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Symbols

G oo radius of curvature [m]

ay,a,03,04,05,06 ............ gradients of a tensor field

L dimensions [m]

C o knock down factor [ - |

Ao imperfection amplitude [m]

7 diameter of distributed point load [m]

E oo Young’s modulus [N/mm?]

Sy e yield strength [N/mm?]

Si e natural frequency [Hz]

B, finite element size [m]

kG oo Gaussian curvature [1/m?]

K e mean curvature [ 1/m]

ky, Ky oo, in plane curvature of parameter lines [1/m]

ke Ky by oo curvature tensor [1/m]

Lo span [m]

My s My s Mgy o moment tensor [KNm/m]

Py s My s By s M e membrane force tensor [kN/m]

Pl e critical membrane force [kN/m] often determined by a linear
buckling analysis of a shell without imperfections

B ooeenmnnniiiniiis plastic membrane force [kN/m] calculated by hand from
crushing or yielding of a cross-section

L membrane force [kN/m] just before a shell collapses
often determined by a nonlinear finite element analysis

PxsPys Dzeeveeeeneeeieeannn, distributed load [kN/m?]

) concentrated load [kN]

Axs Gy Qg ooeeeenmnnnnnenenenee distributed edge load or support reaction [kN/m]

8 e e sagitta [m]

b shell thickness [m]

b o time [s]

R curvilinear coordinates [m or - |

Un s Uyl coeeeiiiieee displacements [m]

2 concentrated shear force in a shell edge [kN]

Vi s Vy enrniinnnii, out of plane shear forces [kN/m]

D local Cartesian coordinates [m]

X oV 0Z e global Cartesian coordinates [m]

Oy s Oy vennneniiiiiiis Lam¢ parameters [ - or m]

B o reliability index [ - ]

| S P increase in Gaussian curvature due to load [1/m?]

O e invariants of the gradient of a tensor field

Exxr Eypr Yy woeeeeeeeeeeeeeeeenns strain tensor of the middle surface [ - ]

Koy s Ky Py eevevmmmmmnnnnnnnnn. curvature deformation tensor [1/m]



A e load factor [ - ]

Ay ovnemeneneii buckling load factor of a perfect shell structure [ - ]

Aplf +oveneneeeiii collapse load factor of an imperfect shell structure [ - ]
Ve Poisson’s ratio [ - ]

D e mass density [kg/m?]

Oxx»Oyys G250z, Oxz, Oy Stress tensor [N/mm’]

Qs Pys Pz rotation of a pin perpendicular to the middle surface [1/m]
D e Airy stress function [kKNm]

Ve Laplace operator (pronounce nabla squared)



Contents

N2 T 11 1
Radius/thiCKNESS ... et 1
(010151615 1S U 1
SUMIMATY ..ttt e e e et e et e e e et e e e et e e e e e e ns 3
Corbel ArCh .. ... 3
COTDEl dOME ...ttt 4
(T T 1y o) N 5 (1 4
Cables and arChes ........iuie i 5
Catenary or fUnICUIAr ... ..o e 5
PresSure [INE . ....oeiiiit et e 6
Middle third TUIE ..o 7
OptimMal AICh ... e 7
Barlow’s formula ... 8
Drafting SPINE ... .ouetiit i 9
BoSPLINE .o e 9
NU R B S . e 9
L0103 11570113 1 11
Z8DTA ANALYSIS ...ttt et e 11
Finite element mesh ..... ..o e 11
NURBS fInite €lemMENtS ....ouiuiieiititiit ettt et e e e eeieaeaaaans 11
Polygon MESHES ..o 11
Section forces and MOMENTS ........vuiriieietirt ettt et rr e ereereneeaanaes 12
Definition of membrane forces, moments and shear forces ..............coovviiviiiiiniinnn. 13
THICKNESS ..t 13
Shell force flOW ..ot e 13
Pantheon ..o 14
Edge diSturbance ..........coiiuiinii e 14
Compatibility MOMENt . ...t 15
Comparison of an arch and @a dome ..............oviiiiiiiiiii i e, 15
Plastic deformation in shell €dges ..........c.oiviiiiiiiiii e 16
Form finding ..o 16
Fully stressed dOme .......ovviieiiii e e 16
Approximation of the fully stressed dome .............ccoooviiiiiiiiiii e 17
Buckling of the fully stressed dome .............cooiiiiii i 17
Optimal dOME ... e 18
Global COOTAINALE SYSEIM ...uvutintieteet et et et ettt et et et et e e e e eneeneeneeneanannenees 19
Local coordinate SYStEIM . ... ....uuu ettt 19
LINE CUIVATUIE . ...eoeeit e e e 20
SUITACE CUTVATUTIE ...ttt e 20
Paraboloid .......oouini 21
PrincCipal CUIVATUIES ... ..ottt e e et et et e ae e e 22
SaVIl DUILAING ... eeeee e 22
GAUSSIAN CUTVATUIE .. t\vtntintete e etente e teaeeteetetea e et e teetenaeaea s anaenseneanseneeneaees 23
IMEAN CUIVATULE ...ttt ettt e ettt et e ettt et et et ettt e e e aaeaes 24
Orthogonal ParameteriSAtION .........o.eutirtintit ettt ettt et et et et et eeeeaeareanaas 25
CateNONd ...t e 26
TTaCtriCOId . ... et 26
D413y 0] ] 18 o) 4 P 27
SIllOZUE WaALET LOWET ...\ttt ittt ittt et ettt et et et e e et e e e et e et e e e e et eteeteerenrenaannss 27
Differential GEOmMEIIY ... ..ovuieiit i e 31
Curvilinear COOTrdinate SYSIEIM ........uvuuintentent et etete et et et et et eeeneaneeeanerennennas 31
Shell displacement and 10ad ............coiiiiiiiiiii e 32

Lame Parameters . ......eitiett ittt et e e 32



Equation of Gaull ... ..o e 33

D4 LTS Lo 0 () 01 4 7 35
Curved roofs With tIles ........ouiiei i 35
Equations 0f Codazzi ........c.ovuiiiiiiitii i e e e 36
HEICOIA ..o 36
IN Plane CUTVALUIE ......vieiti ettt et et et et et et et e e e eaeereaeees 37
Shell MEMDbIane EQUALIONS ........iutirtirtiet ettt ettt ettt et et ere et erereeeeeereareanenns 38
Membrane forces in a spherical dome ...........ccooeiiiiiiii i 38
Derivation of membrane equation 1 .............coouiiiiiiiiiiii e 40
Derivation of membrane equation 3 .............oouiiiiitiitiiii e 40
Duomo di FIr€NZe .......einii e 42
Saint Paul’s cathedral ......... ... 43
Derivation of membrane equation 7 ............oevitiitititiitiei it 44
Derivation of membrane equation 9 ............oiiiiiiiiiiiiiiii i 45
Soap bubbles and S0ap fIIMS ... ...coiiiiiiii e 46
Beam calculation of a simply supported tube ...........c.coooiiiiiiiiiii 47
Shell calculation of a simply supported tube ..............ooiiiiiiiiiiiiiii 47
Shell calculation Of the SIrESSES ... .uiuiieii e 48
Statically determinate ..........ooueueiein it e 49
TUDE SHEAT SEIESS ..ottt et e e e 49
Shell calculation of the tube deformation ..............c.cooviiiiiiiiiiiiiiii e 49
Bernoulli's hypothesis .......o.viiiiii e 50
Shear STNESS .. .uiii i e 51
L 51
1 107510 o0 T | 52
Structural Models OVEIVIEW .......oiiiii 55
1151 I TS ) 55
Sanders-Koiter @qUAatiONS ..........ceuiiuiitiitii it 56
Ping pong ball ... 57
Compatibility €QUALION ... ...etiet ittt e e e et 58
Rigid translation ..........o.oiuitiitii e e 58
Shell differential €qUATIONS .........oouieiitt e e e 59
Differential @quation tyPe ......vuiieintiet e 60
Shallow shell differential €qUAtION ...........couiiiiitiiti e 60
Plate boundary conditions ............coueiuiiiitiit i e 60
Reissner-Mindlin theory .........oooii i 62
Edge Shear StrESSeS .. .vutitit ittt e 63
Reinforced concrete plate €dges .........oveiieiiiiiii 63
Edges that are not in the x or y direction ...............cooiiiiiiiiiiiii i 64
Palazzetto dello SPOT ... ...ttt 64
o P 66
Derivation of equation 18 ..........oiiiiiii i e 67
Shell boundary CONAItioNS .........c.eitiiitiii i e ee e 68
Canopy example, shell boundary conditions ..............ccoeiviiiiiiiiiiiiiiiiiiieeannn. 70
Diaphragm boundary COndition ............coviiiiiiiitiii i 70
Overview of the shell variables ..., 71
Generalised edge disturbance ............o.ivriiiiiiiiiii i 72
Beam supported DY SPIINgS .....ovvieiiiiiiiit e 72
Influence length .........ooiiiii e 73
Influence length of a cylinder edge ..........coovviiiiiiii i e 73
Influence lengths of all Shells ..........cooiiiiiii e 74
Finite element mesh .........oooiii i 75
BOiler drums .......o.oui 76



Finite difference method .........oviiiiii e 79

Canopy example, finite difference SOIUtion ............ccooiiiiiiiiiii e, 80
Shell finite €leMENtS ........oiuie e 82
ELement aspect Tati0 .....c.uieeiiitiit it et e e et et e e e aaaaas 83
Mesh TefINEMENT ..ot 84
1Y o4 () B T 1o SN 84
Result @Xtrapolation ..........ouritit ittt ittt et ettt et e e e 84
Bohemian dome ....... ..o 85
Selecting the element tYPe ......vvneiii i 86
INtEEIation POINTS .. .\utiti ittt ittt ettt et et et et et et e e et et e e eteeeeeaeaneanans 86
Locking and hourglass mOdes ...........ooeiuiniiiiiii e 87
Finite element boundary conditions ..............ocoueiiiiiiiiiiii e 88
Canopy finite element boundary conditions ............c.oooviviiiiiiiiiiiiieeeeaeaan, 88
Canopy finite element analysis .........covuiiriiiiiiii e 89
SINGUIATIEIES .. ettt 92
The largest model that your PC can process ..........cocvuiieiiiiiiiiiiiiiiiiiiiiinieene, 93
MOOTE™S TAW ..ot 94
ATIRIMELIC ACCUTACY ...ttt ettt e e e et e e e e 94
Finite element benchmarks ... 94
Modelling thick Shells .........coiiiiiiiiii e e e, 95
AVETaZING At NOUCS ... uviieiitt ittt ettt et et ettt e et et et et et et et e e e e e e 96
Influence of coordinate system on the FEM results ..., 97
TOISOTS e ettt ettt e e e e e 97
Principal dir€CHIONS . ...uiei ittt ettt et ettt e e e 98
Principal ValUes ........ooniiii e 98
2111075 (S 98
Membrane forces around @ SQUATE OPENING ......vuveerereereenteeineaneaeaneaeaeanensennenes 98
EIIPSOIA ..ot 99
N8 (Tt S 100
V0N MISES SITESS .. eeneeete et ettt ettt e et e et et e et ettt e 101
PrinCIPal SEEESSES +.uvntit ittt ettt 101
Top and bottom face principal STrESSES ........evuitiitiiiit i, 102
Hypar CUrVaAtUIE ... ... e 102
Zeckendorf pPlaza .......o.oiiii e 102
Hypar membrane fOrCes ........oo.iiuiiiii 103
Checking membrane reinforcement .............o.oiuiiiiiii i 104
Designing membrane reinfOrCemMent ...........covvviriiriiriiriit et ieeeaeeieaieinaneannens 104
Timber grid shell design ...... ... 105
Particle-spring method ... 105
Spring back analysis .......o.eeuiieiii i e 106
Timber grid shell analysis ........c.ooviiiiiiii e 107
In-extensional deformation ............ .. i i 109
Liquid storage tanks ........ccouiiiitii e 111
Analysis of the liquid storage tank ...............cooiiriiiiiiiiii e 111
Rijswijk shell 1001 ... .o 112
Spotting inextensional deformation ..............covveiiiiiiiiii i s 112
Vibration Mode Shapes .........oiiiiiiiii e 112
8 80 1<) 4 L) 72 113
BN TET0) (S 0 T T (o a1 113
Shells behaving like a plate ..........o.oiiiiiiii e 114
N1 TS e S 1 | PPN 114
Plotting GauSSIan CUIVATUIE .. ....uiutietentetiteteetet et e e teeteeteeteateaneaereranrenns 115

Kresge AUAItOTIUN ....vueiet ittt et et ettt et et e e e e e eneeaenenas 115



Deitingen Petrol StALION .......iutiet ittt et et ettt e e e 116

GauB-Bonnet theOTem ... ....oiuitii i e 116
(703 107 1 o1t 117
FOICE 0N @ SPRETE ..\ttt e e 117
Force on a shell of positive Gaussian CUrvature ..............oeeveeveeriereeereeieeneeeaneann 118
FOrce on a CylNder .......oiuiiiii i 118
Force on a shell of negative Gaussian CUrVAtUIE .........c.evvirinrirririnrarereneeneeneansn 119
Moments dUe t0 @ TOTCE ... .ouini e 119
g B 0 ] 120
Gaussian curvature of Boats ...... ..o, 121
PreStIeSSING tEIES L.\ttt ittt ettt e ettt e e e 122
UMDILICS ..ot 123
UmbiIlical PAtLeINS . ....viee ettt ettt e ettt e ettt et 124
MONKEY SAAALE ... uuitit it e 125
Hypar €dge MOMENLS .....iuiieiitit ittt ettt et ettt e e e e eeteeereaneens 126
Berenplaat hypar ro0f ..ot e 126
Paaskerk hypar 100f ..o 127
Surprising fleXibIlity ......oriitii e 127
Parameterisation of a paraboloid in the principal curvature directions ........................ 128
SUAEN COLLAPSE .. veitiitiit ettt e ettt et e e 135
Tucker High SChool ..o e 135
Cylinder buckling shapes ..........o.oieiiiii e 136
Buckling of a beam supported by SPrings ........c.ovviiiiiiiiiiiiiiiiiiieie i, 137
Ring buckling of an axially compressed cylinder ..............cccooiiiiiiiiiiiiiiiiinnnns 138
Differential equation for shell buckling ............ ..o, 139
Buckling 10ad factor .........o.oiniii e 140
Design check of BUCKIINg .........cooiiiii i e 141
Catelan’s SUMTACE ......oiiii e 142
Imperfection SENSILIVITY «.....oiuiini it 142
EXPEIIMENL ... .etii e et e e e e 143
PUZZIE .. e 143
Exceptions to imperfection SENSItiVity ...........oeitiiitiiii e 144
KOOI S TaW ..t 144
Buckling of flat plates .......ooveriiiiiti e 145
Knock down factor ..o e 145
Linear buckling analysis ..........coiiuiiniiii i 146
T3 U0 o (510 o 146
Nonlinear finite element analysis ...........oooiiiiii i 146
MyStEry SOIVEA ... 147
Measuring shape IMPerfeCtions ...........o.evriirtirterirt ettt eeereneeeanens 147
SHITENETS ...t 149
001 149
Buckling, yielding or crushing? ...........cooiiiiiiiii e 152
Buckling curves for computational analysis .............ccoeiiiiiiiiiiiiiiii e 153
Hyperboloid .....o.viii e 155
L0622 74t 155
Forrybrid@e ..ot e e 155
MOdal ANALYSIS .. vvetiet ittt e e 156
Rigid body MOAEs .....viniiiiii i e 157
Equation of MOtION ......oiiuii e 157
WAVE TIUIMDETS ...ttt ettt e et et ettt neas 158
FeStOOMN ..o 159

ViIDration @XPEIIMENLS .. ...utiutint ittt et ettt et et ee et et et et et et aneereeeeeaneareaneaans 159



RESONANCE ... s 160

In-extensional deformation ............c..coviiiiniiii i e 160
HemiSPREres .....oiiiii e 160
Resonance of @ Wine glass ......c.ooouiiiiiiii i e 161
N0 115 (= S PSRN 161
L7250 876 3 161
MEMDIANE fOTCE ... .. ettt e 163
Shell vibration HEerature ..........c.oeiiii it et e e e 163
Natural frequency of a square shell ... 163
ENNeper’s SUITACE . ...oviieii e 164
MeEaSUIING VIDTATIONS . ....vititt ittt et ettt e e e e et e e e e et e e e e e e e e e e areneenaens 164
N0 1T 7 4 13 165
Fast Fourier transform ...........o.iieiiiii e 165
Sampling theOTeIM ... ...t e 166
Transient ANALYSIS .....uitiet ittt ettt e e et e aeaaas 166
Damping TatI0 . ...ueee e e 167
Damping ratio diStribUtiON .........o.oeiiiiiti i 167
F N8 721 o) (YA o) ¢ 15 10 4 T 168
SHEIl ACOUSTICS . .viintiitt ittt e et et e e e 168
DeSigN IMPIOVEIMENLS .. ...uetnt ettt et ettt et et et et et et e e et e e eaeaaeeans 169
Bausschinger effect ... ..o e 169
R 4 1< 169
Limit state fUNCHON ...t e 171
Approximation of the limit state function ...............cc.oiiiiiiiii i 171
Convexity of the HMit STAte ........oouiiii e 172
Monte Carlo aNalySis .......ovueiniinii i 172
Joint probability diStriDULION .........eietitit ittt et et e e ee e e aneaaans 173
Drawing a nUMDET ... e 175
0 ) 175
HUmMaan er10r ... 176
Annual failure probability ..........coiiiiiiii i 176
Personal Safety .......ooeii i, 176
HeomK .o 177
ECOnOmIC SAfEtY . .oviti it 178
173 21 181
Appendices

OptMAL ATCH ... . 191
L7010 =1 B[00 01 193
L0 E 772100 (71 1) S 196
MemDBIane fOTCE tRNSOT ... ...ttt ettt ettt e e e eeaans 197
ASYMMELTIC TENSOTS ..t uteettttententententent et et et et et et eneenteatenseseneensenseaseneeneenes 198
Compatibility EqUATION ......uiii it e e, 199
CylNder @QUALION . .vuiietitt ittt ettt et et ettt et et et et et e e e e e e e e areaaeas 200
Section forces and moments in thick shells ... 201
Stresses in thick shells ... 203
Increase of the Gaussian CUIVATUIE ........vviitiertetiit ettt ettt et eteeeeneaaeneenas 205
UMDbiIlICal PATLEINIS ...ttt ittt et ettt et et ettt et e e e e e e e e areaeaaas 206
Buckling equations .......c.oouiiiiiiii e 211
3D r@INFOICEMENL ...\ttt e ettt e et et et et e e ae e e 212

OIS OTS .t 214



Sagitta

The height of an arch is called the rise
or the sagitta (pronounce with emphasis
on “git”) (Latin for arrow). When the
sagitta s and the span / are known, we
can calculate the radius a of a circular
arch.

o-yenit AN TN I Ll

e e

N

For example the dome of the palazzetto
dello sport (fig. 1)(p. 64) has a span of
58.5 m, and sagitta of 20.9 m. The
radius is

2

a=&+ >8.3 =309m.
2 8x20.9
Radius/thickness

The palazzetto dello sport (p. 163) has
ribs which are 330 mm thick. The shell

between the ribs is 120 mm thick. Figure 1. Palazzetto dello sport in Rome
The ratio radius/thickness is [www.galinsky.com]
a_309_ 0.

t 0.12

When we include the ribs the ratio is

Table 1 shows this ratio for several shell structures. Clearly, a large ratio shows that little
material is used. For example, if your design has a ratio a / = 500, it is really efficient.

Objective

The objective of these notes is to predict the behaviour of shell structures. After completing
the course you can answer the following questions about your shell designs. Will it deflect too
much? Will it yield? Will it crack or break? Will it vibrate annoyingly? Will it buckle? Will it
be safe? What causes this and how can I improve it?



Exercise: Psychologists say that a person or animal needs an objective in order to determine
how to look at something. For example, when you are tired, a chair is a thing-to-sit-on and
when you need to replace a light bulb, a chair is a thing-to-stand-on. Rephrase the former

sentence using the words “engineer”,

% ¢¢

Table 1. Dimensions of shell structures

model”, “predict”.

structure location, year, | geometry dimensions radius a thickness # ratioa / t

architect
chicken egg 150 106 BC surface of 60 mm 20 mm 0.2-0.4 mm 100

revolution length minimum

Treasury of Mvuknveg surface of 145 m 16 m ~0.8m 20
Atreus Greece revolution diameter
(p.-4) 1100 BC
Pantheon Rome hemisphere 43.4m 21.7m 1.2m 18
(p. 14) 126 AD diameter at the top
Viking ship Tensberg ellipsoid part | 21.58 m long
Oseberg Norway 5.10 m wide
(p- 109) 820 AD
Duomo di Italy octagonal 44 m 22m
Firenze 1420 dome diameter
(p. 42) Brunelleschi
St. Paul’s London cone and 35m 1525 m
Cathedral 1675 hemisphere diameter
(p- 43) Wren
Jena Germany hemisphere 25m 12.5m 60 mm 200
planetarium 1925 diameter
[1] Bauersfeld
Algeciras Spain 1934 spherical cap | 47.6 m 441 m 90 mm 490
market hall Torroja on 8 supports | diameter
[1]
beer can 1935 cylinder 66 mm 33 mm 0.08 mm 410
(p. 143) diameter
Hibbing Minnesota ellipsoid of 457 m 47.24-5.33 900-150 mm 35-525
water filter 1939 revolution diameter m
plant [1] Tedesko
Brynmawr Brynmawr elpar on a 19.6x253m | 25.0-329m | 90 mm 300-400
rubber UK, 1947 rect. plan
factory [1] Arup
Kresge Cambridge segmentofa | 48.0m 33.0m 90 mm 370
Auditorium 1955 sphere on 3 between
(p. 115) Saarinen points supports
Kaneohe Hawaii intersection 39.0x39.0m | 39.0-78.0m | 76-178 mm 500-1000
Foodland [1] | 1957 of 2 torion4 | between

Bradshaw supports supports
Palazzetto Rome 1957 spherical cap | 58.5m 309 m 0.12 m shell 260 or 94
dello sport Nervi with ribs diameter 0.33 m ribs
(p. 63)
CNIT Paris 1957 intersection 219m 89.9-420.0 1.91-2.74 m 47-153
(p- 149) Esquilan of 3 cylinders | between m total

on 3 supports | supports 0.06-0.12m
outer layers

Zeckendorf Denver, USA | 4 hypars 40x34 m 40 m 76 mm 528
Plaza 1958 height 8.5 m
(p. 102) Tedesko
Ferrybridge Ferrybridge hyperboloid height 115m | 44 m 130 mm 350
cooling UK repaired
towers 1960 .. mm
(p. 155)
Paaskerk Amstelveen hypar on 2 25x25m 31m
(p. 127) 1963 points height 10.3 m

Van Asbeck
Tucker gym Henrico USA | 4 hypars 47x49 m 127 m 90 mm 1400
(p- 135) 1965 height 4.6 m

Hanson




Deitingen Switserland segment ofa | span 31.6 m 52m 90 mm 580
petrol station | 1968 sphere on 3 height 11.5 m
(p. 116) Isler points
Saturn V Houston USA | cylinders and | height [11m | 5m
(p- 76) 1965-1975 stiffeners
oil tanker ~1970 all curvatures | length 300 m 20 mm
(p. 146) with width 30 m
stiffeners
Savill Windsor UK freeform length 98 m 143 m 300 mm 41
building 2005 width 24 m
(p.22) Howells
Sillogue Dublin surface of height 39 m 248 m 786 mm 32
water tower 2007 revolution top diameter
(p.27) Collins 38m
Summary

Shell structures display four phenomena that are different from other structures. These
phenomena are listed below. An engineer working with shell structures needs to understand

these.

e Arches are thick because pressure lines (p. 6) need go through the middle third (p. 7).
Shells are thin because hoop forces (p. 13) push and pull the pressure lines into the
middle third.

e Large moments occur in supported edges. This is called edge disturbance (p. 14, 71).
It happens because the deformed shell needs to connect to the undeformed support.

e Shells with special curvatures and particular supports behave like flat plates. This is
called inextensional deformation (p. 109)

o Small shape imperfections often cause a large reduction of the buckling load. This is
called imperfection sensitivity (p. 142).

