp) and F1, F2 and 
M2 are the corresponding support reactions. The complimentary energy of the beam in this 
problem is 
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L
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After all, the imposed displacements uo1, uo2 and θo2 equal zero. 
 

d Evaluation of the complimentary energy 
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Intermezzo 
The integral can also be calculated exactly. The result is 
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e Complementary energy needs to be minimal with respect to the parameters of the moment 

line. 

0=
Ad

Ed compl  

From this A is solved. 
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f The rotation ϕ1 is not part of the expression of the complementary energy. Therefore we 

use a trick. We assume that ϕ1 is imposed, so 11 oϕ=ϕ . The complementary energy 
becomes 
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1
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Two parameters determine the moment line. These are A and the support moment M1. 
The complimentary energy again needs to be minimal with respect to these parameters. 
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In principle, form these two equations we can solve the unknown A and M1. However, since 
we know the relation between ϕο1 and M1 it does not matter which was imposed and which 
was calculated. Therefore we can also write 

1
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Technische Universiteit Delft Vermeld rechtsboven op uw werk: 
Faculteit der Civiele Techniek en Geowetenschappen Naam en Studienummer 
Mechanica & Constructies     
 
Tentamen Elasticiteitstheorie Ctme5141 
Dinsdag 9 januari 2001, 9:00 – 12:00 uur 
 
Problem 1  (3 points) 
 
A new software tool has become available for calculation of circular plates*. We want to check 
the program with a manual calculation. Therefore, the computation of Figure 1 has been 
performed. 
  
 

E = 25 106 psi 
v = 0.3 
thickness = 0.2 in 

-607 

-182 

645 

-343 

-0.219 
207 

qr 

mϑϑ

mr r 

w

C L 

1 in 6 in  (inch)

100 psi  (pound / inch2)

Figure 1. Computation results of the software tool 
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a What are the units of w, mrr, mϑϑ and qr in Figure 1. 
 

b Clearly an axial symmetrical plate can be modelled by a differential equation. The total 
solution of this differential equation is 
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rrCrCrCC
D

rprw ++++=  

 
Give the boundary conditions that can be used to calculate the constants C1 , C2 , C3 and C4. 
Are the graphs of Figure 1 in agreement with these boundary conditions? Explain your 
answer. 
 

c  Derive the four equations from which the constants can be solved. (You can leave D, ν and p 
in the equations. You do not need to solve the constants.) 
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* WinPlate, Archon Engineering, Columbia, Missouri, U.S.A. Shareware, http://www.archoneng.com/ 
 



 
d The constants have been solved for you. The result is 
 

  = = − = − = −1 2 3 40.2248 0.006428 0.02548 0.0006825C C C C
 
Use this to check the largest deflection in Figure 1. Explain possible differences. 
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Figure 2. Cross-section of the tube 

 
 
 
Problem 2  (4 points) 
 
A prismatic tube with thick walls is loaded by 
torsion. The cross-section of the tube is square 
with dimension h and wall thickness t (Figure 2). 
We want to calculate the torsion stiffness and 
the largest shear stress. Therefore, we 
considerer a slice of length ∆x. 
 
The torsion moment causes shear stresses in 
the cross-section, which can be derived from a 
function φ . We select the following function as 
an approximation. 
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Figure 3. The φ bubble 

where A is a jet unknown constant. Function φ 
has been drawn in Figure 3. The shear stresses 
in the cross-section are calculated by 
 

y

z

xz

xy

∂
φ∂

−=σ

∂
φ∂

=σ
 

 
 
 

a Use Figure 3 to show that φ fulfils the boundary conditions. 
 

b Give the formula for calculating the resulting torsion moment (You do not need to evaluate 
the formula). 
 
The formula has been evaluated for you with the following result. 
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c Calculate the largest stress in the cross-section and express this in the torsion moment. 

 
d Give the formula for calculating the complementary energy of the slice of length ∆x (You do 

not need to evaluate the formula). 
 
The formula has been evaluated for you with the following result 
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where G is the shear modulus of the material 
 

e Calculate the torsion stiffness GIw of the beam. 
Suggestion: Make the complementary energy of the slice equal to the complementary energy 
of a part of wire frame model. 
 
 
 
Problem 3  (3 points) 
 
A statically indetermined truss is loaded by a concentrated load F (Figure 4). All bars have a 
cross-section area A and an elasticity modulus E. The bars are connected with hinges to the 
nodes. The diagonal bars are not connected in the middle. The complementary energy of the 
truss is 
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a Explain the parameter φ in the equation of the complementary energy. How can φ be 

calculated? 
 

b Calculate the deflection of the concentrated load. 
 
 

 

  
l

F
l

l

 
      Figure 4. Statically indetermined truss 
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Tentamen Ctme5141, 9 januari 2001 
Answers to Problem 1 
 

a Units 
 

w  inch;  in 
mrr, mθθ  inch-pound / inch;  pound;  lb 
qr  pound / inch;  lb / in 

 
b Boundary Conditions 
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In Figure 3 we see that the deflection line w at the clamped support (r = 7) does not have a 
slope. This agrees with boundary conditions 1 and 2. We also see that mrr and qr equal zero 
at the free edge (r = 1). This agrees with boundary conditions 3 and 4. Therefore the graphs 
fulfil the boundary conditions. 
 

c System of Equations 
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d Numbers 
 

= =
−

6 3

2
25 *10 * 0.2 18315

12(1 0.3 )
D in-lb (Pronounce: inch-pound) 

 

= + + + + =
4

2 2
1 2 3 4

100 *1(1) 1 ln1 1 ln1 0.218 in
64

w C C C C
D

 

 
The graph shows a deflection of –0.219 in. Apparently the program uses a different 
positive sign convention than the lecture book. The small difference in the number is 
definitely caused by round off errors. 
 
 
 
 
Encore (not an exam question) 
The other values in the figure are checked below. From the figure we estimate the 
maximum moment at r = 2.2 in. 
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Answers to Problem 2 
 

a Boundary Conditions 
 
At the internal and external edges the shear stresses that are perpendicular to the edge 
should be zero. 
 
σ = = ≤ = − ≤

σ = = ≤ = − ≤

1 1
2 2
1 1
2 2

0 if and , and

0 if and , and

xy

xz

y h z y y h t z

z h y z z h t y z

y
 

 
This follows from moment equilibrium of 
infinitesimal cubes in the edges. 

Equilibrium of infinitesimal cubes 
in the edges of the tube 
 

y
z

 
The φ bubble does indeed not 
have a slope at the edges of the 
tube.

 
The formulae of the stress shows that the shear 
stress is zero when the φ bubble does not have a 
slope in the direction perpendicular to the stress. 
The thick lines in the right-hand figure show that the 
φ bubble correctly does not have a slope at the 
edges. Therefore, the boundary conditions are 
fulfilled. 
 

b Torsion Moment 
The torsion moment is the resultant of the shear 
stress over the cross-section area. 

