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Differential geometry 
Surfaces are studied in a branch of mathematics called differential geometry. The mathematicians 
study perfectly rigid surfaces and surfaces with no stiffness at all (topology) which is rather 
restrictive from our point of view. Nonetheless, many formulas in these notes are copied from 
books on differential geometry. Here are three useful formulas [8]. 
 
If an orthogonal parameterisation (p. 25) is available then the shell curvatures can be calculated 
with 
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where αx and α y are the Lamé parameters (p. 32). 
 
Curvilinear coordinate system 
In shell analysis three coordinate systems are used (fig. 43); 1) a global coordinate system (p. 19) 
to describe the shape of the shell, 2) a local coordinate system (p. 19) to define curvature, 
displacements, membrane forces, moments and loading, 3) a curvilinear coordinate system to 
derive and solve the shell equations. 
The axis of the curvilinear coordinate system are u and v. They are plotted onto the shell middle 
surface. All lines of this coordinate system cross perpendicularly. It looks like a timber grid shell 
(see Savill building p. 22). The x direction in a point is tangent to the local u direction and the y 
direction in a point is tangent to the local v direction. 
 

 
Figure 43. Coordinate systems 
 
In the curvilinear coordinate system it is simple to locate any point (u, v) on the shell surface. 
Also, the positive directions of the membrane forces and moments are clear in any point. For 
example, consider the torus in figure 44. There is nothing unclear about the statement:  
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“At the location 3 1
2 2( , ) ( , )= π πu v b a  the membrane shear force is 10xyn = kN/m ”. 

 

 
Figure 44. Curved coordinate system on a torus 
 
Shell displacement and load 
Every point of the shell middle surface has a local Cartesian coordinate system x, y, z (fig. 45). 
Every point has displacements xu , yu , zu . Every point is loaded by distributed 

forces xp , yp , zp  [kN/m²]. 
 

 
Figure 45. Displacements and loads 
 
Lamé parameters 
A complication of the curved coordinate system is that the distance between two grid lines varies 
from point to point. Therefore, a small length dx is often not the same as a small length du. For 
the torus in figure 44 we can derive 
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Exercise: Derive these equations by inspection of the torus curved coordinate system. 
 
In general we write 
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where αx and α y are called Lamé parameters.1 The inverse of the later equations is simply 
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differentiating. For example, if we differentiate the membrane shear force ( , )xyn u v to x we need 
to use the chain rule 
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If an orthogonal parameterisation (p. 25) is available then the Lamé parameters can be calculated 
with. 
 

2 2 2∂ ∂ ∂
α = + +

∂ ∂ ∂x
x y z
u u u

, 

2 2 2∂ ∂ ∂
α = + +

∂ ∂ ∂y
x y z
v v v

. 

 
The proof is simple. If we change u a bit then x , y and z change a bit and the length of the latter 
bit follows from Pythagoras’ theorem. Q.E.D. 
 
Equation of Gauß 
The Lamé parameters (p. 32) can be used to calculate Gaussian curvature (p. 23). 
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1 Gabriel Lamé (1795–1870) was a French mathematician who taught at universities in Saint Petersburg 
and in Paris [Wikipedia] 
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This is called the equation of Gauß [for a derivation see 9 p. 175]. Applying the chain rule this 
can be written as 
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For example, the torus of figure 44 has a Gaussian curvature of 
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Exercise: Are the shapes in table 2 completely determined? 
 
Table 2. Examples of Lamé parameters (p. 32) that produce uniform Gaussian curvatures (p. 23) 
(Uniform means not a function of u and not a function of v.) 
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Intrinsic property 
Consider the sticker shown in figure 46. It has a length and width of 20 cm. The sticker material 
is very flexible. Subsequently, it is carefully glued onto a curved surface without wrinkles and 
cracks. The angles between the lines remain 90°. Figure 47 shows the stretched lengths of the 
sticker lines. 
 

        
Figure 46. Sticker printed on a flexible material       Figure 47. Sticker stretched onto a surface 
 
The Lamé parameters (p. 32) are 
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Substitution in the equation of Gauß (p. 33) gives 
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Only surface measurements were used. Apparently, for calculating Gaussian curvature we need 
not measure the shell shape in three-dimensional space. For this reason, Gaussian curvature (p. 23) 
is called an intrinsic property. Mean curvature (p. 24) is not intrinsic. 
 

Exercise: Do the sticker calculation with 
2 2

2 2
1 1∂ α ∂ α

= − −
α α∂ ∂

y x
G

y x
k

x y
. It should produce the 

same result. 
 
Curved roofs with tiles 
Modern tile roofs are always flat. However, the length that tiles overlap can vary, which can be 
used to build curved roofs (fig. 48). Clearly, tiles should divert rain and stay on the roof in a 
storm. This imposes constraints to the slope of tiles. The particle-spring method (p. 105) can be 
used to determine a suitable grid. 
 

dv
du



36 
 

 
Figure 48. Queens palace in Silinduang Bulan, Indonesia [10] 
The curved roofs are made of flat tiles. 
 
Equations of Codazzi 
The equations of Codazzi are [9] 2 
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They are valid if x and y are the principal curvature directions, so xyk = 0. 

Apparently, we cannot create a shell by just choosing functions xxk = …, yyk = …, 

xyk = …, αx = … and α y = … . Our choice must fulfil the equation of Gauß and the equations of 
Codazzi. 
 
Helicoid 
A helicoid (fig. 49) can be described by 
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Its mean curvature (p. 24) is zero everywhere, therefore it is a minimal surface.  
 

 
2 Delfino Codazzi (1868–1869) was a mathematics professor at the University of Pavia, Italy. The Codazzi 
equations were also discovered by Gaspare Mainardi (1800–1879) and by Karl Mikhailovich Peterson 
(1828–1881). The latter seems to have been the first [Wikipedia]. 
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–π/2 < u < π/2      –π/2 < v < π/2             –π/2 < u + v < π/2      –π/2 < u – v < π/2      
Figure 49. Helicoid      
 
Exercise: Check the equation of Gauß (p. 33) and the equations of Codazzi (p. 36) for a helicoid. 
 
Challenge: It should be possible to generalise the equations of Codazzi to one equation that is 
valid for 0≠xyk  too. 
 
In plane curvature 
Figure 50 shows curved parameter lines on a curved surface. The lines have a radius of 
curvature yr in the plane that is tangent to the shell middle surface. This radius can be expressed 

in the Lamé parameter αx  (p. 32). The proportions in the figure show that 
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Figure 50. Radius yr of the parameter line v = constant 
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Exercise: Derive that 2 2yx
G x y

kkk k k
y x

∂∂
= − − − −

∂ ∂
 

Challenge: Suppose we have two orthogonal parameterisations of a shell. 
The local coordinate systems in a shell point are x–y–z and r–s–z. Proof or disproof that 

cos sin

sin cos
r x y

s x y

k k k

k k k

= ϕ − ϕ

= ϕ + ϕ
  

where ϕ is the angle between the r axis and the x axis (see appendix 3). 
 
Shell membrane equations 
The shell membrane equations are shown in table 3. These equations describe the behaviour of 
thin shell structures, however, all moments have been neglected. Nonetheless, they are useful 
because for many shells the moments have little influence on their global behaviour. The shell 
equations that do include moments are called Sanders-Koiter equations (p. 54). 
  
In these notes only the equilibrium equations and the kinematic equations are derived. The 
constitutive equations are the same as for flat plates loaded in plane. For their derivations see a 
course on plates. 
 
Table 3. Shell membrane equations 
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Membrane forces in a spherical dome 
The forces in a spherical dome can be computed by maple using the shell membrane equations (p. 
38). The dome is loaded by self-weight p only. The result is shown in figure 52. For example, a 
dome with a radius a = 12 m and self-weight p = 2 kN/m² will give a hoop force in the bottom 
edge of  n = p a = 2 ×12 = 24 kN/m tension. 