Corbel arch

When piling blocks we can shift each block a little compared to the previous one. In this way
we can make an arch without formwork (fig. 2). This arch is called a corbel arch. It can be
analysed best starting from the top. The top block needs to be supported below its centre of
gravity. Therefore, it can be shifted up to half its length c. The top two blocks need to be
supported in their centre of gravity too. Therefore, they can be shifted up to one-fourth of c.

The shifts produce a row of fractions

1
2

BENE

11
6’8

=, =... The shape of the arch is described by

Where b and ¢ are the block height and length. If x goes to infinity then y goes to infinity. So,
there is no theoretical restriction to the span that can be created in this way. However, for

large spans and small blocks the arch will become extremely high.

ce ¢
§6 4

C

2

Figure 2. Pile of shifted blocks




Corbel dome

The concept of a corbel arch (p. 3) can be used for building domes too. The following
program computes the coordinates x and y. In the derivation was used that the top block has a
small angle.

x:=0: y:=0: M:=0: A:=0:

for n from 1 to 100 do
M:=M+2/3%* ((y+a) *3-y*3):
A:=A+ (y+a) *2-y"2:
x:=n*b:
y:=M/A:

end do;

Treasury of Atreus

In ancient Greece was a civilisation called Mycenaean (pronounce my-se-nee-an with
emphasis on my). It flourished for 500 years until 1100 BC.! The Mycenaeans buried their
kings in corbel dome tombs (p. 4). Some still exist. One is called the treasury of Atreus (fig.
3, 4). It is located in the ancient city of Mukmveg (pronounce me-kee-ness with emphasis on
kee). It has a span of 14.5 m, a radius of curvature of 16 m and a thickness of approximately
0.8 m. Therefore, a /t = 20.

i

Figure 4. Structurehof the treasury of Atreus [gjclarthistory.blogspot.com]

! The following dates provide a time frame: Around 2560 BC the oldest of the three large pyramids
close to Cairo was build. In 753 BC the city of Rome was founded [Wikipedia].



Cables and arches

In 1664, Robert Hooke was curator of experiments of the Royal Society of London. He took
his job very seriously and every week he showed an interesting experiment to the members of
this society, which included Isaac Newton.? The members were enthusiastic about the
experiments and published scientific papers on them. Often they forgot to mention that it was
Hooke’s idea they had started with. He became rather tired of this, therefore, he kept some
discoveries to himself. He formulated them in Latin and published the mixed up letters [2].
One went like this.

When Hooke died in 1703, the executor of his will gave the solution to this anagram.
Ut pendet continuum flexile, sic stabit contiguum rigidum inversum.
which can be translated as,

As hangs a flexible cable, so inverted, stand the touching pieces of an arch.

Figure 5. Hooke’s discovery

Though not telling the world, it is likely that Hooke shared this discovery with his best friend
Christopher Wren, who designed St Paul’s Cathedral (p. 43) and supervised its construction
(1669-1708).

Catenary or funicular

A chain hanging between two points will adopt a shape that is called catenary (emphasise ca)
or funicular (emphasise ni) (fig. 6).

T
y= —(coshﬂ - coshq—lj
q T 2T

T is the horizontal support reaction and ¢ is the self-weight of the chain per unit length. This
shape is the solution to the differential equation

2 2
Td—zyzq 1+(d—y) ,
dx dx

and the boundary conditions

2 Robert Hooke (1635-1703) also encouraged Isaac Newton (1643-1727) to use his mathematical
expertise on the motions of the planets. Newton discovered his laws around 1684 [Wikipedia].



1
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Figure 6. Catenary, T/g=4m, [= 14 m

The chain length is
L= 2—Tsinh q’ .
q

Challenging exercise: In 1690, Jakob Bernoulli wrote the following question in the journal
Acta Eruditorum. What is the shape of a hanging chain? (Translated from Latin.) This
problem had not been solved before. He got the right answer from three people; Gottfried
Leibniz, Christiaan Huygens and his brother Johann Bernoulli [3]. (You can find these names
in your history book too.) If you can derive the chain differential equation and solve it, you
might be just as smart as they were.

Pressure line

In the analysis of an arch it is common to draw the pressure line for dead load. The procedure
is demonstrated in an example (fig. 7) for a uniformly distributed vertical load. We first
divide the distributed load into concentrated loads. Then we draw the loads head to tail in a
Magnitude plan. We select a pole O somewhere to the left of the loads. We draw the rays Oa
through Og (fig. 7, green lines). We proceed to draw the green curve in a Line of action plan.
For this we start at the left support and draw a line parallel to ray Oa until we cross the line of
action of force P;. Next we draw a line parallel to ray Ob and so forth. The position of the
pole O determines the shape of the pressure line. We make adjustments to the pole to design
the shape. When you have done this a few times, you know what adjustments to make.

An arch constructed to follow a pressure line will carry loads P1 through P6 in pure axial
compression. Often the pressure line is called funicular (p. 5). However, the shape is more
like a parabola. In fact, if we would divide the uniformly distributed load in an infinite
number of very small concentrated loads, the result would be a perfect parabola.
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Figure 7. Line of action plan Magnitude plan

Exercise: In figure 7, line Oa is a vector that represents a force. Lines Oa, Ob and P1 can be
rearranged into a parallelogram of forces. Draw this parallelogram of forces in the line of
action plan. Do you see that the magnitude plan is a clever rearrangement of all
parallelograms of forces in the line of action plan?

Exercise: In figure 7, suppose that =P, = .. = F;= 10 kN. What is the largest force in an
arch that follows the O" (purple) pressure line?

Middle third rule
There is no tensile stress in a rectangular cross-section, if the resulting force F is within the
middle third of the thickness (fig. 8). F' causes a normal force N = F and a moment M = F e,

where e is the eccentricity. There is no tension when e is smaller than%t . Since e is equal to

M / N there is no tension when —%t <—<-t, which is called the middle third rule.
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Figure 8. Stress distribution due to an eccentric normal force

Using the pressure line (p. 6) and the middle third rule we can design an arch which has no
tensile stresses.

Optimal arch

Suppose we want to build an arch with as little material as possible. The arch has a span / and
carries an evenly distributed line load ¢g. The sagitta of this optimal arch is about 40% of its
span. To be exact, the shape of this arch is a parabola with a ratio sagitta to span of V3to4
(fig. 9). The material volume of this arch is
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L

where f* is the material compressive strength. The abutment force (horizontal component of
the support reaction) is

Ry =%\/§ql ~0.29¢1

These results are mathematically exact, however, self-weight of the arch and buckling have
been neglected (See derivation in appendix 1).

REREERERRRRY

)
Figure 9. Optimal arch proportions

Barlow’s formula
A cylindrical shell with a radius @ [m] is loaded by a uniformly distributed force p [kN/m?]
(fig. 10). The normal force n [kN/m] in the shell wall is

n=pa.
This equation is called Barlow’s formula.? For the derivation we replace the load by
compressed water. Subsequently, we cut the shell and water in halves (fig. 11). In the cut the

water pressure is p and the shell forces are n. Vertical equilibrium gives n + n = p 2a, which
simplifieston=pa. Q.E.D.

AT 77
§ %‘ compressed water
= ]

p

2a %

Figure 10. Cylindrical shell loaded Figure 11. Derivation of Barlow’s
by an evenly distributed force formula

Exercise: Show that the normal force » [kKN/m] in a pressurised spherical shell is n = % pa.

3 Peter Barlow (1776-1862) was an English scientist interested in steam engine kettles [Wikipedia].



Drafting spline

A spline is a flexible strip of metal, wood or plastic. Designers use it for drawing curved lines
(fig. 12). For example when designing and building boats a spline is an indispensible tool.
The spline is fixed in position by weights. Traditionally, the weights have a whale shape and
they are made of lead. Often they are called ducks.

copper hook

lead duck

felt

spline

paper

Figure 12. Spline and ducks for drawing smooth lines
[Rain Noe, www.core77.com]

B-spline

In the earliest CAD programs we could draw straight lines only.* Every line had a begin point
and an end point. This was soon extended with poly lines (plines) which also had intermediate
points. It is faster to enter one pline instead of many lines. This was extended with splines. A
spline is a curved line that goes smoothly through a number of points (see drafting spline p.
9). The problem with mathematically produced splines is that often loops occur which is not
what we want (fig. 13). Therefore, a new line was introduced called basis spline (B-spline).

Its mathematical definition is a number of smooth curves that are added. A B-spline goes
through a begin point and an end point but it does not go through the intermediate points (fig.
13). The intermediate points are called control points. We can move these points on the
computer screen and the B-spline follows smoothly. It acts as attached to the control points by
invisible rubber bands.

NURBS

NURBS stands for Non Uniform Rational B-Spline. It is a mathematical way of defining
surfaces. It was developed in the sixties to model car bodies (fig. 14). NURBS surfaces are
generalizations of B-splines (p. 9). A NURBS surface is determined by an order, weighted
control points and knots. We can see it as a black box in which the just mentioned data is
input and any 3D point of the surface is output. Our software uses this black box to plot a
surface. NURBSes are always deformed squares. They are organised in square patches which
can be deformed and attached to each other (fig. 15). We can change the shape by moving the
control points on the computer screen.

4 The first version of AutoCAD was released in 1982. It run on the IBM Personal Computer which was
developed in 1981. The IBM Personal Computer was one of the first computers that ordinary people
could afford. It was priced at $1565 [Wikipedia]. Assuming 2.5% inflation, to date it would cost

1565x1.025(2023-1981) _ g 4415



/ line
/\/\- polyline (pline)

smooth pline (spline)
a spline gone wrong

basis spline (B-spline)

) 4/‘ control points

Figure 13. Types of line

Figure 14. Chrysler 1960 [www.carnut.com]

Figure 15. Faces made of NURBSes. The thin lines are NURBS edges. The thick lines are
patch edges. Control points are not shown. [www.maya.com]
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Continuity

Surfaces can be connected with different levels of continuity: Cy continuity means that the
surfaces are just connected, C; continuity means that also the tangents of the two surfaces at
the connection line are the same. It can be recognized as not kinky. C, continuity means that
also the curvatures of the two surfaces are the same at the connection line. It can be visually
recognized as very smooth.

Higher orders of continuity are also possible. Cs continuity means that also the third
derivative of the surface shape in the direction perpendicular to the connection line is the
same at either side of the connection line. If a shell has less than C, continuity then stress
concentrations will occur at the connection line. Such a stress concentration is called edge
disturbance (p. 14, 71).

Exercise: What is the level of continuity of the shape of a drafting spline? (p. 9)

Zebra analysis

People look fat in a convex mirror and slim in a concave mirror. Apparently, the curvature
determines the width that we see. A neon light ceiling consists of parallel lines of neon light
tubes. This light reflects of a car that is parked underneath. The car surface curvature
determines the width of the tubes that we see. Car designers use this to inspect the continuity
of a prototype car body. Any abrupt change in curvature will show as an abrupt change in
tube width. The computer equivalent of this inspection is called zebra analysis.

Figure 16. Simulated reflection of neon light tubes [...]

Finite element mesh

A complicated shell structure needs to be analysed using a finite element program (ANSYS,
DIANA, Mark, etc.). To this end the shell surface needs to be subdivided in shell finite
elements (p. 82) which are triangular or quadrilateral. This subdivision is called finite element
mesh. CAD software (Maya, Rhinoceros, etc) can transform a NURBS (p. 9) mesh into a
finite element mesh and export it to a file. The finite element program can read this file.

The size of the finite elements is very important for the accuracy of the analyses. We need to
carefully determine and adjust the element size in each part of a shell.

NURSBS finite elements

Scientists are developing finite elements that look like NURBSes (p. 9). The advantage of
these elements is that there is no need to transform CAD model meshes into finite element
meshes (p. 11). Both meshes are the same. In the future this can save us a lot of time.
However, it seems that this development is overtaken by another development. CAD
programs start using polygon meshes (p. 11) instead of NURBSes. These meshes may be used
directly in finite element analyses.

Polygon meshes

The problem with NURBSes (p. 9) is that they have so many control points. For example, if
we have modeled Mickey Mouse and we want to make him smile we need to move more than
20 control points. This is especially impractical for animations. Therefore, CAD programs

11



also provide polygon meshes (fig. 17). Every part of a polygon mesh consist of a polygon, for
example, a triangle, a square, a pentagon. The advantage is that we can work quickly with a
rough polygon model. The mesh is automatically smoothened during rendering to any level of
continuity (p. 11).

Figure 17. Polygon mesh and NURBS mesh [...]

Section forces and moments
Consider a small part of a shell structure and cut away the rest. If there were stresses in the
cuts they are replaced by forces per unit length [N/m] and moments per unit length [Nm/m]

(fig. 18). The membrane forces are ny,, n,, and%(nxy +n,,) . The first two are the normal

forces and the third is the in-plane shear force. The moments arem,,, m,, andm,,,. The first

two are the bending moments and the third is the torsion moment. The out-of plane shear
forces are v, and v, .

In a tent structure only membrane forces occur. Therefore, m,, =m,,, =m,, =v,=v, =0.1In

Yy xy
addition, the tent fabric can only be tensioned. Therefore,n; >0, ny >0, where n; and n, are

the principal membrane forces (p. 98).

Figure 18. Positive section forces and moments in shell parts
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Definition of membrane forces, moments and shear forces
In thin shells the membrane forces, the moments and the shear forces are defined in the same
way as in plates.

i 2 D
Ny = J. Oy dz n, = J- O,y dz 7 (g, +1y0) J. Gy dz
—%t _%z -1
%z %t 1,
My I G Zdz m,, = j Oy zdz My, I Oy zdz
—%t —%t -1
b 1
V= I G ,dz vy, = I G, dz
—1 4

For thick shells the definitions are somewhat different (appendix 8).

Thickness
A shell has a small thickness # compared to other dimensions such as width, span and radius
a. The following classification is used.

m Very thick shell (a /t < 5): needs to be modelled three-dimensionally; structurally it is not a
shell

m Thick shell (5 < a/t <30): membrane forces, out of plane moments and out of plane shear
forces occur; all associated deformations need to be included in modelling its structural
behaviour

m Thin shell (30 <a/t <4000): membrane forces and out of plane bending moments occur; out
of plane shear forces occur, however, shear deformation is negligible; bending stresses vary
linearly over the shell thickness

m Membrane (4000 < a /t): membrane forces carry all loading; out of plane bending moments
and compressive forces are negligible; for example a tent

Shell force flow

Brick or stone arches are thick (p. 13) because the pressure line (p. 6) needs to go through the
middle third (p. 7) for all load combinations. Shell structures are often thin. This is possible
due to hoop forces (fig. 19). The hoop forces push and pull the pressure line into the middle
third for any distributed loading. In other words, a well-designed shell does not need moments
to carry load.

In the bottom of a spherical dome the hoop forces are tension (for quantification see p. 38). If
this dome 1s made of brick or stone it needs horizontal steel reinforcement, but not much.

! meridional force (for example nxx)

_!_ \%\a‘; hoop force (for example nyy)

Figure 19. Forces in a spherical dome due to self-weight
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Exercise: The designer of the Hagia Sophia found an even better solution for the tension hoop
forces: He put windows at the locations where tension would have occurred. Which part of
the Hagia Sophia dome can be classified as a shell and which part as arches?

Pantheon

The pantheon has been built in the year 126 AD in Rome as a Roman temple (fig. 20). Since
the year 609 it is a catholic church. The concrete of the dome top is made of light weight
aggregate called pumice (fig. 21). The hole in the roof is called oculus. The name of the
designer is unknown. The construction method is unknown. It has been well maintained
through the centuries, which shows that people have always considered it a very special
structure. You should go there one day and see it with your own eyes. 45m

Sm

<
/i—‘

—— = e

37 m

e e e i -

- e e e e = e

travertine and tufa

travertine

Figure 20 Pantheon painting by Panini in 173 Figure 21. Pantheon cross-section
[National Gallery of Art, Washington D.C.] [engineeringrome.org]

Edge disturbance

In a well-designed shell with distributed loads and roller supports the moments are very small
(see shell force flow p. 13). However, rollers are expensive and do not resist wind, therefore,
shell edges are often fixed. This causes a phenomena typical for thin shell structures: the edge
disturbance.

Let’s explain it by an experiment of thought. A dome loaded is by self-weight and supported
by rollers. The membrane forces change the shape of the dome (fig. 22). This deformation is
small — much smaller than the deformation of a similar size plate, truss or frame structure —
but it does occur. Subsequently, we remove the rollers, push the dome edge back and fix it to
the foundation (fig 23). In the process we have curved the shell wall. This curving occurs over
a small width because the thin shell wall has little bending stiffness.

From the curvature we deduce that moments occur. The moment is large in the edge. The

moment moves into the shell like a wave that dampens quickly. Of course, wave is not the
right word because this wave does not move. It is called edge disturbance. It occurs where

14



ever a shell edge is fixed or pinned to something solid. (see also generalised edge disturbance
p.71)

L /—\

moment

deformed

edge disturbance

N

not deformed

D

Figure 22. Dome with roller support Figure 23. Dome with fixed support

Compatibility moment

The moments in a well-designed thin shell do not carry load. All load in the shell is carried by
the membrane forces (see shell force flow p. 13). The shell moment is caused by the
deformation necessary for the parts to stay connected (see edge disturbance p. 14). Such a
moment is called compatibility moment.

Comparison of an arch and a dome

Figure 24 shows two moment distributions. On the left-hand side is shown an arch shaped as
a horse shoe fixed at the foundation and loaded by self-weight. On the right-hand side is
shown a cross-section of a spherical dome also fixed at the foundation and also loaded by
self-weight. (This dome could protect an airport radar from rain and wind.) The left hand
distribution has been obtained by solving the differential equation. The right hand distribution
has been obtained by linear elastic finite element analysis. The left and right moment
distributions are in the same directions and can be compared.

We observe that the arch has moments everywhere and the dome has moments in its edge
only. The shell moment demonstrates the shell force flow (p. 13) and the edge disturbance (p.
14). The arch and the shell behave very differently.

~0.3291 ga?

#&)

0.7701q a*

Figure 24. Linear elastic moment distributions due to self-weight in (left) a circular arch and
(right) a spherical dome. Symbol a is the radius, t is the thickness, g [N/m] and p [N/m?] are
self-weight. The dome result is computed for a =20m, t = 0.05m, E = 3-10" N/m% v =0, p
= 1500 N/m? The plotted dome moment is in the same direction as that of the arch.

Exercise: If you plot the arch moment in figure 24 upside down you see the pressure line (p.
6). Can you explain this?
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Plastic deformation in shell edges

Figure 24 left shows the equation of the arch peak moment. The thickness ¢ does not occur in
this equation, while it does occur in the equation of the dome moment. When we double the
thickness, self-weight will double, the arch moment will double and the dome moment will
increase by a factor four. When we divide moment by section modulus we obtain stress.
Doubling the thickness halves the arch bending stress but the dome bending stress stays the
same.

For shell design this means that we often have to accept plastic deformation in supported shell
edges. Steel edges yield. Reinforced concrete edges crack. Extra attention is required for
fatigue and durability of shell edges.

Exercise: Consider live load instead of self-weight. What happens if we make a dome
thicker? Do the stresses become larger, smaller or do they stay the same? Compare this to a
plate.

Form finding

A tent needs to be in tension everywhere otherwise the fabric would wrinkle. Therefore, the
first step in tent design is to determine a shape that satisfies this condition. This is called form
finding. The designer specifies the support points and prestressing and the computer
determines a tent shape that is in equilibrium everywhere.

Some architects would like to reverse this procedure and directly specify the shape while the
computer would find the required prestress. In theory this is possible, however, it is not
supported by any software because the optimisation to find a suitable prestressing is very time
consuming [4].

In contrast, shells do not need form finding. They can be designed as any frame structure: 1)
choose shape, thickness, supports and loading, 2) compute the stresses, 3) check the stresses
and improve the design. Repeat this until satisfied.

Fully stressed dome

Consider a dome loaded by self-weight only. The shape and thickness are such that
everywhere in the dome the maximum compressive stress occurs (fig. 25). The compressive
stress is both in the meridional direction and in the hoop direction (p. 13). This dome is called
a fully stressed dome because everywhere the material is loaded to its full capacity.

[

Figure 25. Cross-section of a fully stressed dome [5] (The proportions are exaggerated)

The shape of a fully stressed dome cannot be described by any mathematical function [5]. The
following program can be used for calculating the dome shape. The thickness of a fully
stressed dome is undetermined. (Any extra thickness gives both more load and more strength
which compensate each other.) The program starts at the dome top with a specified thickness
and stress. For every step in x a value y and a new thickness are determined.
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t:=200: # mm top thickness

f:=4: # N/mm2 compressive stress

rho:=2350e-9: # kg/mm3 specific mass

g:=9.8: # m/s2 gravitational acceleration

dx:=1: # mm horizontal step size

alpha:=0.1: # rad horizontal angle, has no influence on the results

x:=0: y:=0: V:=t*1/2*dx/2*alpha*dx/2*rho*g: H:=f*t*dx/2*alpha:
for i from 1 to 200000 do
N:=sqrt (V*2+H"2) :
t:=N/ (f*alpha* (x+dx/2)) :
dy:=V/H*dx:
ds:=sqrt (dx*2+dy*2) :
X:=x+dx:
y:=y+dy:
V:=V+t*ds*alpha*x*rho*g:
H:=H+f*t*ds*alpha:
end do:

Figure 26. Derivation of the fully stressed dome program

Approximation of the fully stressed dome
For realistic material values the computed shape of a fully stressed dome (p. 16) can be
approximated accurately by the formula

2
_p&gx
4o

where p is the mass density, g is the gravitational acceleration and o is the stress.
For example, a fully stressed masonry dome with a compressive strength of 4 N/mm? and a
span of 100 m has a sagitta (p. 1) of

2000 x10x50°

g =3.13m
4x4-10

Note that this is a very shallow dome. The above program also shows that the dome thickness
is everywhere almost the same.

Buckling of the fully stressed dome
Buckling of a dome occurs at a stress of 0.1E¢/a, therefore, c<0.1E¢/a (see buckling p.

140). The radius of curvature of the fully stressed dome top is (see line curvature p. 20)

1 20

a:T:—

d’y P&
abc2
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Substitution of a in the buckling stress equation gives a condition for the dome thickness

2062
t> .
pgE

For example, the fully stressed masonry dome with Young’s modulus 10000 N/mm? needs a
thickness

642
i 20x(4:10°)

> 3 =1.6 m
2000x10x10000-10

a_E 10000

=— =250
t 10c 10x4

Optimal dome

Suppose we want to build a dome with a span / that carries its weight with as little material as
possible. We call this an optimal dome. An optimal dome is not a fully stressed dome (p. 16).
The cause is that a larger sagitta (p. 1) will give smaller stresses and a much smaller
thickness, which results in less material.

The sagitta of an optimal dome is about 30% of its span. To be exact, a spherical cap of
constant thickness has the optimal ratio sagitta to span of V306 (fig. 27) (derivation in
appendix 2).°

3

s=—1=0.289/
6

ny, 7 np

)
Figure 277. Proportions of an optimal spherical dome

The thickness of the spherical optimal dome is

2
_20p8!

t Ca

Applied to the masonry dome example above we find,

2
t:E2000x10x100

—0.044 m
% 10000-10°

5 Kris Riemens showed in his bachelor project at Delft University that other shapes can be more
optimal than the spherical cap [6]. In addition, a varying thickness can reduce the amount of material
by 15% compared to a constant thickness dome. Therefore, the exact optimal dome has not been found
as yet.
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This is much thinner than the fully stressed dome. A 44 mm thick masonry dome with a span
of 100 m has never been build. We need to keep in mind that this dome would just carry its
self-weight. Nonetheless, the equations show that great shell structures are possible.

2 2
S+%I_:0.3x100+ 100 57 a_ 57 1295

=57m
s 2 &8x0.3x100 t 0.044

1
a=5

Exercise: Consider a glass dome covering a city. What thickness is needed? What thickness is
needed on the Moon? Can this Moon dome be pressurised with Earth atmosphere?

Global coordinate system
Shell shapes can be described in a global Cartesian coordinate systemX , y ,z . For example

half a sphere is described by

zz\/az—)—cz—yz, -7 <3<V -2, —a<¥<a.