2 2

2 2

h h

h h

t xz xyM y dydz z dydzσ σ
− −
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As shown in the lecture book, this equals two times 
the volume of the φ bubble (Direct Methods, page 
169). 
 

c Largest Stress 
The stress is largest where the slope of the φ bubble is largest. For example, σxz is largest 
when y = h/2. 
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The expression for the torsion moment can be 
reworked as 
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This makes the largest stress 
 

 3 4

4 1

1 (1 2 )
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d Complimentary Energy 

The complementary energy is the integral over a slice ∆x of the energy in all particles. The 
force at one particle is σ dy dz and the displacement of this force is γ ∆x. 
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e Torsion Stiffness 

The torsion moment is 
 
 t tM GI θ=  
 
The energy in a length ∆x of this model is 
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The energy of the slice can also be expressed in the torsion moment 
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The energy of a part of the wire frame model should be equal to the energy of the slice. 
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Encore (not an exam question) 
The calculated tube is situated between two extreme tubes. If the walls are thin (t << h) we 

can calculate the torsion stiffness simply using a weightless plate GI . If the cross-

section is monolithic (t = h/2) we can find the torsion stiffness in a table GI  

3
t t h G=

t = h G40.141
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(See lecture book Direct Methods at page 183) (See also this book page 25). With this we 
can plot the following graph. 
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The derived formula appears to be accurate for thin and thick wall tubes. However, the 
formula is not accurate for very thick wall tubes and monolith cross-sections. 
 
 
Answers to Problem 3 
 

a Parameter φ 
Parameter φ is the redundant (Dutch: statisch onbepaalde) in the force flow of the truss. φ 
can be solved from the equation 
 

 0=
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b Deflection 

We impose the deflectionu . The complementary energy becomes o
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The force F is an unknown support reaction, which also determines the force flow. The 
complementary energy needs to be minimal with respect to the parameters that determine 
the force flow.  
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From this the deflection can be solved. 
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Technische Universiteit Delft Vermeld rechtsboven op uw werk: 
Faculteit der Civiele Techniek en Geowetenschappen Naam en Studienummer 
Mechanica & Constructies     
 
Tentamen Elasticiteitstheorie Ctme5141 
Vrijdag 26 oktober 2001, 14.00 – 17.00 uur 
 
Problem 1  (4 points) 
 

l

EA12EA2EA1

K1 2K2 K1

kk

x

 
   Figure 1. Three connected high walls 

Consider a symmetric structural system 
consisting of three high walls in one plane 
(Figure 1). The extension stiffness’ are EA1, 
2EA2 and EA1 respectively. The walls are 
supported by springs at the bottom. (pile 
foundation). The spring stiffness’ are K1, 2K2 
and K1 respectively. The two rows of horizontal 
connection beams between the walls are each 
modelled as a system of distributed springs of 
stiffness k. The height of the structural system 
is l. The x-as start at the bottom of the wall 
(x=0) and end at the top of the wall (x=l ). 
 
The two outside walls have a temperature of T 
degrees higher that the middle wall. The linear 
extension coefficient of the walls is α. 
 
A structural designer wants to calculate the 
shear force s in the connection beams. The 
structural designer uses symmetry and uses 
only the left part of the structure. 
 

a Give the framework that shows the degrees of freedom, deformations, stress quantities 
and loading in the structural system. (Make drawings that explain the quantities and their 
positive directions). 
 

b Which is most suitable to solve this problem, the force method of the displacement 
method? Explain your answer. 
 

c Formulate for the structural system 
-  the kinematic equations 
-  the constitutive equations 
-  the equilibrium equations 
(if need be supplement the drawings of question a). 
 

d The structural designer uses the displacement method. 
Using the kinematic, constitutive and equilibrium equations he derives two differential 
equations. The solution of the differential equation has four coefficients that need to be 
determined by four boundary conditions. Two boundary conditions occur at the top (x = l ) 
of the wall and two boundary conditions occur at the bottom (x = 0 ) of the wall. 
 
Formulate the boundary conditions at the top of the wall? Evaluate these to an equation in 
the wall displacements u1 and u2. 
 

e Formulate the boundary conditions at the bottom of the wall. (Draw a small finite slice at 
the bottom of each wall with a height d. Thus, the slice goes from x=0 to x=d. d is small 
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compared to l. Draw the forces on the slices. Formulate the equilibrium conditions of the 
slices and subsequently let d approach to zero.) Evaluate the equilibrium equations to 
equations in the wall displacements u1 and u2. 
 

f Bonus Question (one point if completely correct) 
Two descending exponential functions appear in the solution of the displacements and 
stress quantities. One of them is descending from the bottom of the system and the other 
from the top of the system. We select the stiffness such that exponential functions can be 
neglected at a distance of l/3 form the bottom or the top respectively. 
 
Questions 
- Consider the situation that K1 is infinitely large and K2 has a finite value. Draw the 

expected distribution of the normal forces in the walls and shear forces in the 
connection beam. (You do not need to calculate something. It is sufficient to just 
reason). Write down whether the normal forces are tension or compression. 

- Draw the direction of the shear force s in the distributed springs on each of the walls. 
- Write down on which position(s) the normal forces N1 and N2 (in absolute sense) are 

equal. 
 
 
Problem 2  (3 points) 
 
A hollow core slab (Dutch: kanaalplaat) with 11 cells is modelled as a thin wall cross-section 
(Figure 3). Just six webs are taken into account in the model. All walls have a thickness t. 
 

 

    
 
       Figure 2. Cross-section of a hollow core slab 

  
a a a a7a

a

t

t

t t t1 2 3 12

 
 
        Figure 3. Model of the hollow core slab for calculation of the torsion properties 

 
 

a Why are some of the webs left out of the model? 
 

b Formulate the equations for calculation of the torsion stiffness according to the membrane 
analogy. Use symmetry. (You do not need to evaluate the equations.) 
 

c The equations are evaluated for you with the following result.  
 

  = 85
1 232

patw
s

    = 108
2 232

pat
s

w     = 115
3 232

pat
s

w  

 
where w1 is the displacement of the plate above cell 1, w2 that of cell 2 and w3 that of cell 
3. s is the membrane stress and p is the pressure underneath the weightless plates. 
Calculate the torsion stiffness GIt of the cross-section. 
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d Calculate the shear stresses in the cross-section as function of the torsion moment. Draw the 
shear stresses in the correct direction. 

 
 

Problem 3  (3 points) 
 
A square plate of thickness t carries an evenly distributed load q (Figure 4.). At each edge the 
plate is simply supported. According to elasticity theory we assume that the kinematic, 
constitutive and equilibrium equations are linear. As you know an exact solution of the 
deflection of this plate does not exist. However, it can be approximated. A calculation using 
potential energy is very suitable because we can accurately estimate the deformation of the 
plate. 
 