39 
 

 
Figure 51. Curved coordinates on a spherical dome 
 
> restart: 
> kxx:=-1/a: kyy:=-1/a: kxy:=0: ax:=1: ay:=sin(u/a): 
> ky:=diff(ay,u)/ax/ay: kx:=diff(ax,v)/ay/ax: 
> px:=p*sin(u/a): py:=0: pz:=-p*cos(u/a): # p:=t*rho*g: 
> nxx:=f1(u): nyy:=f2(u): nxy:=0: 
> eq1:= kxx*nxx + kyy*nyy + 2*kxy*nxy + pz = 0: 
> eq2:= diff(nxx,u)/ax + diff(nxy,v)/ay + (nxx-nyy)*ky + 2*nxy*kx + px = 0: 
> eq3:= diff(nyy,v)/ay + diff(nxy,u)/ax + (nyy-nxx)*kx + 2*nxy*ky + py = 0: 
> dsolve({eq1,eq2}); 
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> # boudary condition nxx(0)=nyy(0)  
> f1:=-2*(p*cos(u/a)*a+_C1)/(-1+cos(2*u/a)): 
> f2:=1/2*(5*p*cos(u/a)*a+4*_C1-p*a*cos(3*u/a))/(-1+cos(2*u/a)): 
> solve(f1=f2,_C1): 
> _C1:=-p*a: 
>  
> nxx:= -p*a/(1+cos(u/a)):                  # meridional force, pressure line 
> nyy:= -p*a*( cos(u/a) - 1/(1+cos(u/a)) ): # hoop force 
> nxy:= 0: 
> p:=1:       # self-weight [kN/m2] 
> a:=10:      # radius [m] 
> um:=Pi/2*a: # maximum u value [m] 
> f:=-0.3:    # plot factor - 
> plot({[ a       *sin(u/a), a       *cos(u/a),u=-um..um], 
        [(a+f*nxx)*sin(u/a),(a+f*nxx)*cos(u/a),u=-um..um], 
        [(a+f*nyy)*sin(u/a),(a+f*nyy)*cos(u/a),u=-um..um]},   
color=[black,red,green],thickness=[3,1,1]); 
 
 
 

 
 
Figure 52. Membrane forces in a spherical dome 
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Derivation of membrane equation 1 
An imaginary fibre in the x direction will elongate with xdu (fig. 53). Strain is elongation over 
length, therefore, 
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The imaginary fibre will shorten due to zu (fig. 53). The new fibre length is angle times radius 
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The imaginary fibre will elongate due to displacement yu (fig. 53). The fibre strain is  
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Q.E.D.  
 
Shell membrane equation 2 can be derived in the same way. 
 

 
 
Figure 53. Deformation in the x direction;    in the z direction;          in the y direction 
 
Derivation of membrane equation 3 
The first two terms of equation 3 are the same as for plates (fig. 54). 
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,1γ = + yx
xy

dudu
dy dx

 

 

 
Figure 54. Deformation in the x and y direction 
 
Since zu is perpendicular to the surface a uniform zu causes shear in the panel (fig. 55). 
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Figure 55. Deformation due to displacement in the z direction 
 
In a curved coordinate system a uniform deformation xu  produces a shear strain (fig. 56). 
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Figure 56. Shear deformation due to uniform x displacement in a curved coordinate system 
 
Duomo di Firenze 
The cathedral of Firenze (Florence, Italy) has a dome with a span of 44 m (fig. 57). The builder of 
the dome was Filippo Brunelleschi. As far as we know he had only two examples, the Pantheon 
(p. 14) and the Hagia Sophia. The Pantheon has a span of 43.4 m and is made of concrete. 
However, it had been built 1500 years before and the recipe for making concrete had been 
forgotten. The Hagia Sophia has a span of 31 m and is made of brick. However, it has large 
buttresses which the people of Firenze thought were ugly. Brunelleschi made a brick design with 
an inner and an outer shell (fig. 58). Construction of the dome started in 1420 and took 16 years. 
Many historians see this dome as the end of the middle ages and the start of the renaissance.3 
 

  
 
Figure 57. Duomo di Firenze, Italy [11]  Figure 58. Cross-section of the dome [12] 

 
3 Time frame: In 1505 Leonardo da Vinci painted his Mona Lisa. 
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In the lower part of the dome the hoop forces are tension. This is carried by stone blocks 
connected by iron bars. Without this the dome would crack and collapse. Fortunately, the iron did 
not corrode away in the more than 570 years that the dome exists. Humidity in the masonry is 
carefully monitored. 
 
Saint Paul’s Cathedral 
Saint Paul’s cathedral in London was built from 1675 until 1711.4 The design has been made by 
Christopher Wren who also supervised construction (see cables and arches p. 5). The outside 
dome is made of timber (fig. 59, 60). The inside dome is made of bricks and has an oculus. In 
between is a third dome. This dome is cone shaped and made of bricks. It carries the stone lantern 
and supports the outside dome. Note that the pressure line (p. 6) in the domes and the cathedral 
walls is very clear. This designer knew exactly what he was doing. The dome spans 
approximately 35 m. 
Under the dome is the famous whispering gallery. When you are at this gallery and whisper 
something it can be clearly heard by someone on the other side of the gallery. This is because 
sound waves are guided along the curved wall of the gallery. Clapping your hands produces no 
less than four echoes. The name “whispering gallery” is now generally used for this acoustical 
effect in physics. 
 

  
 
Figure 59. Dome of Saint Paul’s cathedral [13] Figure 60. Cross-section of the cathedral [14] 

 
4 Time frame: In 1684 Isaac Newton discovered the laws of motion, with which we calculate trajectories of 
objects on earth and in space. In 1765 James Watt invented the steam engine with condenser, which marks 
the start of the industrial revolution. When you visit Saint Paul’s Cathedral you can literally touch the 
civilization that produced these big steps in human development. As a consequence we speak English today. 
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Derivation of membrane equation 7 
Figure 61 left top shows a small shell part with only normal force xxn . Three forces act on this 
shell part. Equilibrium in the x direction gives  

1 1 1
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This can be simplified to 1 0xx
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n k n p
x

∂
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∂
. 

 
Figure 61 left bottom shows a small shell part with only normal force yyn . Three forces act on 
this shell part too. Equilibrium in the x direction gives 
 

2 1 0x yyp dxdy n dx− ϑ =  
 
This can be simplified to 2 0y yy xk n p− + = . 
 
 

 
 

 
 
Figure 61. Equilibrium of a curved plate part in the x direction 
 
Figure 61 right shows a small shell part with only shear force xyn . Four forces act on this shell 
part. Equilibrium in the x direction gives 
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Substitution in 1 2 3x x x xp p p p= + +  gives 
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Q.E.D. 
 
Shell membrane equation 8 can be derived in the same way. 
 
Derivation of membrane equation 9 
A shell part can be curved in the x direction (fig. 62). It needs to be in equilibrium in the z 
direction. This is described by Barlow’s formula (p. 8). 
 

1
1 0xx z
xx

n p
k

+ = . 

 
A shell part that is curved in the y direction gives a similar equilibrium equation 
 

2
1 0yy z
yy

n p
k

+ = . 

 
A shell part can also be twisted (fig. 63). Equilibrium in the z direction gives 
 

3 0xy xy
xy xy z

k dxdy k dxdy
n dy n dx p dx dy

dy dx
+ + = , 

 
which can be simplified to 
 

32 0xy xy zn k p+ =  
 
For a shell part that is curved in all three ways xxk , yyk and xyk the load zp is obtained by 
summation. 
 

1 2 3z z z zp p p p+ + =  
 
Substitution of the previous four equations gives 
 

2 0+ + + =xx xx yy yy xy xy zk n k n k n p  
 
Q.E.D. 
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Figure 62. Equilibrium of a curved shell part  Figure 63. Equilibrium of a twisted shell part 
 
Soap bubbles and soap films 
A free soap bubble is a sphere (fig. 64). When a bubble is attached to an object its shape is more 
difficult to describe. A step in the right direction is that for any bubble the mean curvature mk (p. 
24) is constant over the surface. This is proven here by applying shell membrane equation 9 (p. 
38). 
Soap has the properties of a liquid; there is no shear stress and the normal stress is the same in all 
directions. Therefore, 0xyn =  and xx yyn n n= = . Substitution in equation 1 gives 
 
1
2 ( )

2
+ = − z

xx yy
pk k
n

, 

 
which is by definition equal to mk . The air pressure in the bubble is a little larger than outside 
due to the stress in the soap membrane. The over pressure zp is the same everywhere in the 
bubble and the force n is the same everywhere in the membrane. Consequently, the mean 
curvature is everywhere the same. Q.E.D. 
 
A soap film in a wire loop is free to minimise its area (fig. 65). Therefore, it is called a minimal 
surface. It has equal air pressure on both sides. Therefore, zp = 0, consequently, mk = 0 
everywhere in the film. This property is often used in form finding (p. 16) of tent structures. 
 

   
Figure 64. Free soap bubble Figure 65. Soap film in a wire loop 
 
 
 

xxnxxn
z

,1zp

dx

1

xxk

z

yx

,3zp

xyk dx dy
dy dx

xyn dx
xyn dy
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Beam calculation of a simply supported tube 
Consider a simply supported beam with an evenly distributed load (fig. 66). The cross-section of 
the beam is circular (fig. 67). The load is self-weight p [kN/m²]. 
In a handbook we find the moment of inertia 3= πI a t . 
From figure 67 we derive the distributed line load 2= πq a p [kN/m]. 

Elementary mechanics gives us the moment in the middle 21
8=M ql , 

the stress at the bottom σ =
M a

I
, 

and the deflection in the middle 
4

5
384

qlw
EI

= . 

Substitution in the last two equations gives 
2

4
σ =

pl
at

 and 
4

5
192 2

plw
a E t

= . 

 
Figure 66. Simply supported beam  Figure 67. Cross-section of the beam 
 
Shell calculation of a simply supported tube 
Consider the simply supported beam (fig. 66). The coordinate system is shown in figure 68. We 
see that 

10, , 0, 1, 1= = − = α = α =xx yy xy x yk k k
a

 

0, sin , cosx y z
v vp p p p p
a a

= = = − . 