Local coordinate system

Consider a point on a shell surface. We introduce a positive Cartesian coordinate system in
this point (fig. 28). The z direction is perpendicular to the surface. The x and y direction are
tangent to the surface. The right-hand-rule is used to determine which axis is x and which is y
(fig. 29).

Figure 28. Global and local coordinate system

=

z
Figure 29. Right-hand-rule for remembering the Cartesian coordinate system
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Line curvature

Consider a curved line on a flat sheet of paper (fig. 30). At any point of the curve there is a
best approximating circle that touches the curve. The middle point of this circle is constructed
by drawing two lines perpendicular to the curve at either side of the considered point. The
reciprocal of the circle radius « is the curvature & at this point of the curve. The circle may lie
above the curve or below the curve. We can choose to give the curvature a positive sign if the
circle lies above the curve and negative sign if the circle lies below the curve. This is known
as signed curvature. The Latin name of a best approximating circle is circulus osculans,
which can be translated as kissing circle.

Figure 30. Curvature of a line

2
. . d
Exercise: Choose a local coordinate system x, y on a curve and show that k = +2 7

dx?

Surface curvature

Curvature is also defined for surfaces. We start with a point on the surface and draw in this
point a vector z that is normal to the surface (fig. 31). Subsequently, we draw any plane
through this normal vector. This normal plane intersects the surface in a curved line. The
curvature of this line is referred to as normal section curvature k. If the circle lies at the
positive side of the z axis the normal section curvature is positive. If the circle lies at the
negative side of the z axis the normal section curvature is negative. The direction of the z axis
can be chosen freely (pointing inward or outward).

The z axis is part of a local coordinate system (p. 19). When the normal plane includes the x
direction vector the curvature is k,, . When the plane includes the y direction vector the

curvature is k. These curvatures can be calculated by

The twist of the surface £, is defined as

B 0%z
¥ axoy

These formulas are valid for the local coordinate system. In the global coordinate system (p.
19) the formulas for the curvature are
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Figure 31. Normal section curvature

Note that these curvatures are not the same as the curvatures of the deformation of a flat plate.
The latter curvatures are defined as

o%w %w *w
Ky =—

_— K = - = —2 .
o Ox0y

&xz s yy ayz s pxy

where w is the deflection perpendicular to the plate.

Paraboloid

A surface can be approximated around a point on the surface by

_1 2 1 2
z=5 ke X +kyxy+ 5k, y7.

Exercise: Check this approximation by substitution in the definitions of curvature and twist.

The above function is called paraboloid. If the principal curvatures (p. 22) have opposite signs
it is a hyperbolical paraboloid (hypar). If the principal curvatures have the same sign it is an

elliptical paraboloid (elpar). If the principal curvatures are the same, it is a circular paraboloid
(fig. 32).
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ellipse ci rcel—f

Hyperbolical paraboloid (hypar)  Elliptical paraboloid (elpar)  Circular paraboloid
Figure 32. Types of paraboloid

Principal curvatures
In a point of a surface many normal planes are possible. If we consider all of them and
compute the normal section curvatures then there will be a minimum value &, and a

maximum value k; . These minimum and maximum values are the principal curvatures at this
point.

2.2
h=%“m+kwﬂ+di@x—kw)+kw

2 2
oy =5 (K +kyy)_\/%(kxx _kyy) +hy

The directions in which the minimum and maximum occur are perpendicular. In fact,
curvature is a second order tensor (p. 97) and can be plotted using Mohr’s circle (for a proof
see appendix 3).

Savill building

Savill garden is close to Windsor castle in England. Its visitors centre has a timber grid shell
roof (fig. 33). The roof was built in 2005 using timber from the forest of Winsor castle. The
roof dimensions are; length 98 m, width 24 m, height 10 m. The structural thickness is 300

2 2
a2 10024 a 122

+ =——=41
s 2 8xI10 t 03

The laths are made of larch with a strength of 24 N/mm?. The roof is closed by two layers of
plywood panels each 12 mm thick (fig. 34). This plywood is part of the load carrying system.
The weather proofing consist of aluminium plates. On top of this, a cladding of oak has been
applied. The roof has a steel tubular edge beam. Next to the edge beam the laths are
strengthened by laminated veneer lumber (LVL), which is bolted to the edge beam (fig. 33).
The roof is expected to deflect 200 mm under extreme snow and wind loading [8].

Project manager: Ridge & Partners LLP

Architect: Glenn Howells Architects

Structural engineers:  Engineers Haskins Robinson Waters
Buro Happold

Main contractor: William Verry LLP

Carpenters: The Green Oak Carpentry Co Ltd

Falsework supplier: PERI

Owner: Crown Estate

Costs: £ 5.3 million
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The building won several awards including one from the Institution of Structural Engineers in
the United Kingdom. Before construction of Savill building the garden had approximately 80
000 visitors a year. After construction the garden attracts approximately 400 000 visitors a

6
year.

Gaussian curvature
The Gaussian’ curvature of a surface in a point is the product of the principal curvatures in

. . 2 . .
this point kg = kik, . It can be shown that also kg =k, k), — k7, . The Gaussian curvature is

independent of how we choose the directions of the local coordinate system (p. 19). A
positive value means the surface is bowl-like (fig. 34). A negative value means the surface is
saddle-like. A zero value means the surface is flat in at least one direction (plates, cylinders,
and cones have zero Gaussian curvature).

¢ Statement by deputy ranger P. Everett in a Youtube movie of 22 September 2007:
http://www.youtube.com/watch?v=3xNdVDAoI5U

7 Carl GauB (1777-1855) was director of the observatory of Gottingen, Germany ... and a brilliant
mathematician. The German letter “B” is pronounced “s”.

23



-~ freen cale

/”/ L Aliiiaainivy e wem}\m&r fb*’“aaFiv\ﬁ
v o~
Wﬂvx/uvxmvgf/%&v A P77 PEEEA ), A VA L
3/ ! 5t
- s : w&iaribatioa
L SUURINN, ™ insulakion P~ !
= 3 — & ]
f, 77 Mz lavers of plywsed each 12 wan V3
g’wﬁ : z; E 3
k ; A \ 2 § 4 \ \ ®
| IR r N . \‘ \
- wood blode \
Lﬁ [X-g A4 ’J E
! ’ lacddn $ox e

Figure 34. Cross-section of the Savill building roof

L D

positive negative zero

Figure 35. Gaussian curvature (contour plot)

A surface having everywhere a positive Gaussian curvature is synclastic. A surface having
everywhere a negative Gaussian curvature is anticlastic. Tents need to be anticlastic and pre-
tensioned in order not to wrinkle. Some surfaces have a Gaussian curvature that is everywhere
the same. Examples are a plane, a cylinder, a cone, a sphere, and a tractricoid (p. 26).

The Gaussian curvature is important for the deflection of a shell due to a point load. A large
Gaussian curvature (in absolute value) gives a small deflection. The Gaussian curvature is
also important for the membrane stresses in a shell. Membrane stresses occur when the
Gaussian curvature changes during loading (see theorema egregium p. 113).

Mean curvature
The mean curvature of a surface in a point is half the sum of the principal curvatures in this

point k,, = %(kl +ky) . It can be shown that also &, = %(kxx +ky,). The mean curvature is

independent of how we choose the local coordinate system (p. 19) except for the direction of
the z axis. If the direction of the z axis is changed from outward to inward then the sign of the
mean curvature changes too. For this reason CAD programs often plot the absolute value of
the mean curvature.

An example of a surface with zero mean curvature is a soap film (p. 46). In a soap film there
is tension, which is the same in all directions and all positions, which makes it a fully stressed

design (p. 16). This property is used in form finding (p. 16) of tent structures.

Exercise: A shell has a shape imperfection with magnitude d, length / and width /. Derive the
following relations between the perfect and imperfect (' ) curvatures. Assume that d, s < /.
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Note that the mean curvature is important for the change in the Gaussian curvature.
For example, adding a small imperfection to a shell that has zero mean curvature leads to no
change in the Gaussian curvature.

Orthogonal parameterisation

2

A sphere can be described by x 24 )72 +2z2 =a’. Another way of describing a sphere is

X = asinucosv

=qasinusiny

N| <

acosu 0<u<nmn O0<v<2m

This is called a parameterisation. The parameters are u and v. There are many ways to
parameterise a sphere and this is just one of them. When u has some constant value and v is
varied then a line is drawn on the surface (fig. 36). The other way around, when v has some
constant value and u is varied then another line is drawn on the surface. In shell analysis we
choose the lines u = constant and the lines v = constant perpendicular to each other. This is
called an orthogonal parameterisation.

Other surfaces can be parameterised too, for example catenoids (p. 26) and tractricoids (p.
26). Unfortunately, for some surfaces an orthogonal parameterisation is not available, for

example there is no orthogonal parameterisation available for a paraboloid (p. 21, 102, 128).

It can be easily checked whether a parameterisation is orthogonal. In this case the following
equation is true.

OF 0¥ 0707 07 0% _

Ou Ov 0Ou Ov Ou Ov

The proof is simple. If we change « a bit, thenx , y and z change a bit. Thesex , y , z bits form

a small vector. If we change v a bit, another small vector is formed. These two vectors must
be perpendicular, so their dot product must be zero. Q.E.D.
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kxx =
a
-1
k [ —
Yy a
kxy =0
o, =a
Oty =asimu

Figure 36. Parameter lines on a sphere. (0., and o, will be explained later.)

Exercise: 1 live at the location u = 0.66029, v = 0.07995. Where do you live?

Catenoid

A catenoid is formed by rotating a catenary (p. 5) around an axis (fig. 37). It can be
parameterised by

Il
<

u

X
y =acoshusiny
z

acoshucosv —00 <Y <00 0<v<2m

The mean curvature (p. 24) is zero everywhere. The Gaussian curvature (p. 23) varies over
the surface.

1
k., =—
. acosh? u
-1
k, =——
> acosh?u
kxy =0

o, =acoshu

a,, =acoshu

Figure 37. Parameter lines on a catenoid

Tractricoid
A tractricoid (fig. 38) can be parameterised by

_ u
X =a(cosu +Intan—)
2
¥y =asinusiny
Z =asinucosy O<u<m 0<v<2m

Its volume is %na3 and its surface area is 4ma” , which are the same as those of a sphere. It

has a constant negative Gaussian curvature kg; = —a? (p. 23). Note that a sphere has a

constant positive Gaussian curvature kg = a2 . The mean curvature (p. 24) varies over the
surface of a tractricoid.

26



kxx = a
-1
kyy h a|tanu|
ky, =0
a
* 7~ Jtanu|
o, =asinu

Figure 38. Parameter lines on a tractricoid

Interpretation

We can interpret a parameterisation as the deformation of a rectangular sheet into a curved
shell (fig. 39).

2'C o

s T

Figure 39. Deformation of a rectangular sheet

Exercise: In the above drawing, the local z axis is not shown. It can be deduced. In what
direction is it? Into or out of the page? Inwards or outwards of the shell?

Sillogue water tower

Sillogue (pronounce silok) water tower stands close to Dublin airport in Ireland (fig. 40, 41,

42). Its shape is based on efficiency and aesthetics. (Water towers need a wide top diameter
obtain small fluctuations in water pressure when water is taken out and refilled.) It received
the 2007 Irish Concrete Award for the best infrastructural project. It was honourably
mentioned in the European Concrete Award 2008.

Height: 39 m

Top diameter: 38 m

Thickness: 786 mm

Steel formwork: 6300 m?

Reinforcing steel: 580 tonnes

Concrete volume: 4950 m?

External painting: 3700 m?

Capacity: 5000 m?

Engineers: McCarthy Hyder Consultants
Architects: Michael Collins and Associates
Contractor: John Cradock Ltd.
Formwork: Rund-Stahl-Bau, Austria

to
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Figure 41. Cross-section of Sillogue water tower [Rund-Stahl-Bau]
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To calculate the slenderness we measure the radius of curvature from the drawing. This is a
line from the centre line of the tower perpendicular to the cone edge (fig. 41). The shell
thickness is 0.786 m. Consequently, the slenderness is a / ¢ = 24.8 / 0.786 = 32. This is a very
small value in comparison to other shell structures (see table 1 p. 2). This suggests that the
shell of Sillogue water tower could have been much thinner.

Exercise: Explain the radius of curvature of the water tower. Make a paper model or use your
visual imagination. Note that the latter is a very powerful tool.
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Differential geometry

Surfaces are studied in a branch of mathematics called differential geometry. The mathematicians
study perfectly rigid surfaces and surfaces with no stiffness at all (topology) which is rather
restrictive from our point of view. Nonetheless, several formulas in these notes are copied from
books on differential geometry. Here are three useful formulas [7].

If an orthogonal parameterisation (p. 25) is available then the shell curvatures can be calculated

with

kyy =| (———
e (8u6v ou

FE FF P T
v’ ou?

— () —+
auz 3

EX K&EIFY &Ky Fox oz |
P Oudv ouov py2 Oudv Oudv aya,

3

(o -|FE_EF T EE mE oy &y ez |
a0y,

z
W\ ouov ou oy o2 Ouov ouov g2 Oudv ou by ov?

ko, =| (=222
Wl eu oy ou av)auav Oudv Ouov oudv oudv Oudv oudv

o 0z OF Oy 823?+628)? % 0% azy+af@ oy % azzJ |

o2
where o, and o y are the Lamé parameters (p. 32).

Curvilinear coordinate system

In shell analysis three coordinate systems are used (fig. 43); 1) a global coordinate system (p. 19)
to describe the shape of the shell, 2) a local coordinate system (p. 19) to define curvature,
displacements, membrane forces, moments and loading, 3) a curvilinear coordinate system to
derive and solve the shell equations.

The axis of the curvilinear coordinate system are u and v. They are plotted onto the shell middle
surface. All lines of this coordinate system cross perpendicularly. It looks like a timber grid shell
(see Savill building p. 22). The x direction in a point is tangent to the local u direction and the y
direction in a point is tangent to the local v direction.

Figure 43. Coordinate systems
In the curvilinear coordinate system it is simple to locate any point (u, v) on the shell surface.

Also, the positive directions of the membrane forces and moments are clear in any point. For
example, consider the torus in figure 44. There is nothing unclear about the statement:

31



“At the location (u,v) = (% nb,%na) the membrane shear force is nyy =10 kN/m ”.

- V..U
X =(b+asin—)sin—
a b

y= (b+asini)cosz
a b

Figure 44. Curved coordinate system on a torus

Shell displacement and load
Every point of the shell middle surface has a local Cartesian coordinate system x, y, z (fig. 45).

Every point has displacements uy, u,,, u,. Every point is loaded by distributed

forces p, Py Pz [KN/m?2].

Figure 45. Displacements and loads
Lamé parameters
A complication of the curved coordinate system is that the distance between two grid lines varies

from point to point. Therefore, a small length dx is often not the same as a small length du. For
the torus in figure 44 we can derive

{dx} 1+%sinK 0 {du}
= a .
dy 0 1 dv
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Exercise: Derive these equations by inspection of the torus curved coordinate system.

In general we write

R |

where o, and o yare called Lamé parameters." The inverse of the later equations is simply

LI
{du}_ Oy {dx}
dv 0 1y

ay

Therefore, 6_u = € , @ = e , 6_u =0, @ =0. The Lamé parameters are important when
ox o, Oy y oy Ox

differentiating. For example, if we differentiate the membrane shear force ny,, (u,v) to x we need

to use the chain rule

Onyy, ~ Onyy, Bu . Onyy, o Onyy, 1
ox ou ox v Ox  Ou o

If an orthogonal parameterisation (p. 25) is available then the Lamé parameters can be calculated
with

ox2 oy’ oz2
Q,x: E +— +

b

ou E
\/axz 0y 072
oy =yl +—— +— .
ov ov ov

The proof is simple. If we change u« a bit then X,y and z change a bit and the length of the latter
bit follows from Pythagoras’ theorem. Q.E.D.

Equation of Gauf}
The Lamé parameters (p. 32) can be used to calculate Gaussian curvature (p. 23).

2
b 1070y 1 o
G~ a a2 oy o2
y ox x Oy

1 Gabriel Lamé (1795-1870) was a French mathematician who taught at universities in Saint Petersburg
and in Paris [Wikipedia]
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This is called the equation of Gaufs [for a derivation see 8 p. 175]. Applying the chain rule this
can be written as

S O I A N R
G 0Ly0y | Oul oy Ou v\ ay ov '

For example, the torus of figure 44 has a Gaussian curvature of

kG =—;[0+3(13(1+3smﬁ)ﬂ =;b
1+ Zsin Y ol ov b a a2+ 9

a sinK

a

Exercise: Are the shapes in table 2 completely determined?

Table 2. Examples of Lamé parameters (p. 32) that produce uniform Gaussian curvatures (p. 23)

Otx=1 o :sinﬂ kG——2

(Uniform means not a function of u and not a function of v.)
1 ‘ («

u = —
Otx—l (xy:cos— kG— 5

L
u 1
oy =1 ay, =c0shz kg = @
a

.U 1
oy =1 oy =smh; kG =—a—2 \*

(X,le Oty:exp; kG——a—2
2 2 4 3.6 4 8
ale ayzl_Cu +Cu _Cu +Cu _ kG:C
2 4! 6! 8!
—1-cL,2_3,2 —1-cL,2_3,2 ~
oy =1-C(Ev? = 2u?) oy =1-Chu® -2+ kg ~C
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Intrinsic property

Consider the sticker shown in figure 46. It has a length and width of 20 cm. The sticker material
is very flexible. Subsequently, it is carefully glued onto a curved surface without wrinkles and
cracks. The angles between the lines remain 90°. Figure 47 shows the stretched lengths of the
sticker lines.

2
10
8

1o dvdu. 9 14

to o 1

13
Figure 46. Sticker printed on a flexible material Figure 47. Sticker stretched onto a surface

The Lamé parameters (p. 32) are

_1lem ~ 9cm

- 1.1 o, = =0.9
%x 10 cm Y 10 cm
do, 1.0-1.1 -0.01 doy 1.1-0.9 0.02
ov 10 cm cm ou  10ecm  cm

Substitution in the equation of Gaul (p. 33) gives

1 0 ( 1 0.02j 6[ 1 —0.0lj
kg =- — —— |+ —] —
1.1x09| cu\l.1 cm ovi 0.9 cm

1003 1002 1-001 1 -001

__ 1 Gcm 1.1 cm +@ cm @ cm —_0.00035 1
1.1x0.9 10 cm 10 cm cmz

Only surface measurements were used. Apparently, for calculating Gaussian curvature we need
not measure the shell shape in three-dimensional space. For this reason, Gaussian curvature (p. 23)
is called an intrinsic property. Mean curvature (p. 24) is not intrinsic.

1 %, 1 0%
Exercise: Do the sticker calculation with kg = —— 5 T 2x . It should produce the
Ay Ox Ay Oy

same result.

Curved roofs with tiles

Modern tile roofs are always flat. However, the length that tiles overlap can vary, which can be
used to build curved roofs (fig. 48). Clearly, tiles should divert rain and stay on the roof in a
storm. This imposes constraints to the slope of tiles. The particle-spring method (p. 105) can be
used to determine a suitable grid.
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Figure 48. Queens palace in Slu_n, ]ndbnesia [ ]
The curved roofs are made of flat tiles.

Equations of Codazzi
The equations of Codazzi are [7]?

oo oty k _ oo

ox M ox

00 Ky
oy oy

They are valid if x and y are the principal curvature directions, so kxy =0.

Apparently, we cannot create a shell by just choosing functions k= ..., kyy =...,
kyy=...,ax=...ando,=.... Our choice must fulfil the equation of Gauf} and the equations of
Codazzi.

Helicoid

A helicoid (fig. 49) can be described by

X =avcosu X = asinh(u —v)cos(u +v)
y =avsinu and by y = asinh(u —v)sin(u + v)
Z=au z=a(u+v)

Its mean curvature (p. 24) is zero everywhere, therefore, it is a minimal surface.

2 Delfino Codazzi (1824-1873) was a mathematics professor at the University of Pavia, Italy. The Codazzi
equations were also discovered by Gaspare Mainardi (1800-1879) and by Karl Mikhailovich Peterson
(1828-1881). The latter seems to have been the first [Wikipedia].
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-1

by =——5——
acosh”(u—v)
acosh™(u—v)
kyy =0

o, =av2cosh(u—v)

oy, =a 2 cosh(u —v)

T2 <u<mn/2 —w2<v<mn/2 —T2<u+v<n/2 —wR<u-v<mn/2
Figure 49. Helicoid

Exercise: Check the equation of Gaul (p. 33) and the equations of Codazzi (p. 36) for a helicoid.

Challenge: It should be possible to generalise the equations of Codazzi to one equation that is
valid for ky,, # 0 too.

In plane curvature
Figure 50 shows curved parameter lines on a curved surface. The lines have a radius of
curvature ry, in the plane that is tangent to the shell middle surface. This radius can be expressed

in the Lamé parameter o, (p. 32). The proportions in the figure show that

0oLy
dud
acdu oy 7 L L_ 1wy
ry dy ry Oy oy
1 1 ooy
We define k,, =—, therefore, Kk, =—
Ty oy Oy
1 Oa y
In the same way can be defined ky =——=.
oy, Ox

Figure 50. Radius ry of the parameter line v = constant
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Exercise: Derive that kg = L i k)% - sz,
dy  Ox

Challenge: Suppose we have two orthogonal parameterisations of a shell.
The local coordinate systems in a shell point are x—y—z and r—s—z. Proof or disproof that
ky =kycoso—k)sing

kg =kysinQ+k,, cos@

where @ is the angle between the r axis and the x axis (see appendix 3).

Shell membrane equations

The shell membrane equations are shown in table 3. These equations describe the behaviour of
thin shell structures, however, all moments have been neglected. Nonetheless, they are useful
because for many shells the moments have little influence on their global behaviour. The shell
equations that do include moments are called Sanders-Koiter equations (p. 54).

In these notes only the equilibrium equations and the kinematic equations are derived. The
constitutive equations are the same as for flat plates loaded in plane. For their derivations see a

course on plates.

Table 3. Shell membrane equations

kinematic equations 0 1
q €y =&—kxxuz+kxuy
6uy 2
Syy = E — kyyuz + kyux
ou ou 3
Yy =+ _xy_ 2kyyuy —kytty —kyu,,
constitutive equations 1 4
Exx = E(l’lxx - Vnyy)
1 5
€yy = E(nyy - anx)
2(1+v) 6
Txy = T”xy
equilibrium equations | gy Onyy, 7
a—jzx +ky (g =1y) + 2k, + py =0
on on 8
2k (nyy — i) + 2y, + py =0
oy X
kxxxx + 2kyynyy +kyyny, +p; =0 9

Membrane forces in a spherical dome

The forces in a spherical dome can be computed by maple using the shell membrane equations (p.
38). The dome is loaded by self-weight p only. The result is shown in figure 52. For example, a
dome with a radius a = 12 m and self-weight p = 2 kKN/m? will give a hoop force in the bottom
edge of n=p a=2 %12 =24 kN/m tension.
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Figure 51. Curved coordinates on a spherical dome

>restart:
>kxx:=-1/a: kyy:=-1/a: kxy:=0: ax:=1: ay:=sin(u/a):
>ky:=diff (ay,u) /ax/ay: kx:=diff (ax,v)/ay/ax:

>px:=p*sin(u/a): py:=0: pz:=-p*cos(u/a): # p:=t*rho*g:

>nxx:=fl(u): nyy:=£f2(u): nxy:=0:
>eql:= kxx*nxx + kyy*nyy + 2*kxy*nxy + pz = O0:
>eq2:

>dsolve ({eql,eq2});

diff (nxx,u) /ax + diff (nxy,v)/ay + (nxx-nyy)*ky + 2*nxy*kx + px =
>eq3:= diff (nyy,v)/ay + diff(nxy,u)/ax + (nyy-nxx)*kx + 2*nxy*ky + py =

o o

2 (P COS(%) a+ _Clj | 5p cos();—sj a+4 Cl-pa cos(%)
fl(xs)=- ,Q(xs):i

(2xs)
-1 +cos| —
a

> # boudary condition nxx (0)=nyy (0)
> f1:=-2% (p*cos (u/a) *a+_C1)/ (-1l+cos(2*u/a)):

> solve (£1=£2, Cl1):

> Cl:=-p*a:

-

>nxx:= -p*a/(l+cos(u/a)):

>nyy:= -p*a*( cos(u/a) - 1/(l+cos(u/a)) ): # hoop force
>nxy:= 0:

>p:=1: # self-weight [kN/m2]

>a:=10: # radius [m]

>um:=Pi/2*a: # maximum u value [m]

>f£:=-0.3: # plot factor -

>plot({[ a *sin(u/a), a *cos (u/a) ,u=-um. .um],

[ (a+f*nxx) *sin (u/a) , (a+f*nxx) *cos (u/a) ,u=-um. .um]
[ (a+f*nyy) *sin(u/a), (a+f*nyy) *cos (u/a) ,u=-um. .um]

color=[black,red,green], thickness=[3,1,1]);

(2xsj
-1 +cos| —
a

> f£2:=1/2* (5*p*cos (u/a) *a+4*_Cl-p*a*cos(3*u/a))/(-1l+cos(2*u/a)):

hoop force

pa

# meridional force, pressure line

meridional force

-10 5 b

Figure 52. Membrane forces in a spherical dome
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Derivation of membrane equation 1
An imaginary fibre in the x direction will elongate with du, (fig. 53). Strain is elongation over
length, therefore,

duy

€xx1 = i

The fibre will shorten due to u, (fig. 53). The new fibre length is angle times radius

K 1
X(———uz)=s(1-uzky),
kxx

b
kxx

therefore,

The fibre will elongate due to displacement u y (fig. 53). The fibre strain is

s
r—(ry+uy)—s y
Y )y
€3 =—=—=uykx.
s ry

. ou
The total strain is €, =€yy] —€xy2 + €xx3 = 6_x — ki +kyu) .
X

Q.ED.