 

q

q

a

a

cross-section C-C

cross-section G-GC C

G

G

x

y

 
 
    Figure 4. Square plate with distributed load 

 
 
The following deflection function is assumed  

 

       = − − + − −       
       

2 2 42 2 2 2( , ) (1 )(1 ) (1 )(1 )x y xw x y A B
a a a a

4y  

 
where A and B are coefficients that need to be determined later. 
 

a Show that the deflection function fulfils the kinematic boundary conditions of the plate. 
 

b Give the formula for calculation of the potential energy of the plate. (You do not need to 
evaluate the formula.) 
 

c Using the deflection function the potential energy E of the plate can be calculated. This 
has been done for you. The following equations have been used. 

pot
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= κ + νκ

= κ + νκ

= − ν ρ1
2

( )

( )

(1 )

xx xx y

yy yy xx

y

xy x

m D

m D

m D y

  

∂
κ = −

∂

∂
κ = −

∂

∂
ρ = −

∂ ∂

2

2

2

2

2
2

xx

yy

xy

w
x
w

y

w
x y

  

EtD =
− ν

3

212(1 )
 

 
The result is 

 = + + −2 2 2256 4
pot 11025 2 225(17712 10248 2695 ) (36 25 )DE B BA A qa

a
+B A  

 
Solve the coefficients A and B from the equation of the potential energy. 
 

d Calculate the deflection in the middle of the plate as a function of a, D and q. 
 

e Since now A and B are known the potential energy of the plate can be calculated. This has 
been done for you with the following result. 

 

  = −
2 6

103
pot 121760

q aE
D

 

 
This potential energy is an approximation of the exact potential energy because the assumed 
deflection function in the beginning of this problem is an approximation.  
 
Will the exact potential energy of the plate be larger of smaller than the approximation? 
Explain your answer. (You do not need to make calculations.) 
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Tentamen Ctme5141, 26 oktober 2001 
Answers to Problem 1 
 

a Framework 
ε   

     ε             

1 1
1 1

2 2
2 2

N
u f

N
u f

e s





kinematic
equations

constitutive
equations

equilibrium
equations    

 

   

N  +       dx1
dN
dx

1

s
s

N1 N2

N  +       dx2
dN
dx

2

EA1

f1

u1

EA2

f2

u2

e

  
(The positive directions of s and e can also be chosen differently.) 
 

b Method  
The force method is most suitable. The displacement method results in two differential 
equations (because two degrees of freedom, so two equilibrium equations). The force 
method results in one differential equation. (because one redundant, because two equilibrium 
equations and three stress quantities). 
 

c Equations 
Kinematic equations 

ε =

ε =

= −

1
1

2
2

2 1

du
dx
du
dx

e u u

 

 
Constitutive equations 

= ε − α

= ε

=

1 1 1

2 2 2

( )N EA T

N EA

s k e

 

 
Equilibrium equations 

+ + =

− + =

1
1

2
2

0

0

dN s f
dx
dN s f
dx

   = =1 2 0f f

 
d Boundary Conditions x = l 
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= → ε = α →

= → ε = →

1 1

2 2

( ) 0 ( )

( ) 0 ( ) 0

N l l T

N l l
   =

=

= α

=

1

2 0

x l

x l

du T
dx
du
dx

 

 
e Boundary Conditions x = 0 

 

d

Fv1

s

N2

Fv2

s

N1

d f2f1

 

+ + − =

+ − − =
1 1 1

2 2 2

( ) 0
( )

v

v

N d f s F
N d f s F 0

→lim 0d : =

=

 
− = = − α =  

 

− = = =

1
1 1 1 1 1 1 1

0

2
2 2 2 2 2 2 2

0

(0) 0 met (0) en (0)

(0) 0 met (0) en (0)

v v
x

v v
x

duN F N EA T F K u
dx

duN F N EA F K u
dx

 

Result:  =

=

 
− α − =  

 

− =

1
1 1

0

2
2 2 2

0

(0) 0

(0) 0

x

x

duEA T K u
dx

duEA K u
dx

1
 

 
f Bonus Question 

The described situation is in between two extremes. 
 
Extreme 1 

= ∞1K  and K  This situation is described in the lecture book (Direct Methods, page 
36). 

= ∞2

s

+-

N N1 2
-

 
 

Extreme 2 
= ∞1K  and K  The behaviour at the top and bottom is the same. =2 0

  

-

s

+

+

N N1 2
-
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In between 

= ∞1K  and K  has a finite value The result is in between the extremes. 2

  

+

2

-

s

+

N N1
-

K2

1
3 l

1
3 l

1
3 l

 
 

N1 N2

f2f1

top

a

 
Equilibrium of the top of the walls gives 

= −

+ − − =∫ 1 2 1 2( )
l

x l a
f f dx N N 0  

Since f f , it holds = =1 2 0 =1 2( ) ( )N x N x . So, the normal forces are equal in absolute 
sense over the total height. 
 
 
Answer to Problem 2 

a Flanges 
Some of the middle webs have been left out for two reasons. 1) They probably contribute little 
to the torsion properties. 2) The number of equations that need to be solved is now far less. 
 

b Equations 
 

www w w12 231

 
 

Equilibrium of the plate above cell 1 −
= −2 1 23 w wpa as as

t t
1w  

Plate 2     −−
= + −2 3 22 1 22 w ww w wpa as as as

t t t
 

 

Plate 3     −
= +3 27 2 2(7 )w w wpa a as a s

t t
3  

c Torsion Stiffness 
The membrane is transformed into the φ bubble by the following substitutions. 
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= φw         p = θ2 =
1
G

s  

Therefore 
 Gatφ = θ85

1 232 2     Gatθ108
2 232 2φ =     Gatθ115

3 232 2φ =  

 
The torsion moment is two times the volume of the φ bubble. 
 
 ( )tM a a a= φ + φ + φ2 2

1 2 32 2 2 (7 )a  

( )tM Gat a Gat a Gat a a= θ + θ + θ2 285 108 115
232 232 2322 2 2 2 2 2 (7 )  

tM G= θ 31191
58 a t  

 
The moment in a wire frame model of the beam is 
 
  t tM GI= θ
 
Therefore the torsion stiffness is 
 
 tGI Ga t= 31191

58
 

 
d Shear Stresses 

The shear stress is the slope of the φ bubble. First we rewrite the equation of the torsion 
moment 

 tMGat
a

θ = 58
2 1191

 

 
and express φ1, φ2 and φ3 in the torsion moment. 
 

 tM
a

φ = 85 58
1 232 2 11912  tM

a
φ = 108 58

2 232 2 11912  tM
a

φ = 115 58
3 232 2 11912  

 tM
a

φ = 85
1 2382 2

  tM
a

φ = 108
2 2382 2

  tM
a

φ = 115
3 2382 2

 

 
The shear stresses become 

τ1 τ3

τ2

τ1

τ1

τ1

τ1

τ1

τ2

τ4

τ5

τ5

τ4

τ2

τ2

τ3
1 2 3 2 1

 
 

 tM
t a t

φ
τ = = 851
1 2382 2

 

tM
t a t

φ
τ = = 1082
2 2382 2

 

tM
t a t

φ − φ
τ = = 232 1
3 2382 2
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tM
t a t

φ − φ
τ = =3 2 7
4 2382 2

 

tM
t a t

φ
τ = =3 115
5 2382 2

 

 
Encore (not an exam question) 
In the figure below the torsion stiffness is plotted as a function of the number of webs n in the 
model. It shows that a model with 4 flanges is sufficiently accurate for calculating the torsion 
stiffness. 
 
 
n = 2
n = 4
n = 6

n = 12  
122 84 6 10

n

GIw
Ga  t321

20

20.5

 
 

The largest shear stress converges less quickly with increasing n (not plotted). The largest 

shear stress in the model with 12 webs is tM
a t

225
max 4624 2τ =  which is only 0.8% larger than 

that of the model with 6 webs [1]. Therefore, the model with 6 webs is more than sufficiently 
accurate. 
 