 
At both ends 1

2u l=  and 1
2u l= −  the tube is closed by a thin diaphragm. This diaphragm can 

carry membrane forces without buckling but it cannot carry bending moments. The middles of the 
diaphragms are fixed. 
 
The boundary conditions are 

1
2u l=  0=zu  1 

0=yu  2 

0=xxn  3 
0u =  0=xu  4 

0=xyn  5 

 

t

a

l

q
p
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Most boundary conditions are obvious. Only boundary condition 5 is explained (fig. 69). The 
shell and the loading are symmetrical. Symmetry and equilibrium have opposite requirements for 
the directions of the stresses at u = 0. Therefore, the only possible stress is zero stress. 
 

 
Figure 68. Local coordinate system of the tube 
 
 

 
Figure 69. Shear stresses in the middle section due to symmetry (left) and equilibrium (right) 
 
Shell calculation of the stresses 
In this section the stresses in the tube are calculated using the shell membrane equations (p. 38). 

Equation 9 simplifies to cos 0yyn vp
a a

− − =  from which we solve cosyy
vn p a
a

= − . 

Equation 8 simplifies to sin sin 0xynv vp p
a x a

∂
+ + =

∂
 from which we solve 12 sinxy

vn pu C
a

= − + . 

Boundary condition (0, ) 0xyn v =  gives 1 0=C . 

Equation 7 simplifies to 2 cos 0 0xxn pu v
x a a

∂
− + =

∂
 from which we solve

2
2cosxx

pu vn C
a a

= + . 

Boundary condition 1
2( , ) 0xxn l v =  gives

21
2

2
( )

cos
p l vC

a a
= − . 

For steel tubes the Von Mises stress (p. 101) in the middle bottom ( , ) (0, )u v a= π is important. 
2 2 23= − + +VM xx xx yy yy xyn n n n n n  

Using σ = VM
VM

n
t

, this can be evaluated to 
2 2 4

max 2 41 4 16
4

σ = − +VM
pl a a

at l l
. 

 
We see that for long tubes ( )>>l a the shell result is the same as the beam result (see beam 
calculation p. 47). For a short tube of 6=l a  the shell result is 5% smaller than the beam result. 

xynxyn

z

v
u

xxn
xyn

yyn

l

a

zuyu

xu

z
v

a p

yp− zp
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Exercise: What is the stress in the top of the beam?  
 
Statically determinate 
In the previous section, the stresses everywhere in the tube are calculated using the equilibrium 
equations only. Therefore, the tube is a statically determinate structure. This is typical for shell 
structures: 
 
If the support is statically determinate, than the membrane stresses are statically determinate.5 
 
 
Tube shear stress 
The shear force V in the tube cross-section is (fig. 70) 
 

2

0

sin 2
a

xy
v

vV n dy a pu
a

π

=

= = − π∫ . 

 
The largest shear stress in the tube cross-sections is  
 

1
2

max
( , ) 2xyn u a pu

t t

π −
τ = = . 

 
Expressed in shear force V and cross-section area A it becomes 

8 
 

max 1
2

τ =
V

A
. 

 
Shell calculation of the tube deformation 
In this section the deformation of a simply supported tube is calculated using the shell membrane 
equations (p. 38). The solutions of xxn , yyn  and xyn  are substituted in equations 4, 5 and 6. 

Equation 1 simplifies to ( )2 2 21
4 cos xup vu l a

a E t a x
∂

− + ν =
∂

 from which we solve 

( )2 2 21 1
33 4 cosx

pu vu u l a C
a E t a

= − + ν + . 

Boundary condition 4 gives 3 0=C . 

Equation 3 simplifies to ( ) ( )2 2 21 1
2 3 4

4 1 sin sin yupu v pu vu l a
E t a a xa E t

∂
− + ν = − − + ν +

∂
 from which 

we solve ( )
2

2 2 21 1 1
42 12 2 8(4 3 ) siny

pu vu u a l C
aa E t

= − + ν − +  

Boundary condition 2 gives 
2

2 2 25 1
4 2 192 2

3 sin
8

pl vC l a a
aa E t

 = + + ν 
 

. 

 
5 Statically determinate is a model property. A more advanced model of the same structure can be statically 
indetermined. 
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Eq. 2 simplifies to ( ) ( )
2

2 2 2 2 2 21 1 1 1
4 3 12 2 8cos (4 3 ) cosp v pu vu a l u a l

a E t a aa E t
−ν − + ν = − + ν − +   

2
2 2 25 1

3 192 2
3 cos
8

zupl vl a a
a aa E t

 + + + ν + 
 

 from which we solve  

( )4 2 2 2 2 2 4 451 1 1
2 12 8 8 192(4 )(4 ) cosz
p vu u a u l u l a l

aa E t
= − + − + ν + − −  

The deflection of the middle bottom ( , ) (0, )u v a= π is important. 
 

4 2 4
max 2 2 4

5 4
192 8

 ν + = + +
 
 

z
p l a au

a E t l l
 

 
For long tubes ( )>>l a the shell result is the same as the beam result (see beam calculation of a 
simply supported tube p. 47). The second term is caused by shear deformation. The last term is 
caused by ovalization of the cross-section. For a tube of 20=l a  the shell result is 5% larger than 
the beam result. For a short tube of 6=l a  the shell result is 61% larger than the beam result. 
 
Bernoulli's hypothesis 
Jacob Bernoulli’s hypothesis is: Plane cross-sections remain plane during bending.6 It is the 
starting point for deriving section moments in beams, plates and shells. We can test this 
hypothesis for tubes using the shell solution.7 The deformation in the x direction is 
 

( )2 2 21 1
3 4 cosx

pu vu u l a
a E t a

= − + ν . 

 
This can be written as 
 

=xu C d , 
 

where ( )2 2 21 1
2 3 4
puC u l a

a E t
= − + ν  and cos vd a

a
= . 

 
Factor d is the distance of the considered material point to the neutral axis. It is a function of v. 
Please note the difference between ν (Poisson’s ratio) and v (curvilinear coordinate). Factor C is 
not a function of v and it depends on the considered cross-section. Therefore, xu is linear in d and 
Bernoulli’s hypothesis is true for tubular sections despite the presence of shear forces. For tubular 
sections it should be called Bernoulli’s theorem.8 

 
6 Jacob Bernoulli (1654-1705) was a professor of mathematics at the University of Basel in Switzerland. 
 
7 Note that in this section Bernoulli’s hypothesis is applied to a beam with a thin-wall circular cross-section. 
Here, it is not applied to the thin shell wall. 
 
8 For other cross-section shapes Bernoulli’s hypothesis is not true due to shear and torsion deformation. 
Fortunately, the linear distribution of normal stresses due to bending – which follows from Bernoulli’s 
hypothesis – is true for all cross-sections of slender beams. 
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Shear stiffness 
Shear stiffness is defined as 
 

=
γs
VGA , 

 
where V is the shear force and γ is the shear deformation of a slice of a beam (fig. 70). For the 
considered tube we obtain 
 

2

0

sin 2
a

xy
v

vV n dy a pu
a

π

=

= = − π∫  

1
2

( , ) ( ,0) 4 (1 )( , )
2

y x xu u u a u u puu a
x a E t

∂ π − − + ν
γ = π + =

∂
 

1 1
2 2

2 24 (1 ) 2(1 )
V a pu E at GApu

E t

− π
= = π =

− + νγ + ν
 

So, 
 

1
2=sGA GA .9 

 
Figure 70. Shear deformation of a tube slice. Bernoulli’s hypothesis (p. 50) has not been used.  
 
 
 
 
 
 

 
9 For thick wall tubes the shear stiffness is 31

2 4( )s
tGA GA
a

= +  and the largest shear stress is 

max (2 )t V
a A

τ = + . This has been derived from finite element analysis using volume elements [15]. 

( ,0)xu u

( , )xu u aπ
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Gap 
Boundary condition 1 has not been used. Here it is checked if this boundary condition is fulfilled. 
The displacement in the radial direction is 
 

( )4 2 2 2 2 2 4 451 1 1
2 12 8 8 192(4 )(4 ) cosz
p vu u a u l u l a l

aa E t
= − + − + ν + − −  

At 1
2u l= ±  this simplifies to 

2
cosz

a p vu
E t a

−
=  which is not zero. 

 
Therefore, boundary condition 1 is not fulfilled. There is a gap between the diaphragm and the 
shell (fig. 71). To close the gap the shell needs to bend. This deformation is not part of the 
membrane equations. To fulfil all boundary conditions the membrane equations need to be 
extended with bending (see Sanders-Koiter equations p. 54). The phenomenon of strong bending 
close to edges is called edge disturbance (p. 14, p. 71). It is typical for thin shell structures. 
 