Shell membrane equation 2 can be derived in the same way.

Uy

dx

Figure 53. Deformation in the x direction, in the z direction; in the y direction

Derivation of membrane equation 3
The first two terms of equation 3 are the same as for plates (fig. 54).

40



_ duy duy
Txp,1 dy | dx

dy

uy+duy

[y

dx |
\
Figure 54. Deformation in the x and y direction

Since u,, is perpendicular to the surface a uniformu, causes shear in the panel (fig. 55).

kyy dxdy 0 Ky dxdy
dx dy

+

=2kyyu; .

Figure 55. Deformation due to displacement in the z direction

In a curved coordinate system a uniform deformation u, produces a shear strain (fig. 56).
Yxy3 = Kty
In the same way can be derived yyy,4 =kyu,, .

The total shear deformation is
Ouly,

u
Y
Yxy =Vxyl = Vxp2 = Vxp3 ~Vxy4 =E+E—2kxyuz —kyu, —kyuy.

Q.ED.

\ x
dx Jeyy dx dy
L uy——

dy
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Figure 56. Shear deformation dué to uniform x displacement in a curved coordinate system

Duomo di Firenze

The cathedral of Firenze (Florence, Italy) has a dome with a span of 44 m (fig. 57). The builder of
the dome was Filippo Brunelleschi. As far as we know he had only two examples, the Pantheon
(p. 14) and the Hagia Sophia. The Pantheon has a span of 43.4 m and is made of concrete.
However, it had been built 1500 years before and the recipe for making concrete had been
forgotten. The Hagia Sophia has a span of 31 m and is made of brick. However, it has large
buttresses which the people of Firenze thought were ugly. Brunelleschi made a brick design with
an inner and an outer shell (fig. 58). Construction of the dome started in 1420 and took 16 years.
Many historians see this dome as the end of the middle ages and the start of the renaissance.’

Figure 57. Duomo di Firenze, Italy Figure 58. Cross-section of the dome

8 Time frame: In 1505 Leonardo da Vinci painted his Mona Lisa.
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In the lower part of the dome the hoop forces are tension. This is carried by stone blocks
connected by iron bars. Without this the dome would crack and collapse. Fortunately, the iron did
not corrode away in the more than 570 years that the dome exists. Humidity in the masonry is
carefully monitored.

Saint Paul’s Cathedral

Saint Paul’s cathedral in London was built from 1675 until 1711.* The design has been made by
Christopher Wren who also supervised construction (see cables and arches p. 5). The outside
dome is made of timber (fig. 59, 60). The inside dome is made of bricks and has an oculus. In
between is a third dome. This dome is cone shaped and made of bricks. It carries the stone lantern
and supports the outside dome. Note that the pressure line (p. 6) in the domes and the cathedral
walls is very clear. This designer knew exactly what he was doing. The dome spans
approximately 35 m.

Under the dome is the famous whispering gallery. When you are at this gallery and whisper
something it can be clearly heard by someone on the other side of the gallery. This is because
sound waves are guided along the curved wall of the gallery. Clapping your hands produces no
less than four echoes. The name “whispering gallery” is now generally used for this acoustical
effect in physics.

GOLDEN GALLERY
85 metres from
Cathedral Floor

STOME GALLERY
5 ! 53 metres from
| [y Cathedral Floor

.. ——— WHISPERING GALLERY
o 30 metres from
Cathedral Floor

CATHEDRAL FLOOR

—— CRYPT —

Figure 59. Dome of Saint Paul’s Cathedral [10] Figure 60. Cross-section of the cathedral [11]

4 Time frame: In 1684 Isaac Newton discovered the laws of motion, with which we calculate trajectories of
objects on earth and in space. In 1765 James Watt invented the steam engine with condenser, which marks
the start of the industrial revolution. When you visit Saint Paul’s Cathedral you can literally touch the
civilization that made these big steps in human development. As a consequence we speak English today.
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Derivation of membrane equation 7
Figure 61 left top shows a small shell part with only normal force n,.. . Three forces act on this

shell part. Equilibrium in the x direction gives

Onyy dx 1 dx
VS (—+—2)— —
. 2) 1(ky 2) (M

1

Onxx S
ky

Ox

dx dx
Px1dxdy + (ny, + 7)31( 7) =0

on
ix +ky”xx + P51 =0.

This can be simplified to

Figure 61 left bottom shows a small shell part with only normal force n V- Three forces act on

this shell part too. Equilibrium in the x direction gives

Py odxdy — nyydeI =0

This can be simplified to —kyn,,, + pyp =0.

Figure 61. Equilibrium of a curved plate part in the x direction

Figure 61 right shows a small shell part with only shear force ny, - Four forces act on this shell

part. Equilibrium in the x direction gives
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a”xy dy 1 dy
)R (———)+n,,dyd3=0
> 2) 3(kx 2) Ny @y o3

Onyy, d 1 4
a _y)83 (_ + _y) - (nxy -
o 2 Tk, 2

Px3dxdy + (ny, +
. T a”)cy
This can be simplified to 8_+ 2kynyy, + pyx3 =0.
y
Substitution in p, = py + py2 + py3 gives

Onyy n anxy

Ox

+ky (nyy =1y ) + 2k, + py =0

Q.E.D.
Shell membrane equation 8 can be derived in the same way.
Derivation of membrane equation 9

A shell part can be curved in the x direction (fig. 62). It needs to be in equilibrium in the z
direction. This is described by Barlow’s formula (p. 8).

1
nxx-l—pzlk—:O.
XX

A shell part that is curved in the y direction gives a similar equilibrium equation

1
nw+p22k—:0.
Yy

A shell part can also be twisted (fig. 63). Equilibrium in the z direction gives

k., dxdy k., dxdy
Nyy dyxyT + 1y dxxyT +py3dxdy=0,

which can be simplified to
2nxykxy +p3= 0

For a shell part that is curved in all three ways ky,, ky, and k,,, the load p, is obtained by

summation.

Pzl t P2t Pz3 =Dz

Substitution of the previous four equations gives
kyxhyy +kyynyy, +2kyny, + p; =0

Q.ED.
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Figure 62. Equilibrium of a curved shell part  Figure 63. Equilibrium of a twisted shell part

Soap bubbles and soap films
A free soap bubble is a sphere (fig. 64). When a bubble is attached to an object its shape is more
difficult to describe. A step in the right direction is that for any bubble the mean curvature £, (p.

24) is constant over the surface. This is proven here by applying shell membrane equation 9 (p.
38).
Soap has the properties of a liquid; there is no shear stress and the normal stress is the same in all

directions. Therefore, n,, =0 and n,, =n,, =n. Substitution in equation 9 gives

1 __ P
2k +Kyp) ‘_2_;’

which is by definition equal to £, . The air pressure in the bubble is a little larger than outside
due to the stress in the soap membrane. The over pressure p, is the same everywhere in the

bubble and the force # is the same everywhere in the membrane. Consequently, the mean
curvature is everywhere the same. Q.E.D.

A soap film in a wire loop is free to minimise its area (fig. 65). Therefore, it is called a minimal
surface. It has equal air pressure on both sides. Therefore, p, = 0, consequently, k,, = 0

everywhere in the film. This property is often used in form finding (p. 16) of tent structures.

Figure 64. Free soap bubble  Figure 65. Soap film in a wire loop
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Beam calculation of a simply supported tube
Consider a simply supported beam with an evenly distributed load (fig. 66). The cross-section of
the beam is circular (fig. 67). The load is self-weight p [kN/m?].

In a handbook we find the moment of inertia [ = Tca3t.

From figure 67 we derive the distributed line load ¢ =2na p [kN/m].

Elementary mechanics gives us the moment in the middle M = lql 2 ,

8
the stress at the bottom o = # ,
L . 5 ql
and the deflection in the middle w=—=-="—.
384 EJ
o . pl? s pl
Substitution in the last two equations gives 6 =—— and w=—- .
dat 192 2,
q
Y WVVVVVVVV
A\ JAN

\ !

\
Figure 66. Simply supported beam Figure 67. Cross-section of the beam

Shell calculation of a simply supported tube
Consider the simply supported beam (fig. 66). The coordinate system is shown in figure 68. We
see that

1
ke =0 kyy == k=0, ay=1 a,=I

Y v
Px=0, py=psin—, p,=-pcos—.
a a

Atboth ends u = %l and u = —%Z the tube is closed by a thin diaphragm. This diaphragm can

carry membrane forces without buckling but it cannot carry bending moments. The middles of the
diaphragms are fixed.

The boundary conditions are

_1 u., =0 1
u—2l z
Ny =0 3
u=0 u, =0 4
Ny, =0 5
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Most boundary conditions are obvious. Only boundary condition 5 is explained (fig. 69). The
shell and the loading are symmetrical. Symmetry and equilibrium have opposite requirements for
the directions of the stresses at u = 0. Therefore, the only possible stress is zero stress.

Figure 68. Local coordinate system of the tube

\

Xy Nxy

n

Figure 69. Shear stresses in the middle section due to symmetry (left) and equilibrium (right)

Shell calculation of the stresses
In this section the stresses in the tube are calculated using the shell membrane equations (p. 38).

n
Equation 9 simplifies to _ p cos~ =0 from which we solve Ny, =—pa cos—.
a a
. L Y anxy Y . Y
Equation 8 simplifies to psin—+ + psin—=0 from which we solven,,, =-2pusin—+Cj.
a a a
Boundary condition Ny (0,v) =0 gives C) =0.
. L Ony, 2pu v . p u? v
Equation 7 simplifies to —=————cos—+0=0 from which we solven,,, =——cos—+C;.
Ox a a a a
2
L | PGy
Boundary condition n,,, (El ,v)=0 givesCy =— cos—.
a a

For steel tubes the Von Mises stress (p. 101) in the middle bottom (u,v) = (0, @) is important.

2 2 2
nyy = \/”xx — Hyxllyy, + 1y, +3”xy

2 2 4

. n . [ a a
Using oy = o , this can be evaluated to |Gyps max = PL - 4—2+ 16—/
4 )

4at /4

We see that for long tubes (/ >> a)the shell result is the same as the beam result (see beam
calculation p. 47). For a short tube of / = 6a the shell result is 5% smaller than the beam result.
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Exercise: What is the stress in the top of the beam?

Statically determinate

In the previous section, the stresses everywhere in the tube are calculated using the equilibrium
equations only. Therefore, the tube is a statically determinate structure. This is typical for shell
structures:

If the support is statically determinate, then the membrane stresses are statically determinate.’
Tube shear stress
The shear force V in the tube cross-section is (fig. 70)

2na
V= J. nxysinﬁdyz—Znapu.
a
v=0

The largest shear stress in the tube cross-sections is

Ny (u,%na) _ 2pu
t t

Tmax =~

Expressed in shear force ¥ and cross-section area 4 it becomes®

.
—

Tmax =

1
2

Shell calculation of the tube deformation
In this section the deformation of a simply supported tube is calculated using the shell membrane

equations (p. 38). The solutions of .., Ny and Ny, are substituted in equations 4, 5 and 6.
. L 0 .
Equation 1 simplifies to L(uz _1.2 +va2)cos1=ﬁ from which we solve
aEt 4 a Ox
__pu (1 2_1;2 2) v
=——oI/=u" —=1"+va“|cos—+Cj3.
Y 4Et\3 4 a 3
Boundary condition 4 gives C3 =0.
: o 4 : v Ou :
Equation 3 simplifies to —ﬂ(1+V)San:— pu (luz _12 +va2)sm1+—y from which
Et a a2 Et\3 4 a Ox
2
pu 1.2 12 1,2)\.:.Y
we solve u =—(—u ——a“(4+3v)—-=! )s1n—+C4
Y= 2p\12 2 8 a
.. . PP (5 2.1 2.3 2). v
Boundary condition 2 gives C4 =——| =5/ +~a” +=va” |sin—.
2E 920 T2 3 P

5 Statically determinate is a model property. A more advanced model of the same structure can be statically
indetermined.
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Equation 2 simplifies to

2
P (—vu2 —a? +lv12)coslzﬂ(Lu2 —la2(4+3v)—112)cosz+
aEl‘ 4 a a3E[ 12 2 8 a

2
+L S5 2,1,2 +§va2 cos~ + 22 from which we solve
a3Et 192 2 8 a a

_ P (1 4,1 2,2 ;2 1.2;2 4 5 44 v
uZ_aZEz( U tga (4u” -1 )(4+v)+8ul a 1921 )cosa

The deflection of the middle bottom (u,v) = (0,t @) is important.

Uzmax =

pl4 5 v+dda® o
S0 s 2 7
a“Ee\192 & =

For long tubes (! >> a)the shell result is the same as the beam result (see beam calculation of a

simply supported tube p. 47). The second term is caused by shear deformation. The last term is
caused by ovalization of the cross-section. For a tube of / =20a the shell result is 5% larger than
the beam result. For a short tube of /= 6a the shell result is 61% larger than the beam result.

Bernoulli's hypothesis

Jacob Bernoulli’s hypothesis is: Plane cross-sections remain plane during bending.® It is the
starting point for deriving section moments in beams, plates and shells. We can test this
hypothesis for tubes using the shell solution.” The deformation in the x direction is

_ bu (1 2 142 2) v
U, = —u“ —=[“+va“ |cos—.
Y aEt\3 4 a

This can be written as

u,=Cd,

where C = pu (luz —ll2 +va2) and dzacosl.
azEt 3 4 a

Factor d is the distance of the considered material point to the neutral axis. It is a function of v.
Please note the difference between v (Poisson’s ratio) and v (curvilinear coordinate). Factor C is
not a function of v and it depends on the considered cross-section. Therefore, u, is linear in 4 and

6 Jacob Bernoulli (1654-1705) was a professor of mathematics at the University of Basel in Switzerland.

7 Note that in this section Bernoulli’s hypothesis is applied to a beam with a thin-wall circular cross-section.
Here, it is not applied to the thin shell wall.
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Bernoulli’s hypothesis is true for tubular sections despite the presence of shear forces. For tubular
sections it should be called Bernoulli’s theorem.?

Shear stiffness
Shear stiffness is defined as

Gd =

b

v
Y
where V' is the shear force and y is the shear deformation of a slice of a beam (fig. 70). For the

considered tube we obtain

2na

V= J. Nyy singdy =—2mapu

v=0

ou _ 3
y:_y(ujina)+“x(“am) uy(,0) _ —4pu(+v)

ox 2a Et
V__Zmapu _ E 150,-1gy
Y Hpuley) 2irw2 T

Et

So,
GA; =164

uy (u,0)

J Tt

uy (u,ma)

Figure 70. Shear deformation of a tube slice. Bernoulli’s hypothesis (p. 50) has not been used.

8 For other cross-section shapes Bernoulli’s hypothesis is not true due to shear and torsion deformation.
Fortunately, the linear distribution of normal stresses due to bending — which follows from Bernoulli’s
hypothesis — is true for all cross-sections of slender beams.

% For thick wall tubes the shear stiffness is G4, = (% + %L)GA and the largest shear stress is
a

Tmax = (2+ i)% This has been derived from finite element analysis using volume elements [12].
a
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Gap
Boundary condition 1 has not been used. Here it is checked if this boundary condition is fulfilled.
The displacement in the radial direction is

_ P (1A 12,2 2 1.22 4 5 4\ V
uZ——azEt( U tgd (4u l)(4+v)+8ul a 1921 )cosa

2

e -a Voo
[ this simplifies to u, = P cos~ which is not zero.

At uzil
2 Et a

Therefore, boundary condition 1 is not fulfilled. There is a gap between the diaphragm and the
shell (fig. 71). To close the gap the shell needs to bend. This deformation is not part of the
membrane equations. To fulfil all boundary conditions the membrane equations need to be
extended with bending (see Sanders-Koiter equations p. 54). The phenomenon of strong bending
close to edges is called edge disturbance (p. 14, p. 71). It is typical for thin shell structures.

=3
97 T
un&leEormﬂ_g/ ]

deformed Y

m.‘:mlﬂr‘mv\g M

”H"L@@ ry

Figure 71. Boundary condition 1 is not fulfilled

Monocoque

The first airplane structures were a frame of wood or steel covered with a skin of cotton fabric. In
1912 a racing plane was built with a skin of three glued layers of wood veneer in total 4 mm thick
(fig. 72, 73). This skin was also the load bearing structure, so a frame was not applied. The
French company that build these planes was founded by Armand Deperdussin.'® The plane was
called the Deperdussin monocoque (Pronounce mo-no-cock without emphasis. Monos is alone in
Greek; coquille is shell in French) [Wikipedia]. To us it looks like a normal plane but in those
days its shape was different from any other plane, for example, it had one set of main wings
instead of two above each other. The plane won several races and set the world speed record.
Ever since, the word monocoque is used for structures that are fast and derive a large part of their
strength from their skin. Examples are racing cars, rockets and army tanks.

10 Armand Deperdussin (1860—1924) was a French business man [Wikipedia].
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Figure 72. Deperdussin monocoque airplane [1913 Musée de [’Air et de [’Space, Paris]

Figure 73. Fuselage of the Deperdussin monocoque
[G. Printamp 1912, Smithsonian’s National Air and Space Museum, Washington]

Structural models overview
In scientific literature often the following names are used for structural idealisations.

structural element name deformation included
beams Euler-Bernoulli beam bending

Timoshenko beam bending and shear
plates loaded in plane | Navier equations extension
plates loaded Kirchhoff plate bending
perpendicularly to Reissner-Mindlin plate (p. 61) bending and shear
their plane Von Karman-Foppl equations extension, bending and

large displacements

shells Shell membrane equations (p. 38) | extension

Sanders-Koiter equations (p. 54)

extension and bending

several theories

extension, bending and shear
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Shell theory

In 1888 Augustus Love ! formulated the basic equations that govern the behaviour of thin elastic
shells [13, 14]. He used Jacob Bernoulli’s '? hypothesis (p. 50), which was also used by Gustav
Kirchhoff 13 in formulating the plate theory. In the years that followed there was much discussion
on this shell theory. Some inconsistencies were found. Many scientists proposed other equations,
such as Wilhelm Fliigge '* (1934) [15], Ralph Byrne ' (1944) [16], Valentin Novozhilov ' (1951)
[17], Eric Reissner 7 (1952) [18] and Paul Naghdi '® (1957) [19]. Also Love himself proposed
improved equations [20]. Lyell Sanders '° was the first to remove all inconsistencies from Love’s
first equations [21]. Independently, Warner Koiter % proved that Love’s initial assumptions were
correct after all and he also derived the correct shell equations [22, 23]. In 1959 there was a
conference in the aula of Delft University where Sanders presented the correct shell equations and
Koiter presented the correct shell equations. One of Koiter’s papers on the subject has the clear
title “All you need is Love.” [24].

Love’s first equations are called the first approximation theory. Including improvements they are
referred to as the Sanders-Koiter equations (p. 54). Other theories account for out-of-plane shear
deformation and are called higher-order approximation theory. They are for thick shells (p. 13).

Before 1959, equations were developed for specific shell shapes. For example, equations for
cylindrical shells were proposed by Lloyd Donnell 2! (1934) [25] and Leslie Morley ** (1959)
[26].

Sanders-Koiter equations

The following 21 equations describe membrane action and bending action in thin shell structures.
Equation 18 is derived below (p. 66). The other equations are not derived in these notes but they
can be obtained in the same way. The derivation of Sanders and that of Koiter can be found in
literature [21] and [22, 23] respectively. The derivation of Koiter is based on tensor analysis and
is most rigorous. The equations are valid for elastic material behaviour and small displacements.
They correctly predict no stresses for rigid translations. The equations do not change when the
local coordinate system is rotated around the z axis. The equations correctly produce symmetrical
stiffness matrices (Betti’s reciprocal theorem). The Sanders-Koiter equations include the

' Augustus Love (1863—1940) was a mathematician and professor in Oxford. He presented his shell theory
to the Royal Society at the age of 25 [Wikipedia].

12 Jacob Bernoulli (1654—1705) was a professor of mathematics in Bazel [Wikipedia].

13 Gustav Kirchhoff (1824-1887) was a German physicist and professor in Berlin, Breslau and Heidelberg.
He is also well-known in physics for discoveries such as Kirchhoff’s laws on electrical current [Wikipedia].
4 Wilhelm Fliigge (1904-1990) was professor of civil engineering in Gottingen. After the second world
war he and his wife moved to the USA and became professors in Stanford [Wikipedia].

15 Ralph Byrne (1912-1948) was associate professor of applied mechanics in Caltech, Pasadena. [27, 28]

16 Valentin Novozhilov (1910-1987) was born in Lublin, Poland. He studied in Saint Petersburg and
became a professor there [www.shellbuckling.com].

17 Eric Reissner (1913-1996) was professor of applied mechanics in MIT and San Diego. His father, Hans
ReiBner (1874-1967) was an aircraft engineer and professor in Aachen and Berlin. The family moved from
Berlin to the Illinois just before the second world war [Wikipedia].

18 Paul Naghdi (1924-1994) was born in Tehran. He studied in the USA and became professor of
mechanical engineering in Berkeley [Wikipedia].

19 Lyell Sanders (1924-1998) was professor of structural mechanics in Harvard [German Wikipedia].

20 Warner Koiter (1914-1997) was professor of applied mechanics in Delft [Wikipedia].

2l Lloyd Donnell (1895-1997) was professor of mechanical engineering in Illinois [Wikipedia].