 
Answers to Problem 3 
 

a Boundary Conditions 
The plate is simply supported on all edges. Therefore, the deflection w must be zero at the 
edges. 

 

= − − + − − =

− −
− = − − + − −

= − − + − − =

− = −

2 41 12 4
1 1 2 1 1 2 1
2 4 2 4 2 16 4 16 4

2 41 12 4
1 1 2 1 1 2 1
2 4 2 4 2 16 4 16 4

2 41 12 4
1 1 1 2 1 1 2
2 4 2 4 2 16 4 16 4

2
1 1
2 4

( ) ( )
( , ) ( )( ) ( )( ) 0

( ) ( )
( , ) ( )( ) ( )( ) 0

( ) ( )
( , ) ( )( ) ( )( ) 0

( , ) (

a ay yw a y A B
a a a a

a ay yw a y A B
a a a a

a ax xw x a A B
a a a a

xw x a A

=

− −
− + − − =

2 41 14
1 2 1 1 2

2 4 2 16 4 16 4

( ) ( )
)( ) ( )( ) 0

a axB
a a a a

  

 
The kinematic boundary conditions are correctly satisfied. 
 
It is noted that the dynamic boundary conditions do not need to be fulfilled for application of 
the principle of minimum potential energy. 
 

b Potential Energy 
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− − − −

= κ + κ + ρ −∫ ∫ ∫ ∫

1 1 1 1
2 2 2 2

1
pot 2

1 1 1 1
2 2 2 2

( )
a a a a

xx xx yy yy xy xy
a a a a

E m m m dx dy q w dx dy  

 
c Coefficients 

For the correct displacement field the potential energy is minimal.  
∂

= + − ∂
 ∂ = + − ∂

pot 2256 4
11025 2 225

pot 2256 4
11025 2 225

(10248 5390 ) 25 0

(35424 10248 ) 36 0

E D B A qa
A a

E D B A qa
B a

=

=

 

From these two equations the two coefficients A and B are solved. 


+ =


 + =

4

4

535,4 281.6

1285,2 371.8

qaB A
D
qaB A
D

 


+ =



 + =

4

4

535.4 281.6

535.4 154.9 0.4166

qaB A
D

qaB A
D

 


+ =



 =

4

4

535.4 281.6

126.7 0.5834

qaB A
D

qaA
D

 


= −



 =

4

4

535.4 281.6

0.004605

qaB A
D

qaA
D

 

( )


= − × = −


 =

4 4

4

535.4 1 281.6 0.004605 0.2968

0.004605

qa qaB
D D

qaA
D

 


= −



 =

4

4

0.000554

0.00460

qaB
D

qaA
D

 

 
d Deflection 

       = − − + − − = +       
       

2 2 4 40 0 0 0(0,0) (1 )(1 ) (1 )(1 )w A B A
a a a a

B  

= −
4 4

(0,0) 0.00460 0.000554qa qaw
D D
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=
4

(0,0) 0.00405 qaw
D

 

 
e Larger or Smaller 

We are looking for a solution with the smallest potential energy. The potential energy of a 
good approximation is small. The potential energy of the exact solution is smaller. 
 
Encore (not an exam question) 
Using the coefficients A and B we can calculate the moments in the middle of the plate. 
 

= +

= +

=

2897
24352

2897
24352

(1 )

(1 )

0

xx

yy

xy

m qa

m qa

m

ν

ν  

 
Moments in plates have been published for many plate shapes and dimensions. Often 
these calculations have been performed using the finite difference method. (To date the 
finite element method would have been used.) For example in [2] we find the following 
formula for the plate of problem 2. 
 
 = 20.03676xxm qa  
 
If we assume that ν = 0 this moment is only 0.2% smaller than the calculated result. 
 
 
Literature  
 

[1] L. Span, “Grote openingen in kanaalplaten” (“Large Openings in Hollow Core Slab 
Floors”), Preliminary Graduation Report, Delft University of Technology, May 2001 (In 
Dutch). 
 

[2] K. Stiglat, H. Wippel, “Platten”, Zweite Auflage, Verlag von Wilhelm Ernst & Sohn, Berlin 
1973, p. 158 (In German). 
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Technische Universiteit Delft Vermeld rechtsboven op uw werk: 
Faculteit der Civiele Techniek en Geowetenschappen Naam en Studienummer 
Mechanica & Constructies     
  
Tentamen Elasticiteitstheorie Ctme5141 
Dinsdag 8 januari 2002, 9.00 – 12.00 uur 
 
Problem 1  (3 points) 

l

EA12EA2EA1

K1 2K2 K1

kk

x

 
   Figure 1. Three connected high walls 

Consider a symmetric system consisting of 
three high walls that are in one plane (Figure 
1). The extension stiffness’ are respectively 
EA1, 2EA2 and EA1. The walls are supported by 
springs at the bottom (pile foundation). The 
spring stiffnesses’ are respectively K1, 2K2 and 
K1. Two rows of horizontal connection beams 
between the walls are each modelled as 
distributed springs of stiffness k. The height of 
the structural system is l. The x-axis starts at 
the bottom of the walls (x=0) and ends at the 
top (x=l ). 

The two outer walls have a temperature that is 
T degrees higher than the middle wall. The 
linear extension coefficient of the walls is α. 
 
A structural designer wants to calculate the 
shear force s in the connection beams. The 
structural designer uses symmetry and 
considers only the left part of the system. 
 
 

a Give the framework which shows the degrees of freedom, deformations, stress quantities 
and load quantities of the structural system. (Make drawings that explain the quantities 
and show their positive directions). 
 

b Is the force method or the displacement method most suitable to solve this problem? 
Explain your answer. 
 

c Write down the 
-  the kinematic equations 
-  the constitutive equations 
-  the equilibrium equations 
(If need be supplement the drawings that were made for question a). 
 

d The structural designer continues with the force method 
- Propose the redundant(s) and show how the stress quantities can be expressed in the 
  redundant. 
- Derive the compatibility condition(s) from the kinematic equations. 

 
e The structural designer derives one differential equation based on the redundant(s) and 

the compatibility conditions(s). (You do not need to derive this differential equation.) Two 
coefficients occur in the solution to the differential equation. These need to be determined 
by two boundary conditions. One boundary condition can be found in the top of the system 
(x = l ) and on boundary condition can be found at the bottom (x = 0).  