 
Figure 71. Boundary condition 1 is not fulfilled 
 
Monocoque 
The first airplane structures were a frame of wood or steel covered with a skin of cotton fabric. In 
1912 a racing plane was built with a skin of three glued layers of wood veneer in total 4 mm thick 
(fig. 72, 73). This skin was also the load bearing structure, so a frame was not applied. The 
French company that build these planes was founded by Armand Deperdussin.10 The plane was 
called the Deperdussin monocoque (Pronounce mo-no-cock without emphasis. Monos is alone in 
Greek; coquille is shell in French) [Wikipedia]. To us it looks like a normal plane but in those 
days its shape was different from any other plane, for example, it had one set of main wings 
instead of two above each other. The plane won several races and set the world speed record. 
Ever since, the word monocoque is used for structures that are fast and derive a large part of their 
strength from their skin. Examples are racing cars, rockets and army tanks. 
 

 
10 Armand Deperdussin (1860–1924) was a French business man [Wikipedia]. 
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Figure 72. Deperdussin monocoque airplane [photo 1913 Musée de l’Air et de l’Space, Paris] 
 
 

 
Figure 73. Fuselage of the Deperdussin monocoque 
[photo G. Printamp 1912, Smithsonian’s National Air and Space Museum, Washington] 
 
Structural models overview 
In scientific literature often the following names are used for structural idealisations. 
 
structural element name deformation included 
beams Euler-Bernoulli beam bending  
 Timoshenko beam bending and shear 
plates loaded in plane Navier equations extension 
plates loaded  Kirchhoff plate bending 
perpendicularly to 
their plane 

Reissner-Mindlin plate (p. 61) bending and shear 
Von Kármán-Föppl equations extension, bending and  

large displacements 
shells Shell membrane equations (p. 38) extension 
 Sanders-Koiter equations (p. 54) extension and bending 
 several theories extension, bending and shear 
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Shell theory 
In 1888 Augustus Love11 formulated the basic equations that govern the behaviour of thin elastic 
shells [18, 19]. He used Jacob Bernoulli’s12 hypothesis, which was also used by Gustav Kirchhoff 
13 in formulating the plate theory. In the years that followed there was much discussion on this 
shell theory. Some inconsistencies were found. Many scientists proposed other equations, such as 
Wilhelm Flügge14 (1934) [20], Ralph Byrne15 (1944) [21], Eric Reissner16 (1952) [22] and Paul 
Naghdi17 (1957) [23]. Also Love himself proposed improved equations [24]. Lyell Sanders18 was 
the first to remove all inconsistencies from Love’s first equations [25]. Independently, Warner 
Koiter19 proved that Love’s initial assumptions were correct after all and he also derived the 
correct shell equations [26, 27]. In 1959 there was a conference in the aula of Delft University 
where Sanders presented the correct shell equations and Koiter presented the correct shell 
equations. One of Koiter’s papers on the subject has the clear title “All you need is Love.” [28]. 
 
Love’s first equations are called the first approximation theory. Including improvements they are 
referred to as the Sanders-Koiter equations (p. 54). Other theories account for out-of-plane shear 
deformation and are called higher-order approximation theory. They are intended for thick shells 
(p. 13). 
 
Before 1959, equations were developed for specific shell shapes. For example, equations for 
cylindrical shells were proposed by Lloyd Donnell20 (1934) [29] and Leslie Morley21 (1959) [30]. 
 
Sanders-Koiter equations 
The following 21 equations describe membrane action and bending action in thin shell structures. 
Equation 18 is derived below (p. 66). The other equations are not derived in these notes but they 
can be obtained in the same way. The derivation of Sanders and that of Koiter can be found in 
literature [25] and [26, 27] respectively. The derivation of Koiter is based on tensor analysis and 
is most rigorous. The equations are valid for elastic material behaviour and small displacements. 
They correctly predict no stresses for rigid translations. The equations do not change when the 
local coordinate system is rotated around the z axis. The equations correctly produce symmetrical 
stiffness matrices (Betti’s reciprocal theorem). The Sanders-Koiter equations include the 
equations for plates. In other words, with appropriate values for xxk , yyk , xyk , αx , α y the 
Sanders-Koiter equations simplify to the equations for plates loaded in plane, plates loaded 
perpendicular to their plane (Kirchhoff theory), circular plates and the shell membrane equations 

 
11 Augustus Love (1863–1940) was a mathematician and professor in Oxford [Wikipedia]. 
12 Jacob Bernoulli (1654–1705) was a professor of mathematics in Bazel [Wikipedia]. 
13 Gustav Kirchhoff (1824–1887) was a German physicist and professor in Berlin, Breslau and Heidelberg. 
He is also well-known in physics for discoveries such as Kirchhoff’s laws on electrical current [Wikipedia]. 
14 Wilhelm Flügge (1904–1990) was professor of civil engineering in Göttingen. After the second world 
war he and his wife moved to the USA and became professors in Stanford [Wikipedia]. 
15 Ralph Byrne (1912–1948) was associate professor of applied mechanics in Caltech, Pasadena. [31,32] 
16 Eric Reissner (1913–1996) was professor of applied mechanics in MIT and San Diego. His father, Hans 
Reißner (1874–1967) was an aircraft engineer and professor in Aachen and Berlin. The family moved from 
Berlin to the Illinois just before the second world war [Wikipedia]. 
17 Paul Naghdi (1924–1994) was born in Tehran. He studied in the USA and became professor of 
mechanical engineering in Berkeley [Wikipedia]. 
18 Lyell Sanders (1924–1998) was professor of structural mechanics in Harvard [German Wikipedia]. 
19 Warner Koiter (1914–1997) was professor of applied mechanics in Delft [Wikipedia]. 
20 Lloyd Donnell (1895–1997) was professor of mechanical engineering in Illinois [Wikipedia]. 
21 Leslie Morley (1924–2011) was a scientist in the Royal Aircraft Establishment and a professor in Brunel 
University, London [Wikipedia]. 
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(p. 38). This is clearly a remarkable achievement of the 20th century scientists. The Sanders-
Koiter equations are a scientific masterpiece. 22 
 
Table 4. Sanders-Koiter equations 
kinematic 
equations 

x
xx xx z x y

u
k u k u

x
∂

ε = − +
∂

 
1 

y
yy yy z y x

u
k u k u

y
∂

ε = − +
∂

 
2 

2yx
xy xy z x x y y

uu k u k u k u
y x

∂∂
γ = + − − −

∂ ∂
 

3 

z
x xx x xy y

u k u k u
x

∂
ϕ = − − −

∂
 

4 

z
y yy y xy x

u k u k u
y

∂
ϕ = − − −

∂
 

5 

1
2 ( )yx

z x x y y
uu k u k u

y x
∂∂

ϕ = − + − +
∂ ∂

 
6 

x
xx xy z x yk k

x
∂ϕ

κ = − ϕ + ϕ
∂

 
7 

y
yy xy z y xk k

y
∂ϕ

κ = + ϕ + ϕ
∂

 
8 

( )yx
xy xx yy z x x y yk k k k

y x
∂ϕ∂ϕ

ρ = + + − ϕ − ϕ − ϕ
∂ ∂

 
9 

constitutive 
equations 2 ( )

1
xx xx yy

E tn = ε + νε
− ν

 
10 

2 ( )
1

yy yy xx
E tn = ε + νε
− ν

 
11 

2 2(1 )
+

= γ
+ ν

xy yx
xy

n n E t  
12 

3

2 ( )
12(1 )

xx xx yy
E tm = κ + νκ

− ν
 

13 

3

2 ( )
12(1 )

yy yy xx
E tm = κ + νκ

− ν
 

14 

 
22 The following dates provide a time frame. In 1822, Claude-Louis Navier formulated the Navier-Stokes 
equations which describe the behaviour of fluids [Wikipedia]. In 1850, Gustav Kirchhoff completed the 
differential equation that describes the behaviour of plates [Wikipedia]. In 1865, James Clerk-Maxwell 
unified many laws into Maxwell’s equations that describe electric and magnetic fields [Wikipedia]. In 1916, 
Albert Einstein found the Einstein field equations describing the structure of the universe [Wikipedia]. In 
1925 and 1926, Werner Heisenberg, Max Born and Pascual Jordan found the Heisenberg equation of 
quantum mechanics describing materials on a very small scale [Wikipedia]. 
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3

24(1 )xy xy
E tm = ρ

+ ν
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xyxx
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∂ ∂
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( ) ( )− = − − + −xy yx xy xx yy xx yy xyn n k m m k k m  18 

( ) ( )
∂∂

= − − − − − + + +
∂ ∂

yxxx
x y xx yy x xy yx xx x xy y
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( ) ( )
∂ ∂

= − − − − − + + +
∂ ∂

yy xy
y x yy xx y xy yx yy y xy x

n n
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20 

( )
∂∂

= − − + − − − − −
∂ ∂

yx
z xx xx xy xy yx yy yy y x x y

vvp k n k n n k n k v k v
x y

 
21 

 
Ping pong ball 
Consider a sphere that is deformed into an ellipsoid (fig. 74). Think of a ping pong ball that is 
squeezed by your hand. The code below shows the evaluation of the Sanders-Koiter equations (p. 