22 Leslie Morley (1924-2011) was a scientist in the Royal Aircraft Establishment and a professor in Brunel
University, London [Wikipedia].
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equations for plates. In other words, with appropriate values for &, kyy s kxy s

Sanders-Koiter equations simplify to the equations for plates loaded in plane, plates loaded
perpendicular to their plane (Kirchhoff theory), circular plates and the shell membrane equations
(p. 38). This is clearly a remarkable achievement of the 20" century scientists. The Sanders-
Koiter equations are a scientific masterpiece. *

Oy, 0y, the

Table 4. Sanders-Koiter equations

kinematic _ Ouy i i 1
equations Exx "o otz + Ryl
ou 2
Y
SW E kyyuz +kyux
_Oux (2 o gty —k ’
Txy E o xylUz —RxUy —RylUy,
Ou,, 4
=— koctty — kot
x ot THglly
Ou, 5
y ‘E‘kyy“y kyttx
6
1, Ou y
¢z =7 8; —=—kyuy +kyuy)
op 7
xx = ax _kxy(Pz +kx(Py
op 8
Y
Ky —Evthy(pz Jrky(p)C
a(Px aq)y 9
Pxy :§+E+ (kx _kyy)(Pz —ky @y _ky(Py
constitutive Et 10
equations Myx = 12 (Exy +VEyy)
Et 11
Ny —2(8),)/ + VEyy)
1-v
nxy + nyx _ Et 12
2 2(1+v) Yoy
ES 13

Moy (K yy +v1<yy)

T l20-vY)

23 The following dates provide a time frame. In 1822, Claude-Louis Navier formulated the Navier-Stokes
equations which describe the behaviour of fluids [Wikipedia]. In 1850, Gustav Kirchhoff completed the
differential equation that describes the behaviour of plates [Wikipedia]. In 1865, James Clerk-Maxwell
unified many laws into Maxwell’s equations that describe electric and magnetic fields [Wikipedia]. In 1916,
Albert Einstein found the Einstein field equations describing the structure of the universe [Wikipedia]. In
1926, Erwin Schrodinger derived the Schrodinger equation of quantum mechanics describing materials on a
very small scale [Wikipedia].
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ES 14
My, =—————(K, + VK )
Pona-vyh Y
ES 15
My, = ————
241y Y
equilibrium om Omy,, 16
equations Vxy = Wxx + F +kyy (M —myy, )+ 2kymyy,
om om 17
Yy Xy
vy = s + +ky (myy, —myy )+ 2k ymy,
Myy =Ny ==Ky (Myy =My, ) + (ke =k )y, 18
on on X 19
Py = _T?—a—;—ky(nxx — ) =k (g, + )+ vy + Ky vy,
on on 20
Yy Xy
py= —? B ky(nyy =y ) = ky (N, + 1y ) + kg vy, + kg vy
av 6Vy 21
Pz = ~kaxhyy =k (g + 1y ) =k, — a—; "o kyvy —kyvy

a u
Exercise: Novozhilov writes y,), = —yi(—yJ + a_xi[“_x] —2kyyu; [17 p. 24]. Show that
Oy Qul ay | o Ov oy

this is just another way of writing Sanders-Koiter equation 3.

Ping pong ball
Consider a sphere that is deformed into an ellipsoid (fig. 74). Think of a ping pong ball that is
squeezed by your hand. The code below shows the evaluation of the Sanders-Koiter equations (p.

56) by Maple. The deformationu, = bc0s2—u , Uy = 0.49bsin2—u has been obtained by trial and
a a

error to minimize the load p,. . The code produces figure 75. Displacement u,, and distributed

y
force p,,are zero and p is almost zero. Only p, is needed to obtain this deformation.

Figure 74. Deformation of a spherical ping pong ball into a prolate ellipsoid shape

> a:=20: t:=0.4: E:=1400: nu:=0.3: b:=1:

> kxx:=-1/a: kyy:=-1/a: kxy:=0: alphax:=1: alphay:=sin(u/a):
> ux:=-0.49*b*sin(2*u/a): uy:=0: uz:=b*cos(2*u/a):

>
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> ky:=diff(alphay,u)/alphay/alphax: kx:=diff(alphax,v)/alphax/alphay:

> epsilonxx:=diff(ux,u)/alphax-kxx*uz+kx*uy:

> epsilonyy:=diff(uy,v)/alphay-kyy*uz+ky*ux:

> gammaxy:=diff(ux,v)/alphay+diff(uy,u)/alphax-2*kxy*uz-kx*ux-ky*uy:

> phix:=-diff(uz,u)/alphax-kxx*ux-kxy*uy:

> phiy:=-diff(uz,v)/alphay-kyy*uy-kxy*ux:

> phiz:=1/2*(-diff(ux,v)/alphay+diff(uy,u)/alphax-kx*ux+ky*uy):

> kappaxx:=diff(phix,u)/alphax-kxy*phiz+kx*phiy:

> kappayy:=diff(phiy,v)/alphay+kxy*phiz+ky*phix:

> rhoxy:=diff(phix,v)/alphay+diff(phiy,u)/alphax+(kxx-kyy)*phiz-kx*phix-ky*phiy:

> nxx:=E*t/(1-nu”2)*(epsilonxx+nu*epsilonyy):

> nyy:=E*t/(1-nu”2)*(epsilonyy+nu*epsilonxx):

> nxym:=E*t/(2*(1+nu))*gammaxy:

> mxx:=E*t"3/(12*(1-nu”2))*(kappaxx+nu*kappayy):

> myy:=E*t"3/(12*(1-nu”2))*(kappayy+nu*kappaxx):

> mxy:=E*t"3/(24*(1+nu))*rhoxy:

> vx:=diff(mxx,u)/alphax+diff(mxy,v)/alphay+ky*(mxx-myy)+2*kx*mxy:

> vy:=diff(myy,v)/alphay+diff(mxy,u)/alphax+kx*(myy-mxx)+2*ky*mxy:

> tmp:=kxy*(mxx-myy)-(kxx-Kyy)*mxy:

> nxy:=nxym-tmp/2:

> nyx:=nxym-+tmp/2:

> px:=-(diff(nxx,u)/alphax+diff(nyx,v)/alphay+ky*(nxx-nyy)+kx*(nxy+nyx)-kxx*vx-kxy*vy):
> py:=-(diff(nyy,v)/alphay+diff(nxy,u)/alphax+kx*(nyy-nxx)+ky*(nxy+nyx)-kyy*vy-kxy*vx):
> pz:=-(kxx*nxx+kxy*(nxy+nyx)+kyy*nyy+diff(vx,u)/alphax+diff(vy,v)/alphay+ky*vx+kx*vy):
>

> plot({ux,uy,uz,px/1.5,py/1.5,pz/1.5},u=0..Pi*a-1);

Figure 75. Loading p, and deformationu,., u, of a ping pong ball computed by Maple

Compatibility equation
Sanders-Koiter equations 1 to 9 (p. 54) can be combined, resulting in the following equation.

2 2 2

ey Ty 0TEpy

- + - ==k, Ky T Ky Pxy — Ky K
8y2 w0y o2 yyxx T RxyPxy T RS yy

In the derivation is used thatk,, ky and kg are small (appendix 4.). This equation shows that the

strains of the middle surface are connected to the bending deformation. So, we cannot randomly

choose functions for the strains &, 7y, , €, and randomly choose functions for bending

curvatures Ky , Py » and expect this could happen in a specific shell with

Kyy
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curvatures kyy, kyy, , k-

behaving like a plate (p. 114).

Therefore, this equation is called the compatibility equation. See Shell

Rigid translation

The Sanders-Koiter equations (p. 54) are accurate for small displacements. However, for large
rigid translations they are accurate too. For example, consider a reinforced concrete industrial
chimney with a height of 70 m, a radius a = 2.6 m and a wall thickness # = 0.1 m. During a storm
the chimney top moves b = 1.0 m which is not exceptional for a chimney of this height.

A rigid translation of the whole chimney (fig. 76) can be described exactly by the displacements
uy =0, uy, =bcosl, u, = bsin— .

a a

Obviously, this translation should not produce strains.

Figure 76. Rigid translation of a cylinder cross-section
. . 1
From the chimney geometry it follows that ky, =0, k,,, = 0 kyy =0, ay=1 a,=1I.

Substitution of these in the kinematic equations 1 to 9 gives
Exx =0, &), =0, vy, =0, Ky =0, x,,=0, py, =0,

which is the correct result. Consequently, the large deflection of the chimney top can be described
by the Sanders-Koiter equations.

Exercise: Large rigid rotations do produce unrealistic strains and stresses. Check the Sanders-
Koiter equations for this.

Shell differential equations
When the Sanders-Koiter equations (p. 54) are substituted into each other, the following two
coupled partial differential equations are obtained (assuming p, = Py =0and vy, v,

Nyy =Ny, are small ).
3
E
—F¢+—tzV2V2uz =P:
12(1-v7)
and
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ViV2+EtTu, =0,

where,

I'()=ky,

b

2 2 2
0y 20, 20
oy OxQy ox?

2 2
v2()= 20,70

ox? Gyz
¢ is the Airy stress function,?* which is related to the membrane forces
nxxzﬂ =az—¢ Ny, =N =—82¢.
ayz > »y axz > Xy yx ax@j/

Differential equation type

Linear partial differential equations of the second order are subdivided in three types; elliptic,
parabolic and hyperbolic [Wikipedia]. Physicists use this to predict the nature of the solution and
select a solution method. The membrane part of the shell differential equations (p. 58) is

_F(I) =Pz

In a well-designed thin shell, this part dominates the behaviour. It can be shown that the type of
this differential equation depends on the Gaussian curvature kg (p. 23).

kg >0 = elliptic, the solution is local
kg =0 = parabolic, the solution extends along one straight line
kg <0 = hyperbolic, the solution extends along two straight lines,

which are called characteristics

Shallow shell differential equation
For cylinders and spheres &, , kyy , kyy, are uniform. This reduces the shell differential equations

(p. 58) to

3
B VY22V, + EiTTu, =V2V2p..
12(1-v?)

This is a linear eight order partial differential equation in curvilinear coordinates u and v (p. 31).

A shallow shell is a shell with a sagitta (p. 1) that is small compared to its span. For such shells
the curvatures do not change much over the surface and the above differential equation can be a
good approximation.

A limitation of the shallow shell differential equation is that we cannot fix u, or u,, on

boundaries. This leads to inextensional deformation of shell with negative Gaussian curvatures.

24 George Airy (1801-1892) was an astronomy professor in Cambridge, England [Wikipedia]
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Plate boundary conditions

In general, the solution to an eight order partial differential equation has 8 constants in the u
direction and 8 constants in the v direction. The constants can be solved by 4 boundary conditions
on each edge. Figure 77 shows the boundary conditions of a canopy that is fixed on one edge.
Note that there are too many boundary conditions. So, some boundary conditions cannot be
fulfilled.

This problem also occurs in plates. It was solved by Gustav Kirchhoff 3 in 1850 [29]. He derived
the correct boundary conditions of plates from virtual work. Others interpreted his solution as that
the stresses due to the torsion moment My, O round in the edge (fig. 78-1). Therefore, My, on the

edge needs be replaced by a concentrated shear force V in the edge (fig. 78-2).

mxydx: Vidx = |V=m

edge part

Figure 77. Boundary conditions of a canopy

1 2 \% W/3 \/

Figure 78. Forces on an edge part
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Figure 79. Boundary conditions according to Kirchhoff (plates)
From equilibrium of a somewhat larger edge part (fig. 78-3) it follows that

podxdy —v,dx+ (v, +dv)dy —(V+dV)+V —v,dy=0.

This can be simplified to

dv 14
dy—v,+—>dy——=0.

P4y =Ty dx 4 dx
dv . .

When dy 4 0 then —vy, —d—=0 which can be written as
X

V —_a_V

Y ox

Now we have 4 boundary conditions per edge and the differential equation can be solved (fig. 79).

Thus, according to Kirchhoff, m,,, need not be zero on a plate or shell edge in the x or y direction.
Also v, need not be zero on an edge in the y direction, and vy need not be zero on an edge in the x

direction. Clearly, in reality they are zero.

We need to interpret m,,, on an edge as a concentrated shear force V in the edge.

We need to interpret v on an edge as a change in the concentrated shear force V.

However, the plate boundary conditions are not entirely correct for shells (see shell boundary
conditions p. 67).

Exercise: In plates my,=0 ina fixed edge along the x or y direction. In shells this can be

observed too, however, there are exceptions. Can we show this with the Sanders-Koiter equations?
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Reissner-Mindlin plate theory®
It is possible to come up with a new shell theory that does not have interpretation problems of the

boundary conditions? In fact, the Reissner-Mindlin theory [29] for thick plates predicts My, Vi

and v, on edges realistically without interpretations (fig. 77). However, to compute these values

accurately we need to use very small finite elements on the edges. For example, when a plate is
180 mm thick we need to use finite elements that are less than 20 mm wide. This is impractical
due to large computation time and therefore almost never applied. A practical element for a 180

mm plate is more than 250 mm wide. For this mesh m,,, will not be zero on the edges also not

when the Reissner-Mindlin theory is used. Therefore, also in the Reissner-Mindlin theory we
need to interpret the torsion moment on an edge as a concentrated shear force in the edge.

Edge shear stresses
The shear stress in a plate edge or shell edge is 2

3v, 3 v
6., =>2_210—.
Y2 20 2

The formula is valid when the local x axis points in the direction of the edge and the local y axis
points outwards (fig. 80). Unfortunately, finite element programs using shell elements do not
compute this stress. If important, we need to calculate and check this stress by hand.

The concentrated shear force produces a local stress peak. In many structures a local stress peak is
not important because the stress will redistribute (steel yields, reinforced concrete cracks).
However, a stress peak is important for materials that do not yield such as glass. A stress peak is
also important for fatigue.

25 The name of this theory refers to Eric Reissner and Raymond Mindlin. Eric Reissner (1913-1996) was a
professor of applied mechanics at MIT and the University of California San Diego [Wikipedia]. Raymond
Mindlin (1906—-1987) was a professor of applied science at Columbia University, USA [Wikipedia]. From
our point of view they were very skilled in mathematics. They had to be because they did not have
computers.

26In 2010, Johan Blaauwendraad (professor of structural mechanics at Delft University) used Reissner’s
plate theory (p. 61) to derive the stresses in plate edges. He showed that the shear stress distribution is

exponential and the factor of the peak stress is %«/ﬁ [29]. In 2013, Rutger Zwennis (at that time a student
at Delft University) modelled a plate loaded in torsion using volume finite elements [30]. He showed that

the peak stress due to V includes the factor 4.48 instead of %«/ﬁ =4.74. Who is right? The Reissner plate

theory is not exact because Reissner made several assumptions in the derivation. The finite element
analyses is not exact either because the number of elements is restricted. In these notes the safe choice of

%\/E has been made. Future computers will be able to determine the factor very accurately.
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v outer surface

edge

edge shear stress

Figure 80. Shear stresses in a free shell edge

Reinforced concrete plate edges
In reinforced concrete plates it is common practice to put hairpins in the edges (fig. 81). A hairpin
is a reinforcing bar that is bend in the shape of a U. The hairpins have the same diameter and
spacing as the bars perpendicular to the edge. There is a good reason for these hairpins. They
carry the concentrated shear force (fig. 82).

tie (hairpin)

hairoi / strut (concrete)

airpin late ed

_hairpin ‘ / / [ plate edge ‘
J J

\ 4 4
4 plate edge J r
! Vv
| \
Figure 81. Reinforcement in a Figure 82. Strut-and-tie model of a
cross-section of a concrete plate edge reinforced concrete plate edge

Edges that are not in the x or y direction
If an edge is not in the x direction or y direction, the shear force v, and the torsion moment

m,,, need to be transformed to the edge direction. For this we need to rotate the local coordinate

systems of the edge finite elements such that one of the axes is in the direction of the edge. The
obtained concentrated shear force on a free or simply supported edge can be easily checked

because it is equal to V' ==, lm)%y — My m,, , wherem,,,,m,, andm,, are the moments before
rotation.

Proof: Plate moments are a tensor (p. 97). myand m, are the principal values (p. 98). The
product mym is an invariant (p. 23) of this tensor. Therefore, mjmy =m,m,, — m§y=
Mgy, — ms21~ Suppose that the s axis is perpendicular to the shell edge. Since the edge is free or

simply supported mg, = 0. Therefore, mm,, —m)zcy = —mft —-1? QED.
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Palazzetto dello sport [31]

The palazzetto dello sport (p. 1) was built for the 1960 summer Olympics in Rome (fig. 1). It
hosted basketball. Nowadays, it is a sports and community centre.

The buttresses are made of prefab concrete. The shell and ribs are made of reinforced concrete
that was cast in situ. The formwork of the shell consisted of 1620 cassettes supported by steel
tube scaffolding. The cassettes were made of 25 mm thick ferrocement (fig. 83). Ferrocement is a
thin layer of mortar with a steel wire mesh inside.

Construction sequence of the dome Completed
- Placing the buttresses

- Building the scaffolding for the cassettes. The scaffolding included
circular rings made of curved rails of an old railway track. These rings
were horizontally elevated onto temporary columns of steel tubes.

- Building a timber template of a large part of the shell internal surface August 1956
- Drawing the grid onto the template
- Fabrication of moulds for the cassettes. First, onto the timber template | December 1956
the inside shape of one cassette was made of bricks and plaster (fig. 84).
Second, a cassette was made onto this inside shape. Third, this cassette
was moved down and several moulds were made of this cassette. Etc.

- Prefabrication of 30 cassettes a day

- Placing the cassettes onto the scaffolding (fig. 85, 86)

- Placing reinforcing bars in and on the cassettes

- Pouring concrete (fig. 87) February 1957
architect: Annibale Vitellozzi (1903-1990)

engineer: Pier Luigi Nervi (1891-1979)

contractor: Bartoli

Computer analyses were not performed. Structural calculations were done by hand and checked
by scale model tests.

reinferced concrete
= B e |

wire mesh

cassete

Figure 83. Cross-section of the shell and ribs  Figure 84. Mould fabrication
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el i ¥
Figure 85. A cassette [ ..., 1957]

Figure 86. Scadlding and cassettes [..., 1957]
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\ -
Figure 87. Construction site during concrete pouring [ ..., 1957]

Ry, # My
Sanders and Koiter independently derived that for shells n,,, #n,, . This is a very strange result

because shear stresses on perpendicular faces of an infinitesimal cube have the same
magnitude 6, =6, (fig. 88). If the shear stresses are the same, the shear membrane forces must

be the same. Nevertheless, Sanders and Koiter are right. This strange results follows from
moment equilibrium around the z axis of an elementary shell part (see derivation of equation 18 p.
66). It can also be seen in the definition of membrane forces for thick shells in appendix 7.

Finite element programs plot the mean membrane shear force %(nxy +ny,) It would be
interesting to plot the quantity %(nxy — Ny, too, however, finite element programs do not have
this option. It can be shown that %(nxy — Ny, does not change when the local coordinate system
rotates around the z axis (it is an invariant). When %(nxy — My is large compared

to %(nxy +n,,) then the shell is very thick and should be modelled by volume elements instead of
shell elements (see shell thickness p. 13).

n.,#n

¥y Xy yx

Figure 88. Shear stresses on a small cube Figure 89. In plane shear forces on a shell part
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n n

Challenge: The tensor { o
My Ty
In what situation are the principal values complex numbers?

xy} is not symmetrical. Are the principal directions perpendicular?
n

Derivation of equation 18

In this note the eighteenth Sanders-Koiter equation (p. 54) is derived. Consider moment
equilibrium of a small shell part around the z axis (fig. 90). When the part is only twisted, the
bending moments can produce a resulting moment around the z axis.

My =myy dy kyy, dx—my,, dx kyy, dy

When the part is curved but not twisted the torsion moment can produce a resulting moment
around the z axis.

Mo =myy dx kyy, dy —myy, dy kydx

The in plane shear forces can also produce a moment around the z axis.
M3 =ny,, dydx —ny, dxdy

The total moment around the z axis must be zero.
Myg+Mp+M;z=0

This evaluates to

kxy (M — myy) —(kyy — kyy )mxy + iy =Ny =0

Q.ED.
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m,,dx k,,,dy
Figure 90. Moment equilibrium around the z axis

Shell boundary conditions

The plate boundary conditions (p. 59) are not completely correct for shells. A shell edge has 3
displacements and 1 rotation. If a value is imposed to one of these a support reaction occurs.
Table 5 shows the formulas for computing the support reactions. They are derived from
equilibrium of small edge parts (fig. 91 and 92). The table is valid for an edge in the x direction
and the y axis pointing outwards. Clearly, instead of imposing a displacement, a distributed edge
load can be applied. The table can also be used for formulating these boundary conditions.

qydx+Vkydx—nydx=0

J\ edge-

Figure 91. Equilibrium of a shell edge loaded by a distributed shear force q
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Figure 92. Equilibrium of a shell edge loaded by a distributed normal force qy

Table 5. Boundary conditions for an edge in the x direction and the y axis pointing outwards

Kinematic (K) Dynamic (D)
Impose displacement  u, or apply line load Gy =Ny =k V.
Impose displacement  u,, or apply line load g, =ny, —ky V.
Impose displacement  u, or apply line load g, =vy, + aa—i
Impose rotation —0, or apply line moment —m -

1

2

Table 6. Boundary conditions for an edge in the x direction and the y axis pointing inwards

Impose displacement  u, or apply line load Gy =Ny Th V.
Impose displacement u, or apply line load qy =—ny, +ko V.
Impose displacement  u, or apply line load q; ==Vy — Z_V

X
Impose rotation -, or apply line moment  m yy -

5
6

Table 7. Boundary conditions for an edge in the y direction and the x axis pointing outwards

Impose displacement  u, or apply line load Gy =Ny —ky V.
Impose displacement  u,, or apply line load gy =ny —k, V.
. . oV
Impose displacement  u, or apply line load q, =V, + e
y
Impose rotation O, or apply line moment My, .

9
10

11
12

Table 8. Boundary conditions for an edge in the y direction and the x axis pointing inwards

Impose displacement  u, or apply line load gy =Ny +hky V.
Impose displacement u, or apply line load qy =—ny +k,V.
Impose displacement  u,, or apply line load q, =—Vy —aa—V .

y
Impose rotation Oy or apply line moment  —m, .

13
14

15
16
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Exercise: Proof that m_,= 0 in a free corner.

xy

Canopy example, shell boundary conditions

. 1 i
The canopy in figure 93 has curvatures k,, = kxy =0, kyy = ——. Substitution of these curvatures
a

in the shell boundary conditions (p. 67) gives the canopy boundary conditions.

Figure 93. Shell boundary conditions of the canopy

Diaphragm boundary condition

A tube is often closed by a thin wall, called diaphragm (fig. 94). The diaphragm can be bend
easily out of its plane but it resists deformation in its plane. Therefore, the diaphragm prevents
displacement of the tube edge perpendicular to the tube. It also prevents displacement of the tube
edge in the direction of the edge. The other displacements are free. This is called a diaphragm
boundary condition. It is often applied in shell analysis. (Examples on p. 47 and p. 163)

shell

shell
Aia [a\n raginm y
o ‘fofc‘l ahell Bé{t.jﬂ,
® sﬂii p{ L:\tt_." ; )
/// // Ll AV Y \{.AL;L f}
( \f‘i‘xcat concdlition

Figure 94. The diaphragm boundary condition can replace a diaphragm.
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Edge in the y direction
Ny =k, V=0

Uy = 0

u,=0

My =0

Edge in the x direction
u,y=0

-k

WV =0

Nyy

Overview of the shell variables

The table below gives an overview of the variables in the Sanders-Koiter equations (p. 54). The
variables that need solving are green. They are called dependent variables. Note that there are 21
dependent variables and 21 Sanders-Koiter equations. Boundary conditions (p. 67) are imposed

on the red edges.

material, thickness E vt
curvature
v 4 kyy 4 kxy
u u u
Lamé parameters
A% ax A% ay
N
u u
in plane curvature
of the parameter vk v ky
lines
u u
displacement 1K 2K 3K
13K v Uy 14Kly Uy, 15Ky Uy
N 9K A 10KA 11K
u SK U 6K u 7K
strain of the middle
surface Vo €y v &y v Txy
\ \ \
slope 4K
16K v Px v 9y v ¢
N\ 12KN \
U U 8K U
deformation
curvature v Ky v Ky v Pxy
\ \ \
U U U
membrane force 2D 1D
13Dy My v nyy 14D}y nxy v nyx
\ 9D A\ \ 10D/
U ~u 6D U <u 5D
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moment 4D
16D mxx myy v mxy
12D N
shear force, 3D
out of plane 15Dy vy v v
N 11D
U ~u 7D
load
px py A% pz
u u u

Generalised edge disturbance
An edge disturbance is a large moment at a discontinuity in a shell. This moment is local and at
some distance of the discontinuity it is much smaller. Examples of discontinuities are

- Fixed edge or pinned edge

- Point load or line load

- Discontinuity in the distributed load

- Discontinuity in the derivative of the distributed load

- Discontinuity in the middle surface

- Discontinuity in the slope of the middle surface (Co continuity p. 11)

- Discontinuity in the curvature of the middle surface (C; continuity)

- Change in sign of the Gaussian curvature (p. 23, see differential equation type p. 59)
- Discontinuity in the material stiffness

- Discontinuity in the shell thickness

Exercise: Which of the above discontinuities occur in a torus?