 79



 
Formulate the boundary condition in the top of the system. Evaluate this to an equation in 
the redundant(s). 
 

f Formulate the boundary condition at the bottom of the system. Evaluate this to an equation 
in the redundant(s). 
 

g Bonus Question (one point if completely correct) 
Two descending exponential functions appear in the solution of the displacements and 
stress quantities. One of them is descending from the bottom of the system and the other 
from the top of the system. We select the stiffness such that exponential functions can be 
neglected at a distance of l/3 form the bottom or the top respectively. 
 
Questions 
-  Draw the expected distribution of the normal forces in the walls and the shear forces in 

the connection beams for the situation that K1 and K2 both have a finite value. Write 
down whether the normal forces are tension or compression. (calculation is not needed, 
just understanding). 

- Draw in which direction the shear force s  in the distributed springs acts on each of 
the adjacent walls. 

- Write down shortly (only words) how the results change if the horizontal connection 
beams are not present over the middle third part of the height l. 

 
 
Problem 2  (4 points) 

 

r
ϕ

EA

EI

φ

M

q

 
Figure 2. Arch and tension bar 

 
A semi circular arch and tension bar are 
idealised according to Figure 2. The 
materials are linear-elastic. The bending 
stiffness of the arch is EI and the extension 
stiffness is infinitely large. The extension 
stiffness of the tension bar is EA. The 
distributed load q is constant per unit of arch 
length (for example self weight). 
 
The structure will be calculated using 
complimentary energy. We choose the force 
in the tension bar as redundant φ. The 
moment in the arch can be expressed in φ. 
 
 ϕ = π − ϕ ϕ φ + ϕ2 1

2( ) ( )- ( )M q r sin r q r cos  
 

a Show that the moment M(0) in the top of the arch is in equilibrium with the load.  
 

b Give the formula for the complimentary energy of the structure. (You do not need to evaluate 
the formula.) 
 

c The complementary energy has been evaluated for you with the following result. 
 

 π φ
= φ − φ + π − +

3 2
2 2 2 2

compl [12 12 (7 66)]
48

r rE r q r q
EI EA

 

Calculate φ. Use the parameter π 2r EA
EI

β =  
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d Calculate the moment M(0) in the top of the arch. Can this moment have a negative value? 

Explain your answer. 
 
 
Problem 3  (3 points) 
 
A tunnel is loaded by a train that does not move. 
The tunnel is modelled as a ring with a bending 
stiffness EI. The surrounding soil is modelled 
with distributed springs of stiffness k per unit 
length. The wheel load by the train is modelled 
as a concentrated load F. 
 
We assume the following function for the 
displacement w of the ring. 
 

= + +( ) cos cos(2 ) cos(3 )s sw s A B C
r r

s
r

 

 

F
rϕEI

k

w(s)

s

 
Figure 3. Spring supported ring 

 
where A, B and C are coefficients that are to be 
determined. 
 
The kinematic equation for the curvature κ in the 
ring is 

κ = − −
2

2 2( ) d w ws
ds r

 

 
a The displacement function w s  consists of three terms. Which of the three terms give a 

rigid displacement of the tube? Show that the rigid displacement does not produce a 
curvature in the ring. 

( )

 
b Give the equation of the potential energy of the model. (You do not need to evaluate the 

equation.) 
 
c The potential energy has been evaluated for you with the following result. 
 

π
= + + π + + − +2 2 2 2 21

pot 3 2(9 64 ) ( ) ( )
2

EIE B C k r A B C F A B
r

+ C
 

Solve the coefficients A, B and C op. Use the parameter β =  and express A, B, and C 

in  

4kr
EI

π

3Fr
EI  

 

d Calculate the moment M in the tube at ϕ = 0. 
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Tentamen Ctme5141, 8 januari 2002 
Answers to Problem 1 
 

a Framework 
ε   

     ε             

1 1
1 1

2 2
2 2

N
u f

N
u f

e s





kinematic
equations

constitutive
equations

equilibrium
equations    

 

   

N  +       dx1
dN
dx

1

s
s

N1 N2

N  +       dx2
dN
dx

2

EA1

f1

u1

EA2

f2

u2

e

  
(The positive direction of s and e can also be selected differently.) 
 

b Method  
The force method is most suitable. The displacement method results in two differential 
equations (because two degrees of freedom, so two equilibrium equations). The force 
method results in one differential equation. (because one redundant, which follows from two 
equilibrium equation and three stress quantities). 
 

c Equations 
Kinematic equations 

ε =

ε =

= −

1
1

2
2

2 1

du
dx
du
dx

e u u

 

 
Constitutive equations 

ε = + α

ε =

=

1
1

1

2
2

2

N T
EA

N
EA

se
k

 

 
Equilibrium equations 

+ + =

− + =

1
1

2
2

0

0

dN s f
dx
dN s f
dx

   = =1 2 0f f
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d Redundant 

We choose s = φ and substitute this in the equilibrium equations. 
 

= −φ

= φ

1

2

dN
dx
dN
dx

 

 
Compatibility Condition 
We use the kinematic equations and eliminate u1 and u2 
 

= − →2 1de du du
dx dx dx

= ε − ε2 1
de
dx

 

 
 
e Boundary Conditions x = l  

= → ε = α 
= → ε = 

1 1

2 2

0
0 0

N
N

T  substitution in the compatibility condition 

 φ → = −α → = −α → 
 

de dT T
dx dx k

 φ
= − α

d k T
dx

 

 
f Boundary Conditions x = 0 

= −1 2e u u  

Substitution of = 1
1

1

vF
K

u , = 2
2

2

vF
K

u  and 
φ

=e
k

 gives 

φ
= −1 2

1 2

v vF F
k K K

 

From equilibrium of wall 1 follows = φ∫1
0

l

vF dx . 

From equilibrium of wall 2 follows = − φ∫2
0

l

vF dx .  

φ − φ
φ

= −
∫ ∫
0 0

1 2

l l
dx dx

k K K
 

 φ
= + φ 

 
∫

1 2 0

1 1 l
dx

k K K
 

 
φ − + φ = 

 
∫

1 2 0

1 1 1 0
l

dx
k K K

 

 
 

g Bonus Question 
The described situation is in between two extremes. 
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Extreme 1 
= ∞1K  and K . This situation is described in the lecture book (Direct Methods, page 

36). 
= ∞2

s

+-

N N1 2
-

 
 

Extreme 2 
= ∞1K  and K . The behaviour at the top and bottom is the same. =2 0

  

-

s

+

+

N N1 2
-

 
In between 

= ∞1K  and K is some finite value. The result is in between the extremes. 2

  

+

2

-

s

+

N N1
-

K2

1
3 l

1
3 l

1
3 l

 
 
The shear force is zero over the middle 1/3 of the height. The results do not change if the 
connection beams are removed over the middle 1/3 of the height. 
 