56) by Maple. The deformation 2cosz
uu b
a

= , 20.49 sinx
uu b
a

=  has been obtained by trial and 

error to minimize the load xp . The code produces figure 75. Displacement yu and distributed 

force yp are zero and xp is almost zero. Only zp is needed to obtain this deformation. 
 

 
Figure 74. Deformation of a spherical ping pong ball into a prolate ellipsoid shape 
 
> a:=20: t:=0.4: E:=1400: nu:=0.3: b:=1: 
> kxx:=-1/a: kyy:=-1/a: kxy:=0: alphax:=1: alphay:=sin(u/a): 
> ux:=-0.49*b*sin(2*u/a): uy:=0: uz:=b*cos(2*u/a): 
>  
> ky:=diff(alphay,u)/alphay/alphax: kx:=diff(alphax,v)/alphax/alphay: 
> epsilonxx:=diff(ux,u)/alphax-kxx*uz+kx*uy: 
> epsilonyy:=diff(uy,v)/alphay-kyy*uz+ky*ux: 
> gammaxy:=diff(ux,v)/alphay+diff(uy,u)/alphax-2*kxy*uz-kx*ux-ky*uy: 
> phix:=-diff(uz,u)/alphax-kxx*ux-kxy*uy: 
> phiy:=-diff(uz,v)/alphay-kyy*uy-kxy*ux: 
> phiz:=1/2*(-diff(ux,v)/alphay+diff(uy,u)/alphax-kx*ux+ky*uy): 
> kappaxx:=diff(phix,u)/alphax-kxy*phiz+kx*phiy: 
> kappayy:=diff(phiy,v)/alphay+kxy*phiz+ky*phix: 
> rhoxy:=diff(phix,v)/alphay+diff(phiy,u)/alphax+(kxx-kyy)*phiz-kx*phix-ky*phiy: 

zu
u

xu
a

z
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> nxx:=E*t/(1-nu^2)*(epsilonxx+nu*epsilonyy): 
> nyy:=E*t/(1-nu^2)*(epsilonyy+nu*epsilonxx): 
> nxym:=E*t/(2*(1+nu))*gammaxy: 
> mxx:=E*t^3/(12*(1-nu^2))*(kappaxx+nu*kappayy): 
> myy:=E*t^3/(12*(1-nu^2))*(kappayy+nu*kappaxx): 
> mxy:=E*t^3/(24*(1+nu))*rhoxy: 
> vx:=diff(mxx,u)/alphax+diff(mxy,v)/alphay+ky*(mxx-myy)+2*kx*mxy: 
> vy:=diff(myy,v)/alphay+diff(mxy,u)/alphax+kx*(myy-mxx)+2*ky*mxy: 
> tmp:=kxy*(mxx-myy)-(kxx-kyy)*mxy: 
> nxy:=nxym-tmp/2: 
> nyx:=nxym+tmp/2: 
> px:=-(diff(nxx,u)/alphax+diff(nyx,v)/alphay+ky*(nxx-nyy)+kx*(nxy+nyx)-kxx*vx-kxy*vy): 
> py:=-(diff(nyy,v)/alphay+diff(nxy,u)/alphax+kx*(nyy-nxx)+ky*(nxy+nyx)-kyy*vy-kxy*vx): 
> pz:=-(kxx*nxx+kxy*(nxy+nyx)+kyy*nyy+diff(vx,u)/alphax+diff(vy,v)/alphay+ky*vx+kx*vy): 
>  
> plot({ux,uy,uz,px/1.5,py/1.5,pz/1.5},u=0..Pi*a-1); 
 

 
Figure 75. Loading zp and deformation xu , zu of a ping pong ball computed by Maple 
 
Compatibility equation 
Sanders-Koiter equations 1 to 9 (p. 54) can be combined resulting in the following equation. 
 

2 22

2 2
∂ γ ∂ ε∂ ε

− + − = − κ + ρ − κ
∂ ∂∂ ∂

xy yyxx
yy xx xy xy xx yyk k k

x yy x
 

 
In the derivation is used that xk , yk and Gk are small (appendix 4.). This equation shows that the 
strains of the middle surface are connected to the bending deformation. So, we cannot randomly 
choose functions for the strains εxx , γxy , εyy and randomly choose functions for bending 

curvatures κxx , ρxy , κyy and expect this could happen in a specific shell with 

curvatures xxk , xyk , yyk . Therefore, this equation is called the compatibility equation. See Shell 
behaving like a plate (p. 114). 
 
Rigid translation 
The Sanders-Koiter equations (p. 54) are accurate for small displacements. However, for large 
rigid translations they are accurate too. For example, consider a reinforced concrete industrial 
chimney with a height of 70 m, a radius a = 2.6 m and a wall thickness t = 0.1 m. During a storm 
the chimney top moves b = 1.0 m which is not exceptional for a chimney of this height. 
 
A rigid translation of the whole chimney (fig. 76) can be described exactly by the displacements  

zp

zu xu

u
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0, cos , sinx y z
v vu u b u b
a a

= = =  . 

 
Obviously, this translation should not produce strains. 
 

 
Figure 76. Rigid translation of a cylinder cross-section 

From the chimney geometry it follows that 10, , 0, 1, 1= = − = α = α =xx yy xy x yk k k
a

. 

Substitution of these in the kinematic equations 1 to 9 gives 
 

0, 0, 0, 0, 0, 0ε = ε = γ = κ = κ = ρ =xx yy xy xx yy xy , 
 
which is the correct result. Consequently, the large deflection of the chimney top can be described 
by the Sanders-Koiter equations. 
 
Exercise: Large rigid rotations do produce unrealistic strains and stresses. Check the Sanders-
Koiter equations for this. 
 
Shell differential equations 
When the Sanders-Koiter equations (p. 54) are substituted into each other, the following two 
coupled partial differential equations are obtained (assuming 0= =x yp p  and xv , yv ,  

xy yxn n−  are small ). 

 
3

2 2
212(1 )

−Γφ + ∇ ∇ =
− ν

z z
E t u p  

and 
 

2 2 0∇ ∇ φ + Γ =zE t u , 
 
where, 

2 2 2

2 2
(.) (.) (.)(.) 2∂ ∂ ∂

Γ = − +
∂ ∂∂ ∂

xx xy yyk k k
x yy x

, 

2 2
2

2 2
(.) (.)(.) ∂ ∂

∇ = +
∂ ∂x y

. 

b

zu
z

v
yu

yu

zua
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φ is the Airy stress function,23 which is related to the membrane forces 
2

2
∂ φ

=
∂

xxn
y

, 
2

2
∂ φ

=
∂

yyn
x

, 
2

xy yxn n
x y

∂ φ
= = −

∂ ∂
. 

 
Differential equation type 
Linear partial differential equations of the second order are subdivided in three types; elliptic, 
parabolic and hyperbolic [Wikipedia]. Physicists use this to predict the nature of the solution and 
select a solution method. The membrane part of the shell differential equations (p. 58) is 
 
−Γφ = zp  
 
In a well-designed thin shell, this part dominates the behaviour. It can be shown that the type of 
this differential equation depends on the Gaussian curvature Gk  (p. 23). 
 

0 elliptic, the solution is local
0 parabolic, the solution extends along one straight line
0 hyperbolic, the solution extends along two straight lines,

which are called 

G

G

G

k
k
k

characteristics

> ⇒

= ⇒

< ⇒
 

 
Shallow shell differential equation 
For cylinders and spheres xxk , yyk , xyk are uniform. This reduces the shell differential equations 
(p. 58) to  
 

3
2 2 2 2 2 2

212(1 )
∇ ∇ ∇ ∇ + ΓΓ = ∇ ∇

− ν
z z z

E t u E t u p . 

 
This is a linear eight order partial differential equation in curvilinear coordinates u and v (p. 31). 
 
A shallow shell is a shell with a sagitta (p. 1) that is small compared to its span. For such shells 
the curvatures do not change much over the surface and the above differential equation can be a 
good approximation. 
 
Plate boundary conditions 
In general, the solution to an eight order partial differential equation has 8 constants in the u 
direction and 8 constants in the v direction. The constants can be solved by 4 boundary conditions 
on each edge. Figure 77 shows the boundary conditions of a canopy that is fixed on one edge. 
Note that there are too many boundary conditions. So, some boundary conditions cannot be 
fulfilled. 
 
This problem also occurs in plates. It was solved by Gustav Kirchhoff 3 in 1850 [34]. He derived 
the correct boundary conditions of plates from virtual work. Others interpreted his solution as that 
the stresses due to the torsion moment xym go round in the edge (fig. 78-1). Therefore, xym on the 
edge needs be replaced by a concentrated shear force V in the edge (fig. 78-2). 

xym dx Vdx= ⇒ xyV m=  

 
23 George Airy (1801–1892) was an astronomy professor in Cambridge, England [Wikipedia] 
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 Figure 77. Boundary conditions of a canopy 
 
 

 
 
Figure 78. Forces on an edge part 
 
 
 
 

 
Figure 79. Boundary conditions according to Kirchhoff (plates) 
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From equilibrium of a somewhat larger edge part (fig. 78-3) it follows that 
 

( ) ( ) 0z y x x xp dxdy v dx v dv dy V dV V v dy− + + − + + − = . 
 