Beam supported by springs

A long beam is supported by uniformly distributed springs (fig. 95). The bending stiffness of the
beam is £/ [Nm?]. The stiffness of the distributed springs is k£ [N/m?]. The differential equation
that describes this beam is

d*w
EI—4+kW=0
dx

At the left beam end a displacement is imposed and the slope is zero. The right beam end is far
away. The boundary conditions are

if x=0 then w=w, and ow_ 0
Ox

. ow

if x—>o then w=0 and —=0
Oox
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‘4‘:2&3 t H “<W:s’éf

vt

Figure 95. Beam supported by distributed springs and loaded by an imposed displacement w,

The solution is

. TX X —TX
w=w (sin— +cos—)exp—,

ll ll Zl
where

li :\/57'(:4%

is the halve wave length.

2
Figure 96 shows displacement w, moment M =—FE[ 8_\24/ and shear forceV = aaﬂ .
Ox X
—1-
d = —cos = exp =
2wy k34 EI4 Lo

—0.5

= (cosE —sin E) expﬂ
l; l; l;

1

0 kEI

o~ =

0.5 wo . TX X —TX
] — =(sin—+cos—)exp—
wo i i l;

1 .
Figure 96. Displacement w, moment M and shear force V in the beam

Exercise: Suppose that the beam end is not fixed but pinned. What is the ratio of the pinned
largest moment and the fixed largest moment?

Exercise: Suppose that the imposed displacement is removed, the left beam end is fixed and a

uniformly distributed load ¢ is applied to the beam. What changes to the differential equation,
boundary conditions and solution?



Influence length
In figure 96 we see that the peak values occur at the left beam end. At some distance from the end
the values are much smaller. At a distance x =/;, all values are a bit smaller than 5% of the peak

values (ignoring the signs). This distance is called the influence length. The influence length
happens to be the same as the halve wave length /;.

Exercise: What is the exact value of “a bit smaller than 5% ?

Influence length of a cylinder edge
Consider a circular cylinder (fig. 97).

An axial symmetric displacement is described by
v

Uy =——jw(u)du u, =0 u, =w(u) p.=0
a

Please note the difference between v (Poisson’s ratio) and v (curvilinear coordinate). Surface load
is not applied p, = 0. These 9 equations have been substituted in the Sanders-Koiter equations (p.

54). The result is (see derivation in appendix 5)

Er  d*w Et
+_

L w=0
120-v?) du*  d?

This is the same differential equation as that of a beam supported by springs (p. 71). Apparently
we can make the following interpretation.

3
_ B —=EI %:k
12(1-v7) a

Using the analogy, the influence length of a cylinder edge is

1.2\/};@:#@ I ~2.4Jat
’ ko 430-v2) :

e ’---c_':_--_. S \\\\3 \;
s S Z S, : \
- :‘\.}—}“ \\ S :i
e ¥ ‘j? A )
Paghs
o VP
| s (A o

13"
Figure 97. Cylinder parameterisation and dimensions
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Exercise: Apparently, a shell can be sometimes interpreted as a beam supported by uniformly
distributed springs. Which shell part is the beam and which shell part are the springs?

Influence lengths of all shells

Figure 98 gives influence lengths of edges of elementary shells. In more complicated shells the
influence length of edge disturbances (p. 14, 71) can be estimated by comparing to the elementary
shell shapes.

bi=2¢ {ar

Figure 98. Influence lengths of elementary shell shapes [32]

Finite element mesh
The influence length can be used to choose a finite element mesh (p. 11, 84). If we use elements
that approximate a solution linearly we need at least 6 elements in a length /; in order to obtain
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solutions with some accuracy (fig. 99). This provides a rule for the finite element length
perpendicular to a shell discontinuity. Clearly, smaller elements will improve the accuracy.

14 e
0.5
0.6

0.4

0.2

)

0 T
li 20

40 0 &0 100
H

Figure 99. Piece-wise linear approximation of a solution

Exercise: For plates the recommended element size is 2¢. Suppose that a shell needs elements this
size. What is the a/f ratio of this shell? Is this a thin or a thick shell? Do thinner shells need

smaller or larger elements than 2¢ ?

Boiler drums

Cylindrical boiler drums are made to contain pressurised water. The connection between the
cylinder and a cap is an edge disturbance (p. 71). This edge disturbance can be analysed manually
due to the axial symmetry in geometry and loading [32]. Figure 100 and 101 show results for
different cap shapes. Figure 100 shows C; continuity (p. 11). Figure 101 shows Cy continuity. The
displayed membrane stresses are in the hoop direction. The displayed moments are in the
meridional direction. In figure 100 the stress due to the maximum moment is approximately 30%
of the stress due to the membrane force in the same direction. In figure 101 the stress due to the
maximum moment is approximately 11 times the stress due to the membrane force in the same
direction. Consequently, the drum in figure 101 is likely to yield when pressurised. This does not
result in failure because the membrane forces continue to carry the load. For repeated loading
fatigue will be a problem. Therefore, drum caps as in figure 101 are rarely applied.

~ 0.024 pat

pa

+

«4/3(1 v2

1 —TX
I’lee = _ZSIH_eXpT

1

—smEexpﬂ
81 l; l;

mxx
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Figure 100. Membrane forces and moments in a hemispherical drum cap (v = 1/3 and a/t = 100)
[32p. 175]

My,
—~r ¥ | . F
/ G " ' m sin¢,,
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m _ =
’?4- 3x(x=0) 1+ /sing, 4m
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L
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L
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Figure 101. Membrane forces and moments in a shallow drum cap (v = 1/3, a/t = 100 and ¢, =
p/4)[32p. 182]

Saturn V

The rocket that brought people to the moon and back was called Saturn V (pronounce Saturn five).
More than 20 Saturn Vs were built between 1965 and 1975. The parts were made by American
aircraft companies. The Douglas Aircraft Company made an important part called S-IVB
(pronounce S4B). It consisted of 8 shells and an engine (figs 102, 103). Note that the wall of the
fuel tank is also the wall of the rocket. NASA made a rough design of S-IVB and specified the
loads. The loads included an acceleration of 5 m/s%, a fuel pressure of 6 bar and a fuel temperature
of -253 °C. The engineers of Douglas designed the details and did a lot of testing [33, 34].

Exercise: The Saturn V rockets were not reusable. The cost of each launch was 185 10 dollar
[Wikipedia]. Suppose that all costs in the end are labour cost. Suppose that all people make

approximately the same hourly salary. What percentage of the USA population was working to
launch Saturn Vs?
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Figure 103. Shell components of S-1VB [33]
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Finite difference method

One way of solving the Sanders-Koiter equations (p. 54) is the finite difference method. This is a
computational method for finding approximate solutions to differential equations. The method uses a
grid of points, for example 100x100 points (fig. 104). In the points, the values of the 21 dependent
variables (p. 70) are computed. In total this is approximately 210 000 variables. For the computation
we need as many equations. The 21 Sander-Koiter equations are discretised around the points. For
example, equation 4

_ Ouy

¢x = o Koty = kxy”y

is discretised around point 307 as.

0 CUz304 Mz 303 L 35 3\ Mx303+Ux304 35 3. 40,303 T4y304
=0x307 T 35 3, her(Gyo5g) ) w(5559) >
7(X’x(;,7
99 *x499 799

Some grid points are outside the shell. These are solved with the boundary conditions (p. 67), for
example, boundary condition 16K

¢y =0
gives
?x,303 = ~Px,304

All equations are written in a large square matrix and the dependent variables are solved and plotted.
This method uses much computer memory and much computation time but it is easy to program. A bit
of python code is shown below. A complete program can be downloaded from
http://phoogenboom.nl/b17 code.txt

9999 10001 10003 10097 10999
o—b>—0—Pp—0—Pp—0—Pp—0————Pp0—P—0—P>0

9900 9901 9902 9903 9904 9997 9998 9999
989819899 9900 9901 9902 9995 9996 999719998
(] [] [¢] (] > © p 0 p >

9800 9801 9802 9803 9804 9897 9898 9899
979719798 9799 9800 9801 98}94 9%95 98}96198}97

o )

9700 9701 9702 9703 9704 9797 9798 9799
404 | 405 406 407 408 501 502 503 504
> > e b o b o p o > o b o b >

400 401 402 403 404 497 498 499
3031304 305 306 307 400 401 4021 403
> @ > o > »>

300 301 302 303 304 397 398 399
2OZl 203 204 205 206 299 300 3011302

v 200 201 202 203 204 297 298 299
101/1\102 103 104 105 198 199 2001201
> o b o » »>

100 101 102 103 104 197 198 199
9| 1 2 3 4 97 98 99 190

0 1 2 3 4 97 98 99

u

Figure 104. Finite difference grid. Green dots e are locations of discrete displacements u,., u yollz.

Red triangles » are locations of discrete rotations ¢, . The red triangles outside the shell are

eliminated by boundary conditions.
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http://phoogenboom.nl/b17_code.txt

for j in range(100) # Add Sanders-Koiter equation 4 to the matrix
for i in range(99)
row=row+1l
M[row,pl[phix]+j*101+i+1]=-1

]
M[row,pluz ]+j*100+i+1]=-99/alphax((i+0.5)/99,73/99)
M[row,pl[uz ]+3*100+i 1= 99/alphax((i+0.5)/99,73/99)
M[row,plux ]+3j*100+i+1]=-0.5%kxx ((i+0.5)/99,3/99)
M[row,p[ux ]+3j*100+1i ]=-0.5*kxx ((i+0.5)/99,73/99)
M[row,p[uy 1+3*100+i+1]=-0.5*kxy ((1i+0.5)/99,73/99)
M[row,p[uy 1+3j*100+i ]1=-0.5*kxy ((i+0.5)/99,3/99)

Exercise: The above code uses 100x100 grid points. Upgrade it to m>n grid points.

Canopy example, finite difference solution

The finite difference method (p. 79) has been applied to the canopy example (p. 69). The numbers are
E =107 kN/m?, v =0.15 (reinforced concrete), length / = 12 m, width = 4 m, radius @ = 2 m, shell
thickness ¢t = 0.060 m (a / t = 33), no self-weight, point load £ = 100 kN in corner. In other words: in

node 9999, ¢, %%1 =100 kN.

k=0, kyy=—1/a, kxy= 0, a,=1, a,=mna, 0<u<l, 0<v<l
The result is shown in figures 105 to 111. The horizontal axis shows « and the vertical axis shows v.
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Figure 105. Canopy u,, uy and u, [m]

0.00105

0.0012 0.0032 0.00090

0.00075

0.0000 0.0024

0.00060

0.00045
—0.0012 0.0016

0.00030

0.00015

—0.0024 0.0008

0.00000

—0.0036 0.0000 —0.00015

—0.00030

Figure 106. Canopy &xy, €y, and y Xy
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Figuré 108. Canbpy kxx’ Ky, and pxy[l/m]
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Figure 109. Canopy nyy, ny,,, ny, and n,, [kN/m]
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Exercise: Do figure 105 to 111 show all dependent variables?

F igurle 11 0.‘ Cantl)py mlxx, My

Figure 111. Canopy va aﬁd vy tkN/mj

Exercise: When we know the displacement functions u,., u y» Uy, We can use the Sanders-Koiter

800

o

-200

equations to calculate all other dependent variables easily. This is demonstrated in the ping pong ball
example (p. 56). From this point of view we need to solve only 3 dependent variables: u,,u, and u .

When we have solved these we know all. Nonetheless, in the finite difference method we solve 21
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dependent variables. Why is this? In other words, what is so special about a ping pong ball that it is an
exception?

Challenge: Use the program bl7_code to study influence length (p. 73) as a function of k. .k, .k,

and &, . Are the equations on page 74 correct?

Shell finite elements
There are three types of shell finite element; 1) flat elements, 2) elements based on the Sanders-Koiter
equations (p. 54) and 3) elements based on reduction of a solid element.

Flat elements are triangles or quadrilaterals. A flat element is based on a simple combination of an
element for plates loaded in plane (walls) and an element for plates loaded perpendicularly (floors).
Each node has six degrees of freedom (dofs) (fig. 112, 113, 114). The red dofs do not really contribute
to the element accuracy. They are added to make the element fit in a general purpose finite element
program. Flat elements have two requirements for the mesh: 1) the elements need to be small due to
their low accuracy [43] and 2) each quadrilateral really needs to be flat and cannot have a twisted
shape.

ﬁ displacement dof

1
rotation dof
1
7 = —p v = =>

Figure 112. Figure 113.
Element for plates loaded in plane Element for plates loaded perpendicularly

Figure 114. Degrees of freedom of flat shell elements

Exercise: Suppose that a finite element mesh is in the principal curvature directions. Can flat
quadrilateral elements be used?

Curved elements can be derived from the Sanders-Koiter equations. A well known element of this
type is the semiloof element [44]. It has been derived by Bruce Irons based on discussions with Henk
Loof. ! The element has 3 degrees of freedom in 8 nodes and 1 rotational degree of freedom in 8, so

! Bruce Irons (1924-1983) was professor at Swansea and Calgary. He was specialised in programming finite
elements. He made important contributions to this field and wrote three books on computational analysis. He
suffered from multiple sclerosis and committed suicide, together with his wife, at the age of 59 [Wikipedia].

Henk Loof (1929-1988) was professor at Delft University of Technology, Faculty of Civil Engineering. He was
very skilful in the mathematics of shell structures. He was not married and lived in the city of Den Haag
together with his sister [source Johan Blaauwendraad and Coen Hartsuijker]. The “00” in Loof is pronounced as
the “0” in go.
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called, Loof nodes (fig. 115). This thin shell element has high accuracy, however, it is difficult to
implement in a finite element program. Therefore, it is not much used.

rotational dof

Loof node

Figure 115. Degrees of freedom of a semiloof element

Shell elements can also be derived from solid elements. In the process some degrees of freedom are
replaced by others and the constitutive equations are simplified (fig. 116). These elements have 3, 4, 6
or 8 nodes with each 6 degrees of freedom and can be implemented conveniently. The elements with
4 nodes can be twisted. The elements with 6 and 8 nodes can be curved as well (fig. 117) [45]. Most
finite element programs use shell elements derived from solids.

Figure 116. Eight node volume element reduced to a four node shell element

RPARIAN

Figure 117. Shell elements with 3, 4, 6 and 8 nodes

Element aspect ratio
The aspect ratio of a rectangular shell element is defined as length over width. Many finite element
programs have a restriction on the aspect ratio. For example

1 _ length

20 width

<20

The development of the semiloof element can be described shortly. Irons met Loof at a conference in Newcastle
in 1966. Irons presented a paper on integration rules and Loof presented a paper on shell finite element analysis
[46]. In an informal setting they must have talked at length about shell behaviour and shell mathematics. In the
years that followed Irons derived a finite element with rotation degrees of freedom in unusual points at the
edges. He referred to these points as Loof nodes after his good friend Henk Loof. When he presented his
element at a conference in 1974 he modestly called it the SemiLoof element [44]. Surely a better name for the
element is the Irons-Loof element but this name change did not take place. The semiloof element is regarded by
specialists a scientific master piece [48].
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The reason for this restriction is that if the element stiffness in two directions is very different, the
structural stiffness matrix has both very large numbers and almost zero numbers on the main diagonal.
As a consequence the computed displacements and stresses may have little arithmetic accuracy (p.
94). However, in modern software this is not a problem because high accuracy number
representations are used. Sometimes, we need to use an aspect ratio of 1000 and this does not need to
give accuracy problems.

Mesh refinement

Like all finite elements, a shell element is accurate when it is small. An engineer who is experienced
in finite element analysis can just see whether the elements in a model are sufficiently small.
However, when in doubt, the following procedure is used. 1) Do the analysis with any mesh. 2) Halve
the element size. 3) Repeat the analysis. 4) If the important results do not change significantly, the last
mesh is sufficient. If the important results change significantly, continue at step 2.

For example, the first analysis gives a deflection of 24 mm. The second analysis, with half size
elements, gives a deflection of 26 mm. If you think that 2 mm is sufficient accuracy than you are
done. We can estimate the exact result that would be obtained by an extremely fine mesh. For this add
the difference to the last result. In this example the exact result is approximately 26 + 2 = 28 mm.

Refining a shell mesh to half element size, requires approximately 4 times as many nodes, 16 times as
much memory plus computer hard disk space and 64 times as much computation time.

Model accuracy

The accuracy of an element depends on the situation in which it is used. Therefore, accuracy cannot
be expressed as a fixed percentage. What we do know is the smaller the elements, the smaller the
error. For example, the model deformation can have an error of O(%4). (pronounce “order h”). This
means that the error is proportional to the element size 4. It is the smallest finite element accuracy
possible. Other errors are O(A?) and O(%?). The table below gives the errors of shell finite element
models [49, 50].

deflection membrane forces | moments shear forces
flat elements O(1?) O(h) O(h?) O(h)
semiloof elements ? ? ? ?
reduced solid elements o(n?) O(h?) o(n?) o(h?)
without mid-side nodes
reduced solid elements O(h?) O(h?) O(h?) O(h?)
with mid-side nodes

Model accuracy can be determined by performing three analysis; the second with half element size
and the third with one-fourth element size. This gives three equations

eql:= u=ul+C*h”b:

eq2:= u=u2+C* (h/2) *b:

eq3:= u=u3+C* (h/4) *b:

solve ({eql,eq2,eq3},{b,u,h});

>
>
>
>

U —

from which the order of the error can be solved. b =log,
Uz —up

Result extrapolation

In the example on mesh refinement (p. 84) it is assumed that the deformation has an error O(%), which

is conservative. The table below shows more formulas for estimating the exact result from two

computation results.
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O(h) O(h%) o)

h=0500h |u=ur+Ww2-ui) u=ur+wa-u1)3 u=ur+Wwa2-u1)7

h=0.707h {u=u>+241(us-u1) |u=us+W2-ui) u=ur+0547w7-u)

=07%h |u=ur,+385uz-u1) |u=u>r+1.70uw2-u1) |u=ustWr-u))

The table results have been obtained from two equations. For example

> eql:= u=ul+C*h"2:
> eqg2:= u=u2+C* (0.500*h)*2:
> solve({eql,eq2},{u,C});

Exercise: A finite element type approximates the membrane force n,, as uniform over the element

surface (see figure). We want to compute the membrane force in the shell edge at y = 0. What is the
order of the error?

Py
noa N
xx3 A
Nyx2
~N
Pyl NS
~
\ -
N
—
ﬁﬁ_
T T y

Bohemian dome
A Bohemian dome consist of identical circle segments. A parameterisation that follows these circles is
convenient for construction (fig. 118).2

X =acosu
y =acosv

Z =asinu +asiny

However, this parameterisation is not orthogonal. An orthogonal parameterisation (p. 25) of a
Bohemian dome is

_SIMUCOSY o =av24  A=1+cos(u+v)cos(u —v)

ko= "7
YN

X =acos(u+v)

sinu cosv
y=acos(u—v = o, =av2B B=1-cos(u+v)cos(u—v
ymacostumy) w=5das Y (u+v)cos(u-v)
z = a[sin(u +v) + sin(u — v)]
__cosusinv
v aAB

Exercise: Neither of the Bohemian dome parameterisations are in the principal curvature directions (p.
22). How do we know?

2 The Bohemian dome was first studied by Antonin Sucharda (1854-1907), who was a mathematics professor at
Brno University, Czech Republic [Wikipedia]. The Czech Republic consist of several parts, of which one is the
old Kingdom of Bohemia.
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Figure 118. Bohemian dome (a = 10 m)

Selecting the element type

Suppose we can do an analysis with four node elements or eight node elements. Which element type
is best? Of course, we want accurate results and a fast computation. Figure 119 shows some
computation result as a function of the number of nodes. This graph is typical for complicated
structures. If we are satisfied with an error of 10% or larger then O(%) elements require the least
number of nodes and the least computation time. If we need a smaller error then the O(4?) elements
need the least computation time. From this we conclude,

Choose the most accurate element that is available, unless you are just testing.

Also the shape of the elements is important. Quadrilaterals are more accurate than triangles of the
same order.

/[\ computation result

i exackt result

34—-—.—._.—_._.__._..___. e ity G —

number oF nedes

>
7

Figure 119. Typical convergence of a finite element result for O(h) and O(h*) elements

Integration points
In finite elements the material behaviour (stresses, stains, yielding, cracks, et cetera) is computed in a

number of points (fig. 120). These points are called integration points or Gauss points. The stresses et
cetera in other points of the element are computed by interpolation and extrapolation.
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Figure 120. Possible locations of integration points in triangular elements

Locking and hourglass modes

In some element types the in plane or out of plane bending stiffness is too large. This is called shear
locking. Some element types are too stiff for extensional deformation (p. 109). This is called
membrane locking. These locking problems can be solved in three ways; 1) very fine mesh 2)
different elements or 3) reduced integrations. In reduced integrations specific integration points that
are needed for exact computation of the element stiffness are omitted. This can be an effective trick to
improve the element accuracy. Most finite element programs use reduced integration. It can be
switched off but it is not wise to do so.

Due to reduced integration the elements may have no stiffness at all for particular deformations.
Consequently, the elements can deform in a pattern that looks like hourglasses (fig. 121). This
deformation is called an hourglass mode or a zero energy mode. Clearly, this is not what we want and
all handbooks give warnings for the phenomenon. However, an hourglass mode can only occur in a
perfectly regular mesh with special boundary conditions. In a practical finite element model these
hourglass modes are extremely rare. The author has observed few despite many years of experience. If
you would ever see an hourglass mode in a finite element model, please make a picture of the screen
and send it to me.

hourglass shape

Figure 121. Deformation of square elements into an hourglass mode

Figure 122: Hourglass mode at the left support of a deep beam finite element model
(Abaqus, 4 node constant shear elements)
[Curtesy of A. Al-Sharqi, CIE4180 course, assignment 1, November 2023]
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Finite element boundary conditions

Boundary conditions on displacement or slope are called kinematic boundary conditions. Boundary
conditions on membrane forces, shear forces or moments are called dynamic boundary conditions. In
the finite element method we only specify the kinematic boundary conditions. The dynamic boundary
conditions are fulfilled automatically, however, not very accurately. Only for small finite elements the
dynamic boundary conditions are fulfilled accurately. *

Canopy finite element boundary conditions

D . 1 .
A complication is that the finite element method computes 5(”16)/ +ny,) instead of Nyy and My - If

we want to check the finite element results at boundaries we need to rewrite the shell boundary
conditions (p. 67).

1 o )
——. Substitution in Sanders-Koiter
a

The canopy in figure 123 has curvatures k. =k, =0, k), =

equation 18 (p. 54) gives —K+ Nyy =Ny =0, in which is used that V' = My, (see plate boundary
a
conditions p. 60). On the front straight edge the shell boundary conditions is Ny =k V=0 or

Hyy Ty 1

n,, =0. From these two equations it follows that =0 On the free curved edge the shell
a
boundary condition is n,, —k,, V=0 or n,, = —K. From this and Sanders-Koiter equation 18 it
a
Ry +1 Hyy +1
follows that % = _%K . In one shell corner both boundary conditions on %meet. The
a
) . . Mxy Thyx
only solution that fulfils both equations is — =0 and V' =0.
e =0 singularity
My + Ny _
2
My, =0 u, =0
Vv, = _a_V — uy = 0
x oy \ " =
z
~ (Px - O
nxy nyx _ O/g
B singularity
n,=0 ———
V=0 A Y 2
singularity l/ or

Figure 123. Finite element boundary conditions

(The only boundary conditions we enter into the program are u, =u,, =u, =@, = 0 and F =100kN.)

y

3 The dynamic boundary conditions are fulfilled automatically because they are used in deriving the weak
formulation or the virtual work equation, which is used in deriving finite elements. Some scientist do not agree
with this statement. They say it is the other way around; boundary conditions are derived from the virtual work
equation. It is a chicken or the egg problem.
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Canopy finite element analysis

A linear elastic finite element analysis has been performed of the canopy. The numbers are £ = 10’
kN/m?, v = 0.15 (reinforced concrete), length = 12 m, width = 4 m, radius @ = 2 m, shell thickness ¢ =
0.060 m, point load F'= 100 kN in corner, no self-weight. The boundary conditions on the fixed
curved edge have been specified. The boundary conditions on the free edges are a result of the finite
element computation. The analysis has been performed by SCIA Engineer 16 (2019) with 4 node
quadrilateral elements. Out of plane shear deformation was switched off.