 
Answers to Problem 2 
 

a Equilibrium 
The load on a little part of the arch of length ds is q ds. 
The lever arm of this load is . Therefore we find 
for the equilibrium 

ϕsinr

r

ϕ

φ

M(0)
q

R
ϕsinr

dϕ

ds

π

ϕ=

= − φ − ∫

1
2

0
(0) sinM R r r q ds r ϕ  . 

 
The support reaction R is equal to the load q times the 
length of the semi arch. 
 

= π1
2R q r  
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During evaluation we use ds . = ϕr d
π

ϕ=

= π − φ − ϕ∫

1
2

2 21
2

0
(0) sinM q r r qr dϕ  

[ ]
π

= π − φ − − ϕ
1

2 21 2
02 cosq r r qr  

 = π − φ − − π + 
2 21 1

2 2cos cos0q r r qr  

[ ]= π − φ − − +2 21
2 0 1q r r qr  

= π − φ −2 21
2q r r qr  

 
According to this exam problem the moment in the top equals 

= π − φ +2 1
2(0) ( 0 0)- ( ) 0M q r sin r q r cos  

= π φ +2 1
2 - ( )q r r q r  

 
which indeed is the same. 
 

b Complementary Energy 
π

ϕ=− π

= κ +∫
1
2

1 1
compl 2 2

1
2

2E M ds φε r  

When we substitute the constitutive equations and = ϕr dds  we obtain 
π

ϕ=− π

φ
= ϕ +∫

1
2 2 2

1 1
compl 2 2

1
2

2ME r d
EI EA

r  

 
c Force in the Bar 

π φ
= φ − φ + π − +

3 2
2 2 2 2

compl [12 12 (7 66)]
48

r rE r q r q
EI EA

 

∂ π φ
= → φ − + =

∂φ

3compl 20 [24 12 ] 0
48

E r rr q
EI EA

 

π
φ − + φ =

3
[24 12 ] 2 0

48
r EA r q r

EI
 

β
φ − + φ =[24 12 ] 2 0

48
r r q r  

βφ − β + φ =24 12
48 48 2 0r q  

β φ + φ = β2 8 r q  
φ β + = β2 ( 4) r q  

 
β

φ =
β +

1
2 4

q r  

 
d Moment in the Top 
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= π − φ −2 21
2(0)M q r r qr  

β
= π − −

β +
2 21 1

2 2 4
q r q r r qr  

 β
= π− − β + 

21
2(0) 2

4
M qr  

The stiffness’ EI and EA are always positive. Therefore β ≥ 0 . So β
<

β +
1

4
. 

SoM provided thatq . >(0) 0 > 0
 
 
Answers to Problem 3 
 

a Rigid Displacement 
We draw the terms of the displacement function. 
 

cos s
r

cos2 s
r

cos3 s
r  

The rigid displacement is therefore = cos s
r

w A  
Substitution in the kinematic equation gives 

 κ = − − = − − = − = 
 

2 2

2 2 2 2 2 2

cos cos1cos cos 0

s sA Ad w w d s sr rA A
r rds r ds r r r  

 
Therefore, the rigid displacement does not give a curvature of the ring.

 

 
b Potential Energy 

 
π π

= =

= κ + −∫ ∫
2 2

1 1
pot 2 2

0 0
(0)

r r

s s
E M ds f w ds F w  

 
where M is the moment in the ring and f  is the spring force per unit of length. Using the 
constitutive equations we can write this as 
 

π π

= =

= κ + −∫ ∫
2 2

2 21 1
pot 2 2

0 0
(0)

r r

s s
E EI ds k w ds F w . 

 
c Coefficients 

π
= + + π + + − +2 2 2 2 21

pot 3 2(9 64 ) ( ) ( )
2
EIE B C k r A B C F A B
r

+ C
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∂
= → π − = → = =

∂ π

3pot 10 0
E F Frk r A F A

π βA k r EI  
∂ π

= → + π − = → = =
π∂ π+ π

3pot
3

3

10 9 0
99

E EI F FrB k r B F B EIB Er k r
r

β +I  

∂ π
= → + π − = → = =

π∂ π+ π

3pot
3

3

10 64 0
6464

E EI F FrC k r C F C EIC Er k r
r

β +I  

d Largest Moment 

= + +cos cos(2 ) cos(3 )s sw A B C
r r

s
r  

∂
= − − −

∂
1 2 3sin sin(2 ) sin(3 )w s sA B C

s r r r r r r
s

 

∂
= − − −

∂

2

2 2 2 2
1 4 9cos cos(2 ) cos(3 )w s sA B C

r rs r r r
s
r  

κ = − −

 = + + − + + 
 

= +

2

2 2

2 2 2 2

2 2

1 4 9 1cos cos(2 ) cos(3 ) cos cos(2 ) cos(3 )

3 8cos(2 ) cos(3 )

d w w
ds r

s s s s sA B C A B C
r r r r rr r r r

s sB C
r rr r

s
r  

=
 

κ = + = + = + π β + π β + π β + β + 

3 3

0 2 2 2 2
3 8 3 1 8 1 3 8

9 64 9s
F r F r F rB C

EI EI EIr r r r 64  

= =
 

= κ = + π β + β + 0 0
3 8

9 6s s
F rM EI

4  
 
Encore (not an exam question) 
We can also select more than three 
terms for the displacement function. 

∞

=
= ∑

1
cosi

i

i sw A
r  

These coefficients Ai can be calculated 
in the same way.

 
= =

π β + −

3

2 2
1 1,2,3 ...

( 1)
i

F rA i
EI i  

∞

β

0,7

10008006004002000

∞

=

−

β + −∑
2

2 2
1

1
( 1)i

i
i

0,6

0,5

0,4

0,3

0,2

0,1

3
4

+
β + β +

3 8
9 64The largest moment becomes 

∞

=
=

−
=

π β + −∑
2

0 2 2
1

1
( 1)s

i

F r iM
i  

The graph shows that the approximation using three terms substantially underestimates 
the largest moment. 
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Delft University of Technology   Write your name and study number  
Faculty of Civil Engineering and Geosciences  at the top right-hand of your work. 
Structural Mechanics Section     
 
Exam CT5141 Theory of Elasticity  
Monday 13 January 2003, 13:00 – 17:00 hours 
 
Problem 1  (2 points) 
 

σ1 σ1

σ2

σ2

σB

σA

 
Figure 1. Stress field around a 
circular hole 

 

a
b

om omomom

r

om

om

 
Figure 2. Axisymmetric plate 

Consider a very large plate with a circular hole made 
of a linear-elastic material. Figure 1 shows a 
rectangular part of this plate. Everywhere in the plate 
except close to the hole the principle stresses are σ1  
and σ . Around the hole this homogeneous stress 
field is disturbed and peak stresses

2
σA and σB occur. 