This can be simplified to 
 

0x
z y

dv dVp dy v dy
dx dx

− + − = . 

When 0dy ↓  then 0y
dVv
dx

− − =  which can be written as 

 

y
Vv
x

∂
= −

∂
. 

 
Now we have 4 boundary conditions per edge and the differential equation can be solved (fig. 79). 
 
Thus, according to Kirchhoff, xym need not be zero on a plate or shell edge in the x or y direction. 
Also xv need not be zero on an edge in the y direction, and yv need not be zero on an edge in the x 
direction. Clearly, in reality they are zero. 
 

We need to interpret xym on an edge as a concentrated shear force V in the edge. 
 

We need to interpret v on an edge as a change in the concentrated shear force V. 
 
However, the plate boundary conditions are not entirely correct for shells (see shell boundary 
conditions p. 67). 
 
Exercise: In plates xym = 0  in a fixed edge along the x or y direction. In shells this can be 
observed too, however, there are exceptions. Can we show this with the Sanders-Koiter equations? 
 
Reissner-Mindlin plate theory24 
It is possible to come up with a new shell theory that does not have interpretation problems of the 
boundary conditions? In fact, the Reissner-Mindlin theory [34] for thick plates predicts xym , xv  
and yv on edges realistically without interpretations (fig. 77). However, to compute these values 
accurately we need to use very small finite elements on the edges. For example, when a plate is 
180 mm thick we need to use finite elements that are less than 20 mm wide. This is impractical 
due to large computation time and therefore almost never applied. A practical element for a 180 
mm plate is more than 250 mm wide. For this mesh xym will not be zero on the edges also not 
when the Reissner-Mindlin theory is used. Therefore, also in the Reissner-Mindlin theory we 
need to interpret the torsion moment on an edge as a concentrated shear force in the edge. 
 

 
24 The name of this theory refers to Eric Reissner and Raymond Mindlin. Eric Reissner (1913–1996) was a 
professor of applied mechanics at MIT and the University of California San Diego [Wikipedia]. Raymond 
Mindlin (1906–1987) was a professor of applied science at Columbia University, USA [Wikipedia]. From 
our point of view they were very skilled in mathematics. They had to be because they did not have 
computers. 
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Edge shear stresses 
The shear stress in a plate edge or shell edge is 25  
 

2
3 3 10
2 2

x
xz

v V
t t

σ = − . 

 
The formula is valid when the local x axis points in the direction of the edge and the local y axis 
points outwards (fig. 80). Unfortunately, finite element programs using shell elements do not 
compute this stress. If important, we need to calculate and check this stress by hand. 
 
The concentrated shear force produces a local stress peak. In many structures a local stress peak is 
not important because the stress will redistribute (steel yields, reinforced concrete cracks). 
However, a stress peak is important for materials that do not yield such as glass. A stress peak is 
also important for fatigue. 
 

 
Figure 80. Shear stresses in a free shell edge 

 
Reinforced concrete plate edges 
In reinforced concrete plates it is common practice to put hairpins in the edges (fig. 81). A hairpin 
is a reinforcing bar that is bend in the shape of a U. The hairpins have the same diameter and 
spacing as the bars perpendicular to the edge. There is a good reason for these hairpins. They 
carry the concentrated shear force (fig. 82). 

 
25 In 2010, Johan Blaauwendraad (professor of structural mechanics at Delft University) used Reissner’s 
plate theory (p. 61) to derive the stresses in plate edges. He showed that the shear stress distribution is 
exponential and the factor of the peak stress is 3

2 10  [34]. In 2013, Rutger Zwennis (at that time a student 

at Delft University) modelled a plate loaded in torsion using volume finite elements [35]. He showed that 
the peak stress due to V includes the factor 4.48 instead of 3

2 10 = 4.74. Who is right? The Reissner plate 

theory is not exact because Reissner made several assumptions in the derivation. The finite element 
analyses is not exact either because the number of elements is restricted. In these notes the safe choice of 
3
2 10 has been made. Future computers will be able to determine the factor very accurately. 

y

x

z

xzσ

3
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xv
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  Figure 81. Reinforcement in a               Figure 82. Strut-and-tie model of a 
  cross-section of a concrete plate edge               reinforced concrete plate edge 
 
Edges that are not in the x or y direction 
If an edge is not in the x direction or y direction, the shear force xv and the torsion moment 

xym need to be transformed to the edge direction. For this we need to rotate the local coordinate 
systems of the edge finite elements such that one of the axes is in the direction of the edge. The 
obtained concentrated shear force on a free or simply supported edge can be easily checked 

because it is equal to 2
xy xx yyV m m m= ± − , where xym , xxm and yym are the moments before 

rotation. 
 
Proof: Plate moments are a tensor (p. 97). 1m and 2m are the principal values (p. 98). The 

product 1 2m m is an invariant (p. 23) of this tensor. Therefore, 2
1 2 xx yy xym m m m m= − = 

2
ss tt stm m m− . Suppose that the s axis is perpendicular to the shell edge. Since the edge is free or 

simply supported 0=ssm . Therefore, 2 2 2
xx yy xy stm m m m V− = − = − . Q.E.D. 

 
Palazzetto dello sport [36] 
The palazzetto dello sport was built for the 1960 summer Olympics in Rome (fig. 1). It hosted 
basketball. Nowadays, it is a sports and community centre. 
The buttresses are made of prefab concrete. The shell and ribs are made of reinforced concrete 
that was cast in situ. The formwork of the shell consisted of 1620 cassettes supported by steel 
tube scaffolding. The cassettes were made of 25 mm thick ferrocement (fig. 83). Ferrocement is a 
thin layer of mortar with a steel wire mesh inside. 
 
Construction sequence of the dome Completed 
- Placing the buttresses 
- Building the scaffolding for the cassettes. The scaffolding included 
circular rings made of curved rails of an old railway track. These rings 
were horizontally elevated onto temporary columns of steel tubes. 

 

- Building a timber template of a large part of the shell internal surface 
- Drawing the grid onto the template 

August 1956 

- Fabrication of moulds for the cassettes. First, onto the timber template 
the inside shape of one cassette was made of bricks and plaster (fig. 84). 
Second, a cassette was made onto this inside shape. Third, this cassette 
was moved down and several moulds were made of this cassette. Etc. 
- Prefabrication of  30 cassettes a day 
- Placing the cassettes onto the scaffolding (fig. 85, 86 ) 

December 1956 

hairpin

plate edge

plate edge

V

V

strut (concrete)
tie (hairpin)
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- Placing reinforcing bars in and on the cassettes 
- Pouring concrete (fig. 87) 

 
February 1957   

 
 
architect:  Annibale Vitellozzi (1903-1990) 
engineer:  Pier Luigi Nervi (1891-1979) 
contractor:  Bartoli 
 
Computer analyses were not performed. Structural calculations were done by hand and checked 
by scale model tests. 
 
 

 
Figure 83. Cross-section of the shell and ribs Figure 84. Mould fabrication 
 
 
 

 
Figure 85. A cassette [37] 
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Figure 86. Scaffolding and cassettes [38] 
 

 
Figure 87. Construction site during concrete pouring [39] 
 

≠xy yxn n  
Sanders and Koiter independently derived that for shells ≠xy yxn n . This is a very strange result 
because shear stresses on perpendicular faces of an infinitesimal cube have the same 
magnitude xy yxσ = σ (fig. 88). If the shear stresses are the same, the shear membrane forces must 
be the same. Nevertheless, Sanders and Koiter are right. This strange results follows from 
moment equilibrium around the z axis of an elementary shell part (see derivation of equation 18 p. 
66). It can also be seen in the definition of membrane forces for thick shells in appendix 7. 
 
Finite element programs plot the mean membrane shear force 1

2 ( )+xy yxn n . It would be 

interesting to plot the quantity 1
)2 ( −xy yxn n  too, however, finite element programs do not have 

this option. It can be shown that 1
)2 ( −xy yxn n  does not change when the local coordinate system 
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rotates around the z axis (it is an invariant). When 1
)2 ( −xy yxn n  is large compared 

to 1
2 ( )+xy yxn n then the shell is very thick and should be modelled by volume elements instead of 

shell elements (see shell thickness p. 13). 
 

 
Figure 88. Shear stresses on a small cube        Figure 89. In plane shear forces on a shell part 
 

Challenge: The tensor 
 
 
  

xx xy

yx yy

n n

n n
 is not symmetrical. Are the principal directions perpendicular? 

In what situation are the principal values complex numbers? 
 
Derivation of equation 18 
In this note the eighteenth Sanders-Koiter equation (p. 54) is derived. Consider moment 
equilibrium of a small shell part around the z axis (fig. 90). When the part is only twisted, the 
bending moments can produce a resulting moment around the z axis. 
 