The results are shown in figure 124 to 133. Table 9 shows the forces and moments in four points in
the edges. The following conclusion can be drawn from the point of view of finite element analyses.

Some variables are small on shell edges but not zero,; also not for very small finite elements. This is
caused by the shell boundary conditions (p. 67).

Note that this shell is almost thick (see thickness p. 13).
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Figure 125. Deflection due to the point load in the global z direction [mm]
(positive is up and negative is down)
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Figure 129. Bending moment m,.,, [kNm/m]
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Figure 130. Bending moment m yy [kNm/m]
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Figure 131. Torsion moment m,, [KNm/m]
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Figure 132. Out of plane shear force v, [KN/m]

61.29
5.00

3.00
2.00
1.00
0.00
-1.00
-2.00
-3.00

-5.00
-ATET

Wm0 AT T W

Figure 133. Out of plane shear force vy [kN/m]



Exercise: What element size follows from the influence length? (p. 73) Is the element size in figure

124 okay?

Table 9. Computation results at four edge locations for five element sizes [51]

:ilzglent Myxx nyy %(”xy +n yx) Myx myy Myy, Vx vy
kN/m kN/m kN/m kN kN kN kN/m kN/m
edge location (u, v) = (0, 5)
400 mm | 315.03 56.31 -6.961 -0.942 | -0.1715 | 0.1136 | -4.289 1.125
200 mm | 310.21 51.05 -3.784 -1.191 | -0.2061 | 0.0539 | -6.797 2.256
100 mm | 309.32 | 47.75 -2.860 -1.252 1 -0.1939 | 0.0191 | -7.485 2.909
50mm | 309.28 | 46.72 -2.689 -1.262 | -0.1902 | 0.0046 | -7.590 3.161
25mm | 309.30 | 46.47 -2.654 -1.264 | -0.1897 | 0.0005 | -7.600 3.251
edge location (u, v) = (0, 1)
400 mm | -3065 -460.56 | 230.29 -1.452 | 0.079 0.3110 | 3.8521 -1.0232
200 mm | -3238 -500.50 | 332.82 -1.417 | -0.069 0.1121 |3.9945 |-0.3229
100 mm | -3475 -563.62 | 421.55 -1.501 | -0.118 0.0141 | 3.0948 | -0.6421
50mm | -3781 -640.10 | 502.97 -1.483 | -0.130 -0.031 |3.2192 | -2.2137
25mm | -4162 -726.31 | 585.39 -1.343 | -0.121 -0.051 | 8.6338 | -6.4897
edge location (u, v) = (', 1)
400 mm | -1638.4 | -12.55 1.8226 -1.4533 | -0.0302 | 3.5035 | 0.0577 | -0.6357
200 mm | -1654.7 | -3.276 -0.0439 -1.4203 | -0.0180 | 3.4789 | 0.0563 -0.6179
100 mm | -1658.7 | -0.832 -0.3383 -1.4064 | -0.0097 | 3.4716 | 0.0532 | -0.6141
50mm | -1659.7 | -0.216 -0.2564 -1.4002 | -0.0051 | 3.4693 | 0.0518 | -0.6133
25mm | -1660.0 | -0.054 -0.1493 -1.3972 | -0.0026 | 3.4684 | 0.0511 -0.6131
edge location (u, v) = (1, 5)
400 mm | 4.415 19.91 0.5417 0.0329 | -12.8505 | 1.8623 | -4.288 6.765
200 mm | 3.058 46.57 -0.8098 0.0644 | -12.8053 | 1.7954 | -3.864 6.473
100 mm | 1.143 55.31 -1.4361 0.0147 | -12.8041 | 1.7755 | -2.504 6.355
50mm | 0.336 57.52 -1.6548 0.0022 | -12.8038 | 1.7712 | -1.863 6.320
25mm | 0.090 58.06 -1.7299 0.0002 | -12.8035 | 1.7703 | -1.659 6.307

Exercise: Do the computed edge forces and moments comply with the canopy finite element

boundary conditions? (p. 69)

Exercise: What model accuracy (p. 84) follows from table 9?7

Singularities
A singularity in a linear elastic model is a point with very large membrane forces, moments, shear
forces or stresses. If the stress in a singularity were determined exactly, its magnitude would be
infinite. Singularities can be expected at point loads, at point supports, at re-entrant corners and where
line supports stop (fig. 134).
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Figure 134. Locations of singularities

Singularities can be removed from a model. The singularity under a point force can be removed by
replacing the force by a stress on a realistic area. The singularity in a re-entrant corner can be removed
by rounding the corner with realistic radius and allowing the material to yield at a realistic stress. The
singularity at a point support can be removed by contact elements and geometrical nonlinear analysis.
However, adding details to a model is extra work. In addition, a finer mesh and nonlinear analyses
cost extra computation time. Most engineers choose not to remove singularities and instead interpret
the computation results. For example, we know that the peak stress at a point support is unrealistic, so
we ignore it and calculate the real support stress by hand; o = F/ 4.

Typical of singularities is that smaller elements give larger stresses. Therefore, do not apply the rule
of halving the element size (p. 84) to a singularity.

Almost all models with shell finite elements have singularities. Please keep this in mind when reading
contour plots of finite element results. Often the computed peak value needs to be ignored because it
occurs in a singularity.

Exercise: What type of singularities occur in the canopy? (p. 88)

Exercise: A finite element analysis is performed. Every time we half the element size, the stress peak
increases by 7 N/mm?. Clearly, this stress peak goes to infinity. Which function describes this? Show
that the integral of this function from zero to some value is finite. In other words; the linear elastic
stress peak is infinite but the resultant force is not.

Largest model that your PC can process

Modern computer programs for numerical analysis use numbers with double precision. This means
that each number is stored in 8 bytes of memory. One byte is equal to 8 bits. A bit is represented by an
electrical switch with can assume either of two voltage levels.

The most important operation that a finite element program performs is solving a very large system of
equations that is represented in a matrix. This matrix has a length and width equal to the number of
degrees of freedom (dofs) of the finite element model. This matrix needs to be stored in the memory
of the PC. For example, if a model with 15000 dofs is analysed the computer needs 15000 x 15000 x
8 = 1.8 10° bytes of memory. This is 1.8 GB (gigabyte). A powerful new PC (2019) has
approximately 32 GB memory of which about 3 GB is used by Windows. Therefore, the model of this
example can be analysed in memory. The linear elastic computation can be performed within a
minute.

If the matrix does not fit in memory, then the software can move most of the matrix to the hard disk.
This computation is called out-of-core. For example, if a model has 10° dofs the required hard disk
space is 10° x 10° x 8 = 80 GB. A partition on a hard disk might have 460 GB (2019), of which 300
GB might be free for performing the analysis. This is more than sufficient for analysing this example.
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The linear elastic computation can take half an hour or more. If you listen carefully, you can hear the
hard disk becoming active. Then you know that the computation will take more than a minute.

Many finite element programs use smart methods to optimise the computation. 1) The matrix is often
symmetrical so only half of it needs be stored. 2) Most of the numbers in the matrix are just zero. The
non-zero numbers occur around the matrix diagonal. Therefore, only the numbers within some
distance from the diagonal need be stored. 3) This distance is called band width. The band width can
be reduced by sorting the node numbers of the finite element model. 4) Some programs have an
iterative solver that does not need any matrix for solving the system of equations.

Therefore, the largest model that can be analysed depends strongly on efforts of the software
engineers. For example, the finite element program Ansys can analyse a model of 10° dofs in half an
hour on a normal PC (2007). The largest model also depends on the analyses choices that the software
user makes, for example, yes or no node sorting.

Moore’s law
Moore’s law is [52]

Computation power doubles every two years.

This law describes the development of computation power since 1971. It is expected to be valid in the
near future too. So, if your current PC cannot analyse a particular model, it is not difficult to calculate
when your future PC can do this job.

Arithmetic accuracy

A double precision number has approximately 16 significant digits and a magnitude range of
approximately 107% to 10™%. Some accuracy is lost in every addition, subtraction, multiplication and
division. This is inevitable. After solving a large matrix the result can have just 3 significant digits.
This is sufficient for most applications. The software should give a warning if the calculation is not
accurate but some programs do not.

Arithmetic accuracy can be checked in a simple way. Add all loads and add all support reactions. If
these are not in equilibrium, the equations have not been solved accurately.

Exercise: The accuracy of a finite element model depends on model accuracy and arithmetic accuracy.
Suppose that we have a model and we reduce the element size. Which accuracy increases and which
reduces?

Exercise: Show that 3 significant digits means an error of at most 1%.

Finite element benchmarks

Shell elements need to be tested to determine their accuracy. Three tests are often applied; a cylinder
(fig. 135), a hemisphere (fig. 136) and a hemisphere with an opening (fig. 137). The cylinder is closed
on both ends by a diaphragm, therefore, the edge nodes are fixed in the X and y directions. Note that

due to symmetry just part of the shells needs to be modelled. A finite element program can be checked
by comparing the displacement under the forces with the results of others. The reference displacement
of the cylinder directly under the force is 1.8248 mm [53]. The displayed mesh is too course for most
applications. Approximately 1000 elements will be needed to obtain 1% error. The reference
displacement of the hemisphere is 0.0924 m directly under the forces. Approximately 200 elements
will be needed to obtain 1% error. The reference displacement of the hemisphere with an opening is
0.0935 m directly under the forces. Approximately 100 elements will be needed to obtain 1% error.
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E =3 10° N/mm?

v=03
a =300 mm
t=3 mm

Figure 135. Cylinder loaded by opposite forces

E =6.825 10" N/m?

v=0.73
a=10m
t=0.04 m

E=6.825 10" N/m?

v=0.3
a=10m
t=0.04m

Figure 137. Hemisphere with an opening loaded by opposite forces

Exercise: Which benchmark deforms extensionally and which in-extensionally? (see inextensional
deformation p. 109)

Modelling thick shells
In a thick shell (p. 13) the shear deformation can be important compared to bending deformation.

Shear deformation is included in Mindlin-Reissner elements (p. 61). These elements can be necessary
to obtain sufficient accuracy.

In a very thick shell the normal stress is not distributed linearly over the thickness and the shear stress
is not a parabola over the thickness. Volume elements can be necessary to compute the stresses
accurately. The element mesh needs to have several volume elements in the shell thickness. Volume
elements are also called solids, bricks or tets. The latter is short for tetrahedrons.
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Averaging at nodes

In the finite element method, all elements in the model are in equilibrium. However, the stresses et
cetera on either side of element edges can be different. This is a result of approximations in the
element formulation. Many programs can average the computation results at the nodes to make the
stresses on either side of the element edges the same. This improves the accuracy and produces
smooth contour plots (fig. 138). It needs to be kept in mind that this also removes real jumps in the
results. For example, a real jump in the stresses occurs when adjacent shell elements have different

thicknesses.
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Not averaged Averaged at nodes
Figure 138. Contour plots of a finite element result
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Influence of coordinate system on the FEM results

When a finite element program plots membrane forces or moments the result can be a mosaic of
colours that does not make sense (fig. 140). This is because every finite element has a different local
coordinate system x-y-z (p. 19). Most programs align the element coordinate systems in some
direction, for example in the hoop direction and the meridional direction (see shell force flow p. 13).
For a complicated shell structure the program probably does not put the local coordinate systems in
the directions you would like them to be. For example, at the edges of a shell the coordinate system
needs to be in the direction of the edge to determine the concentrated shear force (p. 59). Another
example is that for a reinforced concrete shell the local coordinate system needs to be in the directions
of the reinforcement (see designing reinforcement p. 104). The directions of the local coordinate
systems can be changed by hand (click on the elements) but this can be a lot of work.

Fortunately, some finite element results do not depend on the coordinate system, for example
principal stresses (p. 101) and Von Mises stress (p. 101). Some finite element results do not depend
on the coordinate system, except that the sign depends on the direction of the z axis (inwards or
outwards), for example the principal moments m; , m, and the principal out of plane shear force v (see

principal values p. 98)
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Figure 140. Bending momentm,,, in the fixed edge of a deformed semispherical dome.

The colors make no sense because the element coordinate systems are not aligned.
(Tobias Blankenstein 2019)

Tensors

A tensor is a physical quantity that transforms in a particular way when the coordinate system rotates.
For example, moment in a shell is a second order tensor. It transforms in the following way when the
local coordinate system rotates around the z axis from x—y—z to r—s—.

[mrr mrs}:R Myy My, 2T Rz[cose sine}

M, Mg My, My, —sin® cos0

In this, 6 is the angle between the s axis and the x axis.

When the coordinate system changes the tensor numbers change too. However, every tensor has a
core that does not change with coordinate system changes. This core consists of the principal values
(p. 98) and Mohr’s circle. When you think about it, anything physical cannot depend on the choice of
a coordinate system. This must be the cause of most quantities in these notes being tensors.

The other tensors in shells are

1 1
kxx kxy My Nyy €xx Eny Kox pry
1 1
Koy o Ty 2V By 2Py Ky
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Principal directions
The principal directions of a moment tensor (p. 97) are defined as the directions in which my, =0.

They are computed by
2m
0, = %arctan id
My =My,

- 1
92—61+27T

Computed with similar equations are the principal directions of other tensors. As the equations show,
they are perpendicular, except in umbilics (p. 123).

The direction of the principal shear force is computed by

y
0 = arctan—2 .

Vx

Principal values
The moments in the principal directions (p. 98) are called principal values. They are also the largest

and smallest moments that can be found by rotating the local coordinate system. They are computed
by

2
_1 1 2
=Ly +myy)+Jz(mxx g )

2
=1 — L - 2
s =L (g + 1y ) o[ Sy

The principal values of other tensors (p. 97) are computed with similar equations. The principal shear
force is computed with

2 2
V=i +V) .

Trajectories

Software can plot principal directions (p. 98) in every finite element of a shell. By hand we can draw
lines that follow the principal directions (fig. 141). We call these lines trajectories. Shells have many
trajectories, for example curvatures ki, k>, normal forces n1, 1, shear force v, moments mi, m» and
stresses 6y, 5, in the bottom, middle and top surface. These trajectories do not need to coincide. In

other courses other words are used for trajectories, for example hydraulic engineers call them flow
lines, electro engineers call them field lines and mathematicians call them integral curves. (See also
umbilics p. 123.)

Membrane forces around a square opening

Consider a large wall with a square opening, for example a window in a castle. A finite element
analysis shows how the membrane forces go around the opening (fig. 141). It is tempting to expect
that the trajectories (p. 98) form an optimal arch (p. 8) above the opening. Note that reality is
different.
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Figure 141. Membrane force trajectories around a square opening in a large wall

(Linear elastic, v = 0.2, no self-weight, vertical evenly distributed load, no horizontal load)
Red is tension, green is compression.

Exercise: Are there singularities (p. 92) in the wall membrane forces?

Ellipsoid
x2 y2 22
An ellipsoid can be described by St 5t == 1.
a®~ b° ¢
It can be also described by an orthogonal parameterisation (fig. 142).

_ a”—B .

X =a,|——— cosu A=a?sin®u+b*cos®u
a“—c

y =bcosv sinu B=b%sin?v+c? cos?v
. 2

zZ=c 5 2sinv a>b>c>0
a” —c

In this parameterisation k,, = 0, consequently, the parameter lines are also the curvature trajectories
(p- 98).

—abc
k= S
BA
b = —abc
»w o
\V4B?
kxy =0

' B(B - A)
&y = B-22
Figure 142. Curvature trajectories on an ellipsoid —da
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Exercise: What is the Gaussian curvature of an ellipsoid at u = v=0?

Stresses

The stresses in a shell are computed in both surfaces and in the imaginary middle surface (fig. 143).
For this we consider three small cubes which each have 6 stress components (fig. 144). We use
Bernoulli’s hypothesis (p. 50) to derive the stresses. The result for thin shells (p. 13) is shown in table
11. The result for thick shells is shown in appendix 7. The derivation for both thick and thin shells is
in appendix 6 and 7.

Please note that the stress formulas for thin shells are the same as those for slender beams and
columns with rectangular cross-sections. For example, the stress in a beam is moment over section
modulus o, =M/S . In a shell the moment is per unit width and the section modulus is per unit

width, therefore o, = (mxxW)/(%Wtz) = 6mxx/t2 .

Some finite element programs plot the stresses in the global coordinate system x-y -z (p. 19), which
is useless for shell structures.

surface

middle surface

surface

small cubes

Figure 143. Small cubes in a shell

%z kb
- i
GXXA///// of
PP PP o
PP
L
Oyz sz)/ ,:2,2:,,}
1141/
{1
i A A A
¥ y

Figure 144. A small cube has six stress components.
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Table 10. Stresses in thin shells

surface, z = _% ¢ middle surface, z=0 surface, z = % P
_ nxx mxx _ nxx _ nxx mxx
Gxx—7—6t—2 Gxx——[ Gxx__t +6—t2
n m n n m
=W _g c. =2 _ T DAY
Oyy p 6 2 Wy Cyy n +6 2
c,, =0 6., ~0 G, =0
3V
GyZ :0 Gyz _ET GyZ :O
o = 3v,
G, =0 Xz c,, =0
My My My + R My,
Oy = 6 o, = G, = +6
Y 2t 12 i 2t v 2t 12

Von Mises stress
For metals the equivalent stress according to Von Mises is important. If this stress is larger than the
yield stress then the material would have yielded.

2 2 2 2 2 2
Sym :\/%((Gxx _ny) +(ny _Gzz) +(Gzz _Gxx) )+3(0xy T 0, +Gyz)

Local yielding does not mean that the structure collapses. Collapse occurs only when one or more
yield lines form a failure mechanism. The Von Mises criterion is not suitable to check stresses in
concrete, masonry or timber. It seems that the Von Mises criterion can be used for plastics, but there
is little experimental evidence to confirm this.

Principal stresses
The principal stresses 6}, 6,, o3 are the eigenvalues of the stress tensor.

Oxx Oxy Oxz
Oxy Oy Oz
Oxz yz Oz

The principal directions are directions of the eigenvectors. Unfortunately, there exist no practical
formulas for calculating principal stresses of a three-dimensional stress state. For hand calculations
Maple can be used to calculate eigenvalues and eigenvectors quickly. Below is an example. For
numerical implementation the Jacobi algorithm is recommended [54].

>with(linalg):
>S:=matrix([[1.,2.,3.]1,[2.,5.,-6.],[3.,-6.,9.11);
1 2 3
§=[2 5 -6
3 -6 9.

> eigenvalues (S) ;
-2.5909691664.128270173 13.46269899

>eigenvectors (S) ;
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-0.69 4 0.7115 0.108
0.549%4/0.621 4(-0 .55 7+4
0.46436(0.327 610 .822 6

Top and bottom surface principal stresses
At the top or bottom surface o, = p, and 6., =c,, =0. In this case the eigenvalues can be

computed by

Usually the principal values are ordered from large to small

01 = maX(Sl,S27S3)
o3 =min(sy,s;,3)
G, is the value that is left.

Hypar curvature
Consider a shell defined by the function (fig. 145)

z=h

S| =
o <l

This shape is called a Aypar, which is short for hyperbolical paraboloid (p. 21). An orthogonal
parameterisation (p. 25) is not available for this shape. The radius of curvature in the origin is.

Ca;, origin

Figure 145. Hypar, b=15, c =6, h=1, Maple script: > plot3d(h*x/b*y/c, x=0..b, y=0..c)
. . . .. 1
Exercise: Derive that in the origin k., = kyy =0, kyy =— and ky =—k;.
a

Challenge: Find the orthogonal parameterisation of a hypar.
(Not in the principal curvature directions. See p. 128).
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Zeckendorf plaza

Hypars (p. 102) are very suitable for reinforced concrete roofs (fig. 146). The formwork is not
difficult. It can constist of steel struts, straight parallel timber beams and slightly twisted plywood
plates (see plate twisting p. 120). Hypar shells can be very thin, for example 70 mm, which provides
just enough cover on the reinforcing bars.

Zeckendorf Plaza, Denver, USA [55, 56]

Built for the firm Webb & Knapp which was owned by William Zeckendorf
Architects: leoh Ming Pei, Henry Cobb

Engineer: Anton Tedesko

Build in 1958, demolished in 1996.

Shell span 132' x 112", shell height 28', thickness 3"

It won an award from the American Institute of Architects.
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F lgure 1 4 7. A thin shell roof consisting of four hypars

Exercise: Calculate the a/t ratio of Zeckendorf Plaza.
Hypar membrane forces
The membrane forces in a hypar roof (p. 102) are approximately

1 1
Ny =0, 1y, =0, ny,, ==5aPz, My =—5dPp;.

This follows from shell membrane equation 1, 2 and 3 (p. 38). The x and y directions are along the
edges. In the derivation is assumed that p, = p y =0 and that the edge beams have little bending

stiffness and do not carry n,, or nyy at the shell edges.

Checking membrane reinforcement
Suppose that somebody has designed reinforcement for a concrete shell. The bars in the x direction

yield at a membrane force ng, [kKN/m]. The bars in the y direction yield at a membrane force ny, . In

other directions there are no bars. Clearly, we need to check whether n,, <ng and n,, <ng,. How

can we check n,, and n,,? Equilibrium of a small shell part shows that

My My = (nsx ~lxx )(nsy - nyy)
Perhaps you prefer to write the latter with an utilisation factor. For this, solve p from
Moyl = (Mg — N )(Ung, — 1)) p<l

The result is

n n n n n.n
%(ﬂ+ J’J’)+ %( XX W)2+ xy'tyx <1
gy Ny Rex Mgy NgxNgy

Exercise: Derive that ny,n,, <(ng —ny )(ng, —n

w)-
Exercise: The equation ...<1 is similar to the equation of the first principal value (p. 98) of a tensor.
Would utilisation be a tensor too?

Designing membrane reinforcement

Suppose that we want to design the least amount of reinforcement that can carry the load. We assume
there is just one load combination, which belongs to the ultimate limit state (p. ...). We assume that
the reinforcing bars are in the local x and y directions. At some shell location, the bars in the x
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direction yield at a membrane force ng, [kN/m]. The bars in the y direction yield at a membrane force
ng, . The amount of reinforcement is proportional to ng, +ny, . This is to be minimised. The

constraints are specified in the above note (see checking membrane reinforcement p. 104). There are
four solutions, which are shown in table 12. The first row contains the conditions for a solution to be
valid. The second row shows the membrane forces that the reinforcement needs to carry. It also shows
the stress in the concrete o, .

Finite element computer programs can plot these bar membrane forces n,, , n,, as a contour plot over

sy
the shell surface. We need to rotate the reference system x——z of each finite element in the
reinforcement directions.

Exercise: The reinforcement in a hypar (p. 102) can be directed along the hypar edges or along the
hypar diagonals. Which direction gives the smallest amount of reinforcement?

Table 11. Membrane forces ng, and ny, for designing shell reinforcement

Nyl Ny
Xy Tyx Xy Tyx
My 2— /nxynyx Ay <—, /nxynyx Ny 2——— Ry <———
My Myy
Nyl Ny
Xy YX Xy yx
>— > - AL
Myy = 7\ My My My =7, Myy SNyl My ST
XX XX
Ny
— [ - - Xy yx -
Mgy =Ny + MyyMyx | Msx = 0 Ngx = Nxx — Ngx = 0
n
Yy
Ny
— _ XX — —
gy =My, + [Nyl | Ry, =1 " ng, =0 ng, =0
XX
N Hy, N n Ny, N
X X n
o, = YV G, xx X)X G, o G, 2
t t Nyt t Nyt

Timber grid shell design
A timber grid shell consists of many laths that are bent into a curved shape and subsequently
connected together (see Savill building p. 22). Suppose that a lath is in the local x direction. The

largest normal stress due to bending isc . = %E tk,, , where t is the lath thickness. The lath can also

be twisted. The largest shear stress due to twisting isc ), = %E tky, . These stresses occur in the same

c
material cube and can be checked by (%)2 + (ﬂ)2 <1, where f; is the wood tensile strength
t s
and fis the wood shear strength. The utilisation value can be plotted as a function of the direction of

the x axis. This shows that for any grid shell shape it is best to point the laths in the principal
curvature directions (p. 98).

Consequently, for the laths not to break during construction, the architect needs to make sure that the
principal curvatures (p. 98) of the grid shell surface are nowhere too large.