If σ =  the peak stresses are σ = σ1 2 σ = σ = σ2A B . 
If σ =  the peak stresses are−σ = σ1 2 σ = σ4A  and 

. σ = − σ4B
 

a Use the provided information to determine σA  and 
 in case  and  σB σ = σ1 σ = σ2 3 .

 
b We use polar coordinates and the force method to 

calculate the stress field. Which differential equation 
describes the problem for ? σ = −σ = σ1 2
 

c Again we use polar coordinates and the force 
method. For the case  a simpler 
differential equation may be used than in question b. 
Which is this differential equation? 

σ = σ = σ1 2

 
 
Problem 2  (5 points) 
 
A thin axisymmetric plate with an opening is simply 
supported at the outer edge (Figure 2.). The plate 
stiffness is D and the coefficient of lateral contraction 
is ν. We will consider three load cases. In the first load 
case the plate is loaded by an edge moment m  
along its outer edge  r = b  and inner edge  r = a. 
Questions a, b and c are on this load case. The 
remaining load cases are introduced after these 
questions. 

o

 
a Which differential equation describes this problem? 

Give the general solution having four integration 
constants. What do you notice about the particular 
solution? 
 

b Specify four boundary conditions from which the 
constants in the general solution can be solved. (you 
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do not need to elaborate the boundary conditions into expressions of the deflection w. You do 
not need not solve the constants.) 
 

c Solving the four constants gives the following expression for the deflection w. 
 

= −
+ ν

2 2( ) ( )
2 (1 )

omw r b r
D

 

 
Calculate the bending moments m , rr θθm and the shear force . rv
 
 
 
 
Subsequently the second load case is considered for the same plate. The edge moments 

 are removed and a temperature gradient is applied over the thickness of the plate. The 
temperature of the lower face is higher than the upper face. If the plate would be able to 
deform freely a curvature  would occur in all directions. This curvature would not give any 
stress. 

om

κT

 
d Derive the following constitutive equations of the axisymmetric plate. 

 

 
( )
( )

θθ

θθ θθ

= κ + νκ − + ν κ

= νκ + κ − + ν κ

(1 )

(1 )
rr rr T

rr T

m D

m D
 

 
e In this case of temperature deformation the displacement field has the shape 

 
  = + 2

1 2( )w r C C r
 
Determine C  and C  and show that bending moments and shear force do not occur due to 
this temperature loading. 

1 2

 
 
 
 
Subsequently the third load case is considered. To this end the temperature load is removed, 
the edge r = b is clamped and the temperature load is applied again.  
 

f Will the plate be free of stresses again? Explain your answer. (Analysis is not needed.) 
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Problem 3  (3 points) 
 
A triangular plate of thickness t carries an evenly distributed load q (Figure 4.). The plate is 
simply supported at each edge. According to elasticity theory we assume that the kinematic, 
constitutive and equilibrium equations are linear. An exact solution of the deflection of this 
plate does not exist. However, it can be approximated. A calculation using potential energy is 
very suitable because we can accurately estimate the deformation of the plate. 
 

 

q

q

h

section C-C

section B-BC C

B

B

x

y

a

1
2 a 1

2 a

x

y

 
 
    Figure 4. Triangular plate with distributed load 

 
The following deflection function is assumed.  
 

= − − + −( , ) (1 2 )(1 2 )y x y x yw x y A
h a h a h

 

 
where A is a coefficient that needs to be determined later. 
 

a Show that the deflection function fulfils the kinematic boundary conditions of the plate. 
 

b Give the formula for calculation of the potential energy of the plate. (You do not need to 
evaluate the formula.) 
 

c Using the deflection function the potential energy E of the plate can be calculated. This 
has been done for you. The following equations have been used. 

pot

 

 

= κ + νκ

= κ + νκ

= − ν ρ1
2

( )

( )

(1 )

xx xx y

yy yy xx

y

xy x

m D

m D

m D y

  

∂
κ = −

∂

∂
κ = −

∂

∂
ρ = −

∂ ∂

2

2

2

2

2
2

xx

yy

xy

w
x
w

y

w
x y

  

EtD =
− ν

3

212(1 )
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The result is 

 + ν
= −

2
216 1

pot 9 2 60
(2 )3 3DAE q
a

Aa  

 
Solve the coefficient A from the potential energy equation. 
 

d Calculate the deflection in the middle of the plate as a function of a, D and q. 
 
 

e Since now A is known the potential energy of the plate can be calculated. This has been 
done for you with the following result. 
 

  = −
+ ν

2 6
pot

3
25600 (2 )

q aE
D

 

 
The table below shows three alternative deflection functions for this problem and the 
calculated potential energy. Which deflection function provides the most accurate 
approximation of the plate behaviour? Explain your answer. 
 

 Deflection Function Potential Energy 
 
1 = − − + −( , ) (1 2 )(1 2 )y x y x yw x y A

h a h a h
 = −

+ ν

2 6
pot

3
25600 (2 )

q aE
D

 

 
2  = − − + − 

 

2
( , ) (1 2 )(1 2 )y x y x yw x y A

h a h a h
 = −

+ ν

2 6
pot

3
86016 (2 )

q aE
D

 

 
3  = − − + − 

 

3
( , ) (1 2 )(1 2 )y x y x yw x y A

h a h a h
 = −

+ ν

2 6
pot

13 3
1689600 (2 )

q aE
D
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Exam CT5141, 13 January 2003 
Answers to Problem 1 
 

a Peak Stresses 
For linear-elastic materials we can apply the principle of superposition. 
We have two load cases 
1. , σ = ,   σ = , σ = σ1 σ2 σ2A σ = σ2B  
2. , σ = , σ = , σ = σ1 −σ2 σ4A σ = − σ4B  
 
From this we can make a new case that consists of two times case 1 minus case 2. 
3. , σ =  σ = , σ = σ1 σ2 3 , 0A σ = σ8B  
 

b Differential Equation 
The formulation in polar coordinates of a plate loaded in extension is 
 

∇ ∇ φ =2 2 0  ∂ ∂ ∂
∇ = + +

∂∂ ∂

2 2
2

2 2
1 1
r rr r ϑ2  

 
(See lecture book Direct Methods page 107.) 
 

c Differential Equation  
Since the plate is very large the far boundaries have very little influence on the problem. 
Therefore, the geometry can be considered symmetric. In load case 1, the stress is equal in 
all directions (Mohr’s circle reduces to a point.). Since the geometry and loading are 
symmetric the differential equation can be simplified. 
 

φ = 0L   =
1d dL r r

dr r dr
 

 
(See lecture book Direct Methods page 99.) 
Note that this is a different one than theφ φ in question b. 
 