1z xx xy yy xyM m dy k dx m dx k dy= −   
 
When the part is curved but not twisted the torsion moment can produce a resulting moment 
around the z axis. 
 

2z xy yy xy xxM m dx k dy m dy k dx= −  
 
The in plane shear forces can also produce a moment around the z axis. 
 

3z xy yxM n dy dx n dx dy= −  

 
The total moment around the z axis must be zero. 
 

1 2 3 0z z zM M M+ + =  
 
This evaluates to 
 

( ) ( ) 0− − − + − =xy xx yy xx yy xy xy yxk m m k k m n n . 
 
Q.E.D. 

xyσ

yxσ

xy yxσ = σ

xy yxn n≠

z

x

y
yxn

xyn
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Figure 90. Moment equilibrium around the z axis 
 
Shell boundary conditions 
The plate boundary conditions (p. 59) are not completely correct for shells. A shell edge has 3 
displacements and 1 rotation. If a value is imposed to one of these a support reaction occurs. 
Table 5 shows the formulas for computing the support reactions. They are derived from 
equilibrium of small edge parts (fig. 91 and 92). The table is valid for an edge in the x direction 
and the y axis pointing outwards. Clearly, instead of imposing a displacement, a distributed edge 
load can be applied. The table can also be used for formulating these boundary conditions. 
 
 

 
Figure 91. Equilibrium of a shell edge loaded by a distributed shear force xq  
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Figure 92. Equilibrium of a shell edge loaded by a distributed normal force yq    
 
Table 5. Boundary conditions for an edge in the x direction and the y axis pointing outwards 
             Kinematic (K)                               Dynamic (D)   
Impose displacement xu   or apply line load x yx xxq n k V= − . 1 

 
Impose displacement yu   or apply line load y yy xyq n k V= − . 2 

Impose displacement zu   or apply line load z y
Vq v
x

∂
= +

∂
. 

 
3 

Impose rotation           y−ϕ   or apply line moment yym− . 4 

 
Table 6. Boundary conditions for an edge in the x direction and the y axis pointing inwards 
Impose displacement xu   or apply line load x yx xxq n k V= − + . 5 

Impose displacement yu   or apply line load y yy xyq n k V= − + . 6 

Impose displacement zu   or apply line load z y
Vq v
x

∂
= − −

∂
. 

 
7 

Impose rotation           y−ϕ   or apply line moment yym . 8 

 
Table 7. Boundary conditions for an edge in the y direction and the x axis pointing outwards 
Impose displacement xu   or apply line load   x xx xyq n k V= − . 9 

Impose displacement yu   or apply line load   y xy yyq n k V= − . 10 

Impose displacement zu   or apply line load   z x
Vq v
y

∂
= +

∂
. 

 
11 

Impose rotation              xϕ   or apply line moment   xxm . 12 
 
Table 8. Boundary conditions for an edge in the y direction and the x axis pointing inwards 
Impose displacement xu   or apply line load x xx xyq n k V= − + . 13 

Impose displacement yu   or apply line load y xy yyq n k V= − + . 14 

Impose displacement zu   or apply line load z x
Vq v
y

∂
= − −

∂
. 

 
15 

Impose rotation              xϕ   or apply line moment xxm− . 16 

V

V

yq

0y xy yyq dx V k dx n dx+ − =
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Exercise: Proof that xym = 0 in a free corner. 
 
Canopy example, shell boundary conditions 

The canopy in figure 93 has curvatures 10,= = = −xx xy yyk k k
a

. Substitution of these curvatures 

in the shell boundary conditions (p. 67) gives the canopy boundary conditions. 
 

 
Figure 93. Shell boundary conditions of the canopy 
 
Diaphragm boundary condition 
A tube is often closed by a thin wall, called diaphragm (fig. 94). The diaphragm can be bend 
easily out of its plane but it resists deformation in its plane. Therefore, the diaphragm prevents 
displacement of the tube edge perpendicular to the tube. It also prevents displacement of the tube 
edge in the direction of the edge. The other displacements are free. This is called a diaphragm 
boundary condition. It is often applied in shell analysis. (Examples on p. 47 and p. 163) 
 
 

 
Figure 94. The diaphragm boundary condition can replace a diaphragm. 
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Edge in the y direction 
xx xyn k V− = 0 

yu = 0 

zu = 0 

xxm = 0 

Edge in the x direction 
xu = 0 

yy xyn k V− = 0 

zu = 0 

yym = 0 

 
Overview of the shell variables 
The table below gives an overview of the variables in the Sanders-Koiter equations (p. 54). The 
variables that need solving are green. They are called dependent variables. Note that there are 21 
dependent variables and 21 Sanders-Koiter equations. Boundary conditions (p. 67) are imposed 
on the red edges. 
 
material, thickness E   ν   t 

 
curvature 
 

             
Lamé parameters 
 

       
in plane curvature 
of the parameter 
lines 
        
displacement 
 

             
strain of the middle 
surface 
 

             
slope 
 

             
deformation 
curvature 
 

             
membrane force 
 

                   
u

v yxn

u

v xyn

u

v yyn

u

v xxn

u

v xyρ

u

v yyκ

u

v xxκ

u

v zϕ

u

v yϕ

u

v xϕ

u

v xyγ

u

v yyε

u

v xxε

u

v zu

u

v yu

u

v xu

u

v yk

u

v xk

u

v yα

u

v xα

u

v xyk

u

v yyk

u

v xxk

2K

2D

1K
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3K
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5K
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6D
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10K 11K
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13K

13D

14K

14D
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moment 
 

             
shear force, 
out of plane 
 

        
load 
 

             
 
Generalised edge disturbance 
An edge disturbance is a large moment at a discontinuity in a shell. This moment is local and  at 
some distance of the discontinuity it is much smaller. Examples of discontinuities are 
 
- Fixed edge or pinned edge 
- Point load or line load 
- Discontinuity in the distributed load 
- Discontinuity in the derivative of the distributed load 
- Discontinuity in the middle surface 
- Discontinuity in the slope of the middle surface (C0 continuity p. 11) 
- Discontinuity in the curvature of the middle surface (C1 continuity) 
- Change in sign of the Gaussian curvature (p. 23, see differential equation type p. 59) 
- Discontinuity in the material stiffness 
- Discontinuity in the shell thickness 
 
Exercise: Which of the above discontinuities occur in a torus? 
 
Beam supported by springs 
A long beam is supported by uniformly distributed springs (fig. 95). The bending stiffness of the 
beam is EI [Nm²]. The stiffness of the distributed springs is k [N/m²]. The differential equation 
that describes this beam is 
 

4

4 0d wEI k w
dx

+ = . 

 
At the left beam end a displacement is imposed and the slope is zero. The right beam end is far 
away. The boundary conditions are 
 

0if 0 then and 0

if then 0 and 0

wx w w
x
wx w
x

∂
= = =

∂
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→ ∞ = =
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Figure 95. Beam supported by distributed springs and loaded by an imposed displacement 0w  
 
The solution is 
 

0 (sin cos )exp
i i i

x x xw w
l l l
π π −π

= + , 

where 

42i
EIl
k

= π  

 
is the halve wave length. 

Figure 96 shows displacement w, moment
2

2
wM EI

x
∂

= −
∂

and shear force MV
x

∂
=

∂
. 

 
Figure 96. Displacement w, moment M and shear force V in the beam 
 
Exercise: Suppose that the beam end is not fixed but pinned. What is the ratio of the pinned 
largest moment and the fixed largest moment? 
 
Exercise: Suppose that the imposed displacement is removed, the left beam end is fixed and a 
uniformly distributed load q is applied to the beam. What changes to the differential equation, 
boundary conditions and solution? 
 
 

0
(cos sin )exp

i i i

M x x x
l l lw k EI
π π −π

= −

0
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i i i

w x x x
w l l l
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Influence length 
In figure 96 we see that the peak values occur at the left beam end. At some distance from the end 
the values are much smaller. At a distance ix l= , all values are a bit smaller than 5% of the peak 
values (ignoring the signs). This distance is called the influence length. The influence length 
happens to be the same as the halve wave length il .  
 
Exercise: What is the exact value of “a bit smaller than 5%” ? 
 
Influence length of a cylinder edge 
Consider a circular cylinder (fig. 97). 
 

10 0 1 1xx yy xy x yk k k
a
−

= = = α = α =  

 
An axial symmetric displacement is described by 
 

( ) 0 ( ) 0x y z zu w u du u u w u p
a
ν

= − = = =∫  

 
Please note the difference between ν (Poisson’s ratio) and v (curvilinear coordinate). Surface load 
is not applied 0zp = . These 9 equations have been substituted in the Sanders-Koiter equations (p. 
54). The result is (see derivation in appendix 5) 
 

3 4

2 4 2 0
12(1 )

Et d w Et w
du a

+ =
− ν

 

 
This is the same differential equation as that of a beam supported by springs (p. 71). Apparently 
we can make the following interpretation. 