 
Answers to Problem 2 
 

a Differential Equation and Solution 
 

   ∇ ∇ =2 2 0D w ∇ =2 1 d dr
r dr dr

 

 
= + + +2 2

1 2 3 4w C C r C ln r C r ln r  
 
Since there is not a distributed load at the plate surface there is not a particular solution. 
(See lecture book Direct Methods pages 124, 127.) 
 

b Boundary Conditions 
 

= →r a    
=

=
0r

rr o

v
m m

= →r b
=

=
0

rr o

w
m m

 

 
c Bending Moments and Shear Force 
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 = −
+ ν

2 2( )
2 (1 )

omw b
D

r  

θθκ = − =
+ ν

1
(1 )

omdw
r dr D

 

κ = − =
+ ν

2

2 (1 )
o

rr
md w

Ddr
 

( )θθ
 

= κ + νκ = + ν = + ν + ν (1 ) (1 )
o o

rr rr o
m mm D D m

D D
 

( )θθ θθ
 

= κ + νκ = + ν = + ν + ν (1 ) (1 )
o o

rr o
m mm D D m

D D
 

θθ= − = −
( )( )1 1 0o orr

r
m d r m md r mv

r dr r r dr r
=  

 
d Constitutive Equations 

Without temperature the constitutive equations read 
 

θθ

θθ θθ

= κ + νκ

= κ + νκ

( )
( )

rr rr

rr

m D
m D

 

 
Part of the curvature is due to temperature loading. This part does not cause moments. 
 

( ) ( ) ( )
( ) ( ) (

θθ θθ θθ

θθ θθ θθ θθ

= κ − κ + ν κ − κ = κ − κ + νκ − νκ = κ + νκ − + ν κ

= κ − κ + ν κ − κ = κ − κ + νκ − νκ = κ + νκ − + ν κ

( ) ( ) (1 )

( ) ( ) (1 )
rr rr T T rr T T rr T

T rr T T rr T rr

m D D D

m D D D )T
 

e Moments and Shear Forces 
 

= + 2
1 2w C C r  

θθκ = − = − = −2 2
1 1 2 2dw C r C
r dr r

 

κ = − = −
2

22 2rr
d w C
dr

 

( ) ( ) ( )θθ= κ + νκ − + ν κ = − − ν − + ν κ = − + κ + ν2 2 2(1 ) 2 2 (1 ) 2 (1 )rr rr T T Tm D D C C D C  

( ) ( ) ( )θθ θθ= κ + νκ − + ν κ = − − ν − + ν κ = − + κ + ν2 2 2(1 ) 2 2 (1 ) 2 (1 )rr T T Tm D D C C D C

( )( ) ( )

( )( ) ( )

θθ + κ + ν
= − = − + κ + ν + =

+ κ + ν
= − + κ + ν + =

2
2

2
2

2 (1 )( )1 1 2 (1 )

2 (1 )1 2 (1 ) 0

Trr
r T

T
T

D Cmd r m dv rD C
r dr r r dr r

D C
D C

r r

 

 
Boundary conditions 
 

= →r a    
=

=
0

0
r

rr

v
m

= →r b
=

=
0

0rr

w
m

 

 
These are fulfilled only if = − κ1

2 2 TC  and = κ21
1 2 TbC .  

Therefore,  θθ= = = 0rr rm m v
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f Clamped Edge 
The displacement function that is calculated in question e is drawn below. Clearly a 
rotationdw dr occurs at the edge r = b. Preventing this rotation will lead to moments in the 
plate. 

1
r
b

a
b

κ2
T

w
b  

 
 
 
Answers to Problem 3 
 

a Boundary Conditions 
The plate is simply supported on all edges. Therefore, the deflection w must be zero at the 
edges.  

 

= − − + − =

− −
− −−

− = − − + − = −

− −
−

= − − + − = − =

0 0 0( ,0) (1 2 )(1 2 ) 0

( ) ( )
( ) 2 2( , ) (1 2 )(1 2 ) (2 2 )(0)

2
( ) ( )

( ) 2 2( , ) (1 2 )(1 2 ) (0)(2 2 ) 0
2

x xw x A
h a h a h

a h y a h y
a h y y y y y yh hw y A A

h h a h a h h h
a h y a h y

a h y y y y y yh hw y A A
h h a h a h h h

= 0   

 
The kinematic boundary conditions are correctly satisfied. 
 
It is noted that the dynamic boundary conditions do not need to be fulfilled for application of 
the principle of minimum potential energy. 
 

b Potential Energy 
 

− −

− −
− −

= κ + κ + ρ −∫ ∫ ∫ ∫

( ) ( )
2 2

1
pot 2

( ) ( )0 0
2 2

( )

a h y a h y
h hh h

xx xx yy yy xy xy
a h y a h y

h h

E m m m dx dy qw dx dy  

 
c Coefficient 

A mistake has been made in the 
potential energy of problem 3. The 
correct potential energy is 
 

= −
2

232 1
pot 9 2 603 3DAE q

a
Aa  

 
In this answer we continue with the 
incorrect potential energy as if it 
were correct. 

For the correct displacement field the potential 
energy is minimal. 
 

∂ + ν
= −

∂
pot 232 1

9 2 60
(2 )3 3

E DA qa
A a

= 0  

From this equation coefficient A is solved. 
 

=
+ ν

4
3

640 (2 )
qaA

D
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d Deflection 

= − − = =
+ ν

4
31 1 1 1 4

3 3 3 3 27 640 27(0, ) (1 )(1 )
(2 )
qaw h A A

D
4  

=
+ ν

4
1 1
3 1440(0, )

(2 )
qaw h

D
 

 
e Most Accurate 

The exact solution has the smallest potential energy. In the table below the fractions in the 
potential energy are evaluated. Clearly, deflection function 1 gives the smallest potential 
energy. Therefore it is the best of the three approximations. 
 

 
1 −= −

+ ν

2 6
4

pot 0.676 10
(2 )
q aE

D
 
2 −= −

+ ν

2 6
4

pot 0.201 10
(2 )
q aE

D
 

 
3 −= −

+ ν

2 6
4

pot 0.133 10
(2 )
q aE

D
 
 
Encore 
The problem introduction mistakenly states that an exact solution does not exist. This 
particular problem does have an exact analytical solution. The displacement function is 
 

= − + − − +3 2 2 2 2 2 23 1 1
4 4 3

3( , ) ( 3 3 )( 3 )
96

qw x y y y a ya x y a y y a x
aD

−  

 
The deflection in the middle is 
 

 =
4

1 1
3 1728(0, ) qaw h

D
 

 
The moments in the middle are 
 

 

= +

= +

=

21
72

21
72

(1 )

(1 )

0

xx

yy

xy

m qa

m qa

m

ν

ν  

 
which are the largest principle moments. The minimum potential energy of the plate is 
 

 −
=

2 63
35840pot

q aE
D
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