3

2 212(1 )
Et EtEI k

a
= =

− ν
 

 
Using the analogy, the influence length of a cylinder edge is 
 

4
24

2
3(1 )

i
EIl a t
k

π
= π =

− ν
  2.4il a t≈  

 
Figure 97. Cylinder parameterisation and dimensions 
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Exercise: Apparently, a shell can be sometimes interpreted as a beam supported by uniformly 
distributed springs. Which shell part is the beam and which shell part are the springs? 
 
Influence lengths of all shells 
Figure 98 gives influence lengths of edges of elementary shells. In more complicated shells the 
influence length of edge disturbances (p. 14, 71) can be estimated by comparing to the elementary 
shell shapes. 
 

 

 

 
 
Figure 98. Influence lengths of elementary shell shapes [40] 
 
Finite element mesh 
The influence length can be used to choose a finite element mesh (p. 11, 84). If we use elements 
that approximate a solution linearly we need at least 6 elements in a length il  in order to obtain 
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solutions with some accuracy (fig. 99). This provides a rule for the finite element length 
perpendicular to a shell discontinuity. Clearly, smaller elements will improve the accuracy. 
 

 
 
Figure 99. Piece-wise linear approximation of a solution 
 
Exercise: For plates the recommended element size is 2t. Suppose that a shell needs elements this 
size. What is the a/t ratio of this shell? Is this a thin or a thick shell? Do thinner shells need 
smaller or larger elements than 2t ? 
 
Boiler drums 
Cylindrical boiler drums are made to contain pressurised water. The connection between the 
cylinder and a cap is an edge disturbance (p. 71). This edge disturbance can be analysed manually 
due to the axial symmetry in geometry and loading [40]. Figure 100 and 101 show results for 
different cap shapes. Figure 100 shows C1 continuity (p. 11). Figure 101 shows C0 continuity. The 
displayed membrane stresses are in the hoop direction. The displayed moments are in the 
meridional direction. In figure 100 the stress due to the maximum moment is approximately 30% 
of the stress due to the membrane force in the same direction. In figure 101 the stress due to the 
maximum moment is approximately 11 times the stress due to the membrane force in the same 
direction. Consequently, the drum in figure 101 is likely to yield when pressurised. This does not 
result in failure because the membrane forces continue to carry the load. For repeated loading 
fatigue will be a problem. Therefore, drum caps as in figure 101 are rarely applied. 
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Figure 100. Membrane forces and moments in a hemispherical drum cap (v = 1/3 and a / t = 100) 
[40 p. 175] 

 
 
 
Figure 101. Membrane forces and moments in a shallow drum cap (v = 1/3, a / t = 100 and oφ = 
p / 4) [40 p. 182] 
 
Saturn V 
The rocket that brought people to the moon and back was called Saturn V (pronounce Saturn five). 
More than 20 Saturn Vs were built between 1965 and 1975. The parts were made by American 
aircraft companies. The Douglas Aircraft Company made an important part called S-IVB 
(pronounce S4B). It consisted of 8 shells and an engine (figs 99, 100). Note that the wall of the 
fuel tank is also the wall of the rocket. NASA made a rough design of S-IVB and specified the 
loads. The loads included an acceleration of 5 m/s2, a fuel pressure of 6 bar and a fuel temperature 
of -253 oC. The engineers of Douglas designed the details and did a lot of testing [41, 42]. In the 
process they came up with orthogrid and isogrid (p. …). 
 
Exercise: The Saturn V rockets were not reusable. The cost of each launch was 185 106 dollar 
[Wikipedia]. Suppose that all costs in the end are labour cost. Suppose that all people make 
approximately the same hourly salary. What percentage of the USA population was working to 
launch Saturn Vs? 
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Figure 102. The S-IVB part of the Saturn V [Wikipedia] 
 

 
 
Figure 103. Shell components of S-IVB [41] 
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Appendix 4. Compatibility equation 
 
In this appendix the shell compatibility equation (p. 57) is checked. 
 
> ux:=  c1 +   c2*u +   c3*v +   c4*u^2 +   c5*u*v +   c6*v^2 +   c7*u^3 +   c8*u^2*v +   c9*u*v^2 + c10*v^3: 
> uy:=c11 + c12*u + c13*v + c14*u^2 + c15*u*v + c16*v^2 + c17*u^3 + c18*u^2*v + c19*u*v^2 + c20*v^3: 
> uz:=c21 + c22*u + c23*v + c24*u^2 + c25*u*v + c26*v^2 + c27*u^3 + c28*u^2*v + c29*u*v^2 + c30*v^3: 
> epsilonxx:=diff(ux,u)/alphax-kxx*uz+kx*uy: 
> epsilonyy:=diff(uy,v)/alphay-kyy*uz+ky*ux: 
> gammaxy:=diff(ux,v)/alphay+diff(uy,u)/alphax-2*kxy*uz-kx*ux-ky*uy: 
> phix:=-diff(uz,u)/alphax-kxx*ux-kxy*uy: 
> phiy:=-diff(uz,v)/alphay-kyy*uy-kxy*ux: 
> phiz:=1/2*(-diff(ux,v)/alphay+diff(uy,u)/alphax-kx*ux+ky*uy): 
> kappaxx:=diff(phix,u)/alphax-kxy*phiz+kx*phiy: 
> kappayy:=diff(phiy,v)/alphay+kxy*phiz+ky*phix: 
> rhoxy:=diff(phix,v)/alphay+diff(phiy,u)/alphax+(kxx-kyy)*phiz-kx*phix-ky*phiy: 
> l:=-diff(epsilonxx,v,v)/alphay^2 + diff(gammaxy,u,v)/alphax/alphay - diff(epsilonyy,u,u)/alphax^2: 
> r:=-kyy*kappaxx + kxy*rhoxy - kxx*kappayy: 
> u:=0: v:=0: kx:=0: ky:=0: kxx:=kxy^2/kyy: 
> simplify(l-r); 

0 
 
Q.E.D. 



81 
 

Appendix 5. Cylinder equation 
 
In this appendix the shell cylinder equation (p. 73) is derived. 
 
> ux:=-nu/a*int(w(u),u): uy:=0: uz:=w(u): 
> pz:=0: 
> kxx:=0: kyy:=-1/a: kxy:=0: alphax:=1: alphay:=1: 
> ky:=diff(alphay,u)/alphay/alphax: kx:=diff(alphax,v)/alphax/alphay: 
> epsilonxx:=diff(ux,u)/alphax-kxx*uz+kx*uy: 
> epsilonyy:=diff(uy,v)/alphay-kyy*uz+ky*ux: 
> gammaxy:=diff(ux,v)/alphay+diff(uy,xs)/alphax-2*kxy*uz-kx*ux-ky*uy: 
> phix:=-diff(uz,u)/alphax-kxx*ux-kxy*uy: 
> phiy:=-diff(uz,v)/alphay-kyy*uy-kxy*ux: 
> phiz:=1/2*(-diff(ux,v)/alphay+diff(uy,u)/alphax-kx*ux+ky*uy): 
> kappaxx:=diff(phix,u)/alphax-kxy*phiz+kx*phiy: 
> kappayy:=diff(phiy,v)/alphay+kxy*phiz+ky*phix: 
> rhoxy:=diff(phix,v)/alphay+diff(phiy,u)/alphax+(kxx-kyy)*phiz-kx*phix-ky*phiy: 
> nxx:=E*h/(1-nu^2)*(epsilonxx+nu*epsilonyy): 
> nyy:=E*h/(1-nu^2)*(epsilonyy+nu*epsilonxx): 
> nxym:=E*h/(2*(1+nu))*gammaxy: 
> mxx:=E*h^3/(12*(1-nu^2))*(kappaxx+nu*kappayy): 
> myy:=E*h^3/(12*(1-nu^2))*(kappayy+nu*kappaxx): 
> mxy:=E*h^3/(24*(1+nu))*rhoxy: 
> vx:=diff(mxx,u)/alphax+diff(mxy,v)/alphay+ky*(mxx-myy)+2*kx*mxy: 
> vy:=diff(myy,v)/alphay+diff(mxy,u)/alphax+kx*(myy-mxx)+2*ky*mxy: 
> nz:=(kxy*(mxx-myy)-(kxx-kyy)*mxy)/2: 
> nxy:=nxym-nz: 
> nyx:=nxym+nz: 
> px:=-(diff(nxx,u)/alphax+diff(nyx,v)/alphay+ky*(nxx-nyy)+kx*(nxy+nyx)-kxx*vx-kxy*vy): 
> py:=-(diff(nyy,v)/alphay+diff(nxy,u)/alphax+kx*(nyy-nxx)+ky*(nxy+nyx)-kyy*vy-kxy*vx): 
> pz:=-(kxx*nxx+kxy*(nxy+nyx)+kyy*nyy+diff(vx,u)/alphax+diff(vy,v)/alphay+ky*vx+kx*vy): 
> simplify(px); 
                               0 
> simplify(py); 
                               0 
> collect(simplify(pz),w(u)); 
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