2 2
_igkz’ kl_l
Et Et
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The architect’s software — for example Rino — can display the principal curvatures with contour plots
on the shell surface.

Exercise: Derive the latter formulas yourself.

Particle-spring method

Determining the grid of a grid shell cannot be done by hand. It would be too much work. A suitable
grid can be found by a computer algorithm called particle-spring method [58]. In this method,
particles are connected by five types of spring (table 12). At the start of the computation the grid of
particles and springs is flat. During the computation the grid is pushed onto an object. The result is a
curved grid (fig. 148). The spring stiffnesses can be adjusted to improve the grid.

Table 12. Types of spring in the particle-spring method

spacing orthogonality | in-plane out-of-plane curvature | twist
curvature

[ o Q. ) o -] a ©.

> =\ 8L <P
R /4»9/ \%\o . ) . e ‘Qq)\o \o /

o 3 o
Et oy Et 12 o, Et oy % t
1 1
2 ~——0a, 0 2 +va,a
L-va) 0 S ] 84y Y Ly ai 12(0-v7)| |, % =y
oy 12 t@ oy

The particle-spring method can be used to represent continuous shells too. To this end, deform the
grid in the desired shape. Use a small particle spacing and a large stiffness of the orthogonality
springs to make the grid directions almost perpendicular (see orthogonal parameterisation p. 25).
Redefine the spring deformations as zero and apply the spring stiffnesses of table 12. Finally, apply
supports and loads. In the table, o, and o, are the particle spacings in the local x and y directions.
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Exercise: Derive one of the spring stiffnesses in table 12.

Spring back analysis

The shape that the architect designed for a timber grid shell is probably not in equilibrium. This is
explained with a thought experiment, in which we have many giants at our disposal. The giants push
the laths of a grid shell into the shape that the architect designed.* Subsequently, construction
workers make the connections between the laths. The giants feel the forces that they exert on the laths.
The connections did not change these forces because nothing moved. When the giants let go of the
grid shell it springs to its equilibrium shape. Suppose that the giants do not let go and keep exerting
forces to the lath connections to maintain the architect’s shape. These forces can be calculated from
the curvatures of the laths. To remove the giants’ forces we apply opposite forces on all lath
connections. We assemble all the latter forces in a load case called “spring back”. Wood creeps
strongly, therefore, in time the forces will be reduced to about half the initial value.

Timber grid shell analysis

A timber grid shell can be analysed with a three dimensional frame program. The structure is idealised
with many straight frame elements following the shape that the architect designed. The elements do
not have an initial stress. (Clearly, in reality the bend laths have large initial stresses but most frame
programs are not able to process this.) The first load case that is applied to the structure is spring back
(p. 106) with a load factor of 0.5 to determine the equilibrium shape of the structure. The “0.5”
accounts for relaxation. Subsequently, the other load cases are applied, such as self-weight, wind and
snow. Probably, all analyses can be linear because only small displacements are obtained. (Large
displacements would not be acceptable). When checking the stresses we need to manually add half the
stress due to bending into the architect’s shape.

Exercise: To compute the forces of the giants we consider a continuous beam over five pinned
supports. Check the following matrix by computing the value of F3 with a frame analysis program.

R F F; Fy F5

Vool el

Ow  Bu  Tuw  Ou  Du
e

A ] [ 45 -102 72 -18 3wy ]
£ 102 276 264 108  —18 || us

El

Fyl=—"2| 72 264 384 264 72 us
£l 28| Z18 108 —264 276 —102 || uy
F | 3 -18 72 -102 45 us |

Challenge: A beam continues over an infinite number of pinned supports.

Fl EI
Ly

0

| &
L ‘\

d " d " d 75 a7 a7 d T d " a7

Derive the following equation.

4 In reality, contractors use scaffolding instead of giants.
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Fd?
EI
The next factor can be obtained by multiplying the last factor by\/g —2 et cetera.
The factors evaluate to

Fd®
EI

= ..+ (363 — 48)uy — (7243 —114)uy + (252/3 — 432) 1y — (936+/3 —1620) u3 + (3492+/3 — 6048) 1y — ...

=...+4.48u_2 —10.711/1_1 +14.351/l0 —1071141 +4.481/l2 —1.20M3 +0.32M4 —0.091/15 + ...
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Inextensional deformation

Figure 149 shows a very thin plastic spherical cap. The cap is simply supported and loaded by
a force. The person applying the force feels that the shell is quite stiff. We see bending
deformation but we know that the shell middle surface is stretching too. Otherwise this thin
shell would not be stiff. This deformation is called extensional deformation because the shell
middle surface is stretching. The loading is carried mostly by membrane forces and only a
little by bending moments.

Figure 150 shows the same spherical cap but now free from its supports. The person applying
the load feels that the shell is not stiff at all. This deformation is called inextensional
deformation because it does not involve stretching or shrinking of the middle surface. The
loading is carried mostly by bending and only a little by membrane forces.

Figure 149. Extensional deformation Figure 150. Inextensional deformation

In general, suppose that a shell roof is loaded by snow. If it deforms inextensionally the
displacements are very large and the bending stresses are very large. Clearly, thin shells need
to be designed such that inextensional deformation does not occur for any applied force.

However, inextensional deformation gives small stresses when a displacement is imposed, for
example a foundation settlement. If the response to a foundation settlement would be
extensional the stresses would be very large. Therefore, shells need to be designed such that
inextensional deformations occur for imposed displacements.

Viking ship Oseberg

Viking ships (fig. 151) are known to be very flexible [59]. This has two causes.

1) The planks of a Viking ship are joint by iron rivets (fig. 152). The planks form an open
shell which can move inextensionally (p. 109). The motion is somewhat controlled by curved
members (ribs and knees) and horizontal members (beams and thwarts) (fig. 153).

2) The Vikings had no saws to cut timbers. (In those days, manufacturing thin steel plate was
difficult.) They used axes for cutting timber. To make ship members they split the timber
along the grain. Timber cut along the grain (by axe) is much stronger than timber cut through
the grain (by saw). Therefore, each Viking ship member was strong, light and flexible.

It is not clear whether the Vikings liked their ships to be very flexible. The flexibility was just
a consequence of planks joint into an open shell and light timber cut along the grain. Note that
steel ships cannot be flexible. They would suffer from fatigue.
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Figure 151. Viking longship Oseberg, Norway, Figure 152. Rivets next to an oar hole
800 AD, 21.58 m long 5.10 m wide

Scarf - Skor
Oarlock / Kabe - Keipr

Gunwhale - Ripr
Stringer

Rib - Innvidr / Rong
Treenail - Trésaumr Iron rivet - Saumr
Garboard strake - Kjol-bord

Beam stanchion - Snaeldr

The overlap - Suda

Drain plug - Nygla
_ Rove - R6

Keel - Kjplr
™\ Iron nail - Jarnsaumr )

Figure 153. Parts of a Viking ship (words in English and old Norwegian)
(www.vikingskip.com)
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Liquid storage tanks
In Rotterdam port there are many liquid storage tanks. The tanks are welded out of 10 mm

thick steel plates. The bottom steel plate is supported by square concrete plates that are simply
placed onto compacted sand. Some of these tanks have a roof that floats onto the liquid. This
is to prevent build-up of explosive gases in half filled tanks. Unfortunately, many tank roofs
get stuck against the tank walls after just a few years of operation.

It appeared that some concrete plates settle more than at others. Therefore, the steel bottom
plate curves and the tank wall deforms (fig. 154). Small settlements can cause surprisingly
large wall deformations. This deformation is inextensional (p. 109). For the tank itself this is
good because the steel stresses are small despite the large deformations. Unfortunately, as a
consequence the floating roof gets stuck. Clearly, a floating tank roof needs be designed with

a large clearance to the tank wall.

=\

< —

Figure 154. Inextensional deformation of a storage tank without roof [60]

Analysis of the liquid storage tank
The inextensional deformation of a liquid storage tank can be analysed by hand. Someone

found out that the deformation is described by [60]

2v
U, =—Wecos—,
a
u . 2v
u, =-2w—sin—,
a a
2v

u
u, =4w—cos—,
a a

where a is the tank radius and w is the vertical displacement of Q'.This can be checked by
substituting these equations in the shell membrane equations (p. 38).

sxxz%—kxxuz+kxuy=0

€ :au—y—k u, +k,u, =0

Yy dy oz yox
=%+au—y—2k uy, —kyu, —kyu, =0

Txy ay A Xy
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1

where has been used that &, =k, =0,k,, = - and o, =o, =1. Apparently, all strains of
the middle surface are zero, therefore, the described deformation is inextensional.

il

a

The horizontal displacement at P' (u=1,v=0)1is u, =

Rijswijk shell roof !

In the city of Rijswijk (ZH) in the Netherlands a reinforced concrete shell roof was built for a
factory. The shell consisted of several half cylinders that continued over three supports (fig.
155). Due to the heavy materials stored in the factory the foundation started settling and some
columns were pulled down more than others. In the lateral direction the shell followed the
deformations beautifully in an inextensional way. However, in the axial direction the shell
deformation was extensional (p. 109) and stiff. Apparently large membrane stresses occurred
because large cracks were clearly visible in the shell near the settled columns. After a few
years already, the building needed to be demolished due to excessive maintenance costs. The
conclusion is that cylinder shell roofs should not span over more than two supports.

N

lateral cross-section axial cross-section

Figure 155. Extensional deformation of a shell roof in the city of Rijswijk

Spotting inextensional deformation

Inextensional deformation and extensional deformation can occur together. For example, a
cylinder that is loaded in the axial direction (fig. 156). This loading will compress the middle
surface and cause extensional deformation. On the other hand, a lateral loading on this
cylinder will cause mainly bending and the deformation will be inextensional. When the loads
are applied together, the combined deformation will be extensional.

¥ / L D
~ T

Figure 156. Extensional and inextensional deformation of an open cylinder

Vibration mode shapes

One way of spotting inextensional deformation (p. 109) is to compute the natural frequencies
(p. 156) of a shell structure. If inextensional deformation is possible this mode will have the
smallest natural frequency. In most well designed shells the modes shapes are local
deformations. Inextensional deformations, on the other hand, typically are deformations that

! Told by Henk van Koten in a lecture in May 2007. Henk van Koten (1929 — 20..) was a teacher at
Delft University.
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involve a large part of a shell. This approach does not work for spotting extensional
deformation due to support settlements.

Strain energy

Another way of spotting inextensional deformation (p. 109) is observing the strain energy in a
shell. The membrane strain energy in a small shell part is

_1 1 1
Eg, =5 M T 5y Yay F 518y

The bending strain energy is

_1 1 1 1 1
Egy =5 MKy + 5 My Py 5 My Ky F 5V F5VY )z
In this it is assumed that the material behaviour is elastic. The strains and curvatures are those
of the middle surface. Note that strain energy does not have a direction and is always positive.
A ratio o can be defined as

o= Esm — Esb
Esm + Esb

A contour plot of a over the shell shows where membrane action is dominant (0 < a < 1) and
where bending action is dominant (—1 < o < 0). Dominant bending action is a sign of
inextensional deformation. Unfortunately, most structural analysis programs cannot plot this

quantity.

Theorema egregium
The shell compatibility equation (p. 57) reads

ey vy O

xx Y o_ _

8y2 ox0y ox2

knyxx + kxypxy - kxxKyy

The left hand side represents membrane deformation. The right hand side represents bending
deformation. Both sides are equal to the increase of the Gaussian curvature kg (p. 23) during

loading. This is proved in appendix 8. Studying the compatibility equation we see the
following.

If the deformation is inextensional (&y, =Y, =€, =0) then the Gaussian curvature does not

change.

This property was discovered by the mathematician Carl GauB3 in 1827. GauB called it
theorema egregium, which is Latin for “remarkable theorem”. He formulated it as “If a
curved surface is developed upon any other surface, the measure of curvature in each point
remains unchanged.” (translated from Latin) It is true for small, large and very large
deformations [61].

Exercise: How do we call “developed upon”? How do we call “measure of curvature”?

Studying the compatibility equation we see that there are more situations in which the

Gaussian curvature does not change due to the load, for example &, =v,, =¢,, =1

everywhere. So, inextensional deformation is a special case of no-change-in-Gaussian-
curvature (fig. 157).
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change in k¢

no change in k¢

Figure 157: Venn diagram of local shell behaviour
Shells behaving like a plate

If the Gaussian curvature does not change by a load perpendicular to the surface, then this
load is carried in bending only.

Proof: The increase of the Gaussian curvature can be written as (appendix 8)

2
0“u,
ox?

2 2
8uz+k 0“u

Tu, =k —= —=.
axdy a2

z = %y N 2kxy

The shallow shell differential equation (p. 59) is

Ef

mv2v2v2V2uZ +EtTTu, =V*V?p_ .
-V

When the Gaussian curvature does not change then
=0.

If this condition is fulfilled over some shell area then the differential equation in this area
reduces to

Ef

22
—— V' Vu,=p;
12(1-v7)
which is the differential equation of plates loaded in bending. Though the shell is curved, the
load p, is carried by bending moments and not by membrane forces. Q.E.D.

Shell design

Suppose we are designing a thin shell and part of its area has very large stresses (1). We
increase the thickness and this reduces the stresses. However, we find that for acceptable
stresses the thickness needs to be large (2). The large stresses seem to be caused by large
bending moments and not by normal forces (3). Now we have observed three symptoms of
inextensional deformation (p. 109) and we think that this might be the problem. We plot the
increase of the Gaussian curvature for each load case. It appears that for one of the load cases
the increase of the Gaussian curvature is almost zero in the problem area. Now we know for
sure that our shell suffers from inextensional deformation. A solution can be to add a stiff
beam to the shell edge.
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Plotting Gaussian curvature

Unfortunately, most finite element programs cannot make a contour plot of the Gaussian
curvature or the increase of the Gaussian curvature. Programmers need to implement this,
which is not an easy task. Only for high accuracy elements the Gaussian curvature can be
computed from information available within an element (see shell finite elements p. 82).

Kresge Auditorium

Kresge Auditorium is a building at MIT campus in Cambridge (close to Boston, USA) (fig.
158). It was completed in 1955. Its shape is spherical with three edge beams and three point
supports. The reinforced concrete edge-beams prevent inextensional deformation (p. 109) of
the reinforced concrete shell. The edge beams cause edge disturbances (p. 14) in the shell.
The height is 15 m. The span between two supports is 48 m. The shell thickness is 90 mm.
The architect is Eero Saarinen. The engineering firm is Ammann & Whitney. The contractor
is the George A. Fuller Company. The money was donated by Sebastian Kresge

($1.5 million).

In the original design the curtain walls were horizontally supported by the edge beams. In the
vertical direction the curtain walls were self-supporting with an expansion joint to the edge
beam. However, after removal of the timber formwork much creep occurred in the concrete
(more than 130 mm deflection). Therefore, the curtain walls were quickly redesigned to also
vertically support the edge beams [62].

The current roof cover dates from 1980. It consists of copper sheets. Earlier roof covers were
made of plastic applied as a liquid (lasted 8 years) and soldered lead sheets (lasted 15 years).
They cracked due to temperature deformation of the roof. (In the Boston climate half a roof
can be covered in snow while the other half is heated by the sun.) The cracks and lack of
ventilation made the concrete wet. Corrosion and freezing severely damaged the concrete.
Extensive and costly repairs have taken place, including replacing large parts of the edge
beams. If the building were not architecturally important, it would have been replaced a long
time ago. Fortunately, the problems seem to be solved now [62].

Figure 158. Kresge Auditorium (MIT, Cambridge USA)

Kresge auditorium has whispering galleries (p. 43). Nevertheless, the acoustic properties are
quite good and it is often used as a concert hall.
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Exercise: The radius of curvature of Kresge Auditorium can be calculated by a = %s + %— ,
s

where s is the sagitta and / is the distance between the supports. Derive this formula.

Deitingen petrol station

In Switzerland next to highway Al is Deitingen petrol station (fig. 159). It has two reinforced
concrete canopies that have been designed by Heinz Isler.> They have been built by Willi
Bosiger AG in 1968. Note that this shell does not have edge beams. It can deform
inextensional but apparently this does not give problems. The span is 31.6 m. The smallest
thickness is 90 mm. The radius of curvature is 52 m. The ratio a/t = 580.

The formwork of this shell consisted of steel scaffolding, curved glulam beams
(approximately 180 x 50 mm spaced 800 mm) and wood floor boards. The formwork parts
were reused on other projects. The concrete is watertight and a roof cover has not been
applied. The surface is just painted [63, 64, 65].

Figure 159. Deitingen petrol station - Figure 160. Model of a shell
structure made by Heinz Isler [64]

Gaul}-Bonnet theorem
1

A sphere has in every point a Gaussian curvature of kg =kjk, = (—l)(—l) ==
a a a

It has a surface area of A = 47a” .

The total Gaussian curvature of a sphere is j kgdA=kgA= %475512 =4mn.

a
A

When this calculation is repeated for an ellipsoid, a tractricoid or a brick the results are also
4n. The total Gaussian curvature of the surface of any object without holes is 4x. If the object
has one hole then the total Gaussian curvature is 0. If the object has two holes the total

2 Heinz Isler (1926-2009) was a Swiss engineer. He designed more than 1200 reinforced concrete shell
structures. Most were built between 1955 and 1979. He did not use computers for structural analysis.
Instead, he used plastic models and strain gauges to determine deflections, stresses and buckling loads
(fig. 133) [64].
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Gaussian curvature is -4n. This is the Gaufs-Bonnet theorem which was published by the
mathematician Pierre Bonnet in 1848 [Wikipedia].

Table 13. Total Gaussian curvature of 10 objects

47

—4n

Exercise: Which are the two holes in a teapot?

Exercise: The total Gaussian curvature of a brick is 4w. A brick has 6 faces, 8 edges and 8
corners. Which part contributes most to the 4m ?

Corollary

Consider a point load perpendicular to the surface of a shell. Under the point load the
Gaussian curvature has decreased (or increased). According to the Gaul3-Bonnet theorem (p.
116) the total Gaussian curvature does not change. So somewhere else the Gaussian curvature
must have increased (or decreased). Apparently, shells carry load by moving around Gaussian
curvature.

Force on a sphere

In 1946 Eric Reissner solved a simplified version of the Sanders-Koiter equations (p. 54) for a
spherical cap loaded by a force perpendicular to the surface. The solution consists of Kelvin
functions [67]. The deflection u, under the point load P is

P 2

m =ny 2—?7 1-v




Force on a shell of positive Gaussian curvature
In 1963, He Guang Qian ({f]) %z pronounce ho kwang tsien) and Chen Fu ([ {X) derived the
solution to a force perpendicular to a shell of any positive Gaussian curvature [68].

U, \/§—P V1-v2.

4 B2 kg

The formula is accurate when the deformation is extensional and the distance from the point
load to the shell edges is large. The membrane forces under the point load are the same as for
a force on a sphere (p. 117)

Force on a cylinder
In 1977, Chris Calladine studied circular cylindrical shells loaded by point loads (fig. 161) [69
p. 305]. * He found a difference between long cylinders and short cylinders.

-1
long cylinder / >%\/E u, =273 ﬁ(gxﬂ —v? )

N W

t

short cylinder /at <1 < %\/E with fixed ends u, =1 J2 g ( a m ft ( 1 jé
with diaphragm ends  u, =
with free ends u, = %ﬁ{gﬂf a

where / is half the cylinder length. The membrane forces under a point load are

n =0, ny =—§§W 2

The principal normal force directions are the principal curvature directions.

The cylinder formulas are not accurate at the transition between long and short. The accurate
deflection can be read from the graphs in figure 161b. These graphs were computed by
representing the point loads as a summation of sine line loads (Fourier series p. 165). The
formulas were derived as straight line curve fits of the graphs.

Exercise: Which of the cylinder formulas describes inextensional deformation?

3 He and Chen worked at Ministry of Building Construction in China. Their formula was confirmed by
Russian, European and American scientists a few years after it was discovered. Unfortunately, by then
the cultural revolution (1966—1975) had destroyed Chinese science.

In 2012, Amir Semiari made finite element models of surfaces of varying curvature for his bachelor

end project in Delft University [70]. He did not know of He and Chen’s solution. He also found that
Reissner’s solution of a point load on a sphere can be adapted to shells of any positive Gaussian

curvature by replacing the radius a by 1/ Jkg -

4 C.R. Calladine (1935-...) was professor of structural mechanics at the University of Cambridge
[Wikipedia].

> The formulas are also valid for a negative load P. In that case, exchange 7 and 1, .
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Figure 161. Two point loads on a circular cylindrical shell
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Figure 161b. Deflection at one of the point loads in figure 161 [69 p. 305]

Force on a shell of negative Gaussian curvature
In 2013, Nathalie Ramos studied anticlastic shells loaded by perpendicular forces. From many
finite element results she derived the following formulas [73]. The deflectionu, under the

force P is

\ll—vz.

u, =0.92

_r
Ef* kg
The membrane forces under the force are

=03 P2 o3

"_kG t

ky P

"_kG t

1—v2.
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Figure 162. Point load on a hypar shell

Moments due to a force
In 2016 formulas were developed for moments due to perpendicular forces on shells of any
curvature [74].

my =0.0388(1+v)Pln

frd?

my =0.0388(1+ v)PIn—"
fd
where

ky =]0.00725k; +0.199k, | +0.0529 k; +0.0298 ;|
ki =[0.00725k, +0.199k;|+]0.0529 &, +0.0298 k|

Symbol d represents the diameter of the circular area over which the load is distributed (fig.
162). The moments nz and m, are the local peaks, which occur directly under the force. They

are in the principal curvature directions; m; is in the direction of &y and m, is in the direction
of k, . The formulas are also valid for P <0, however, then m is not larger than m, . This can
be simply solved by exchanging the names m and m, .

Plate twisting

A flat plate has zero Gaussian curvature. When the plate is twisted it has a negative Gaussian
curvature. Since the Gaussian curvature has changed, membrane forces develop (see
Theorema egregium p. 113). The phenomenon can be observed in a towel (fig. 163). Ask
someone to hold two corners of the towel and hold the other two corners yourself. Stretch the
towel firmly. Move slowly one of the corners out of plane. You will observe that the middle
of the towel becomes floppy. If the towel were a plate, the middle would be compressed and
the edges would be tensioned.

Figure 163. Twisted towel. The edges are stretched and the middle is floppy.
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Due to compression in the middle a twisted plate can buckle. The shape changes from a hypar
to a cylinder and the Gaussian curvature disappears. Buckling occurs at an out of plane corner
displacement u = 16.8¢ . This has been discovered by Dries Staaks in his 2003 graduation
project [75]. In the plate middle the membrane forces are

2
n =np zﬁEtb kG,

where b is the plate length and width [75b]. In the plate edge the membrane forces are

i’ll =—2L6El‘b2kG I’l2 20.6

Before buckling the Gaussian curvature is kg = —u? / b* . The latter equation can be derived

in the same way as hypar curvature (p. 102) The previous formulas are for square panels.
Unfortunately, for rectangular panels no formula is available. Important applications are glass
fagades and glass roofs (fig. 165).

Figure 165. Canopy of twisted glass panels at a bus stop in Delft, the Netherlands

Exercise: A reinforced concrete hypar (a = 140 m) will be cast on a timber formwork. The
formwork will consist of straight beams in parallel to the hypar edges and multiplex plates.
The plates will be twisted. Clearly, we do not want them to buckle. The factory dimensions of
the plates are 2440 x 1220 x 18 mm. Do the plates need to be cut to a smaller size?

Gaussian curvature of boats

Steel boats are made of plates that have zero Gaussian curvature both before assembling and
after assembling (fig. 166). An edge where the plates are connected is called chime.

¢ These formulas are also valid for positive Gaussian curvatures. In that case, exchange n1 and n2.
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keel

Figure 166. Curved plates at the bow of a steel boat (zero Gaussian curvature)

Prestressing tents

Tents are made of fabric parts that are sewed together. The Gaussian curvature of the fabric is
zero (It leaves the factory on a role). Therefore, in a traditional circus tent every fabric part
has zero Gaussian curvature (fig. 167). However, architects like smooth shapes which do have
Gaussian curvature (fig. 168). If we impose a Gaussian curvature to a fabric it wrinkles,
unless it is prestressed. In the direction of the seams the required prestress is

__1 2
n,, = 24Etb kG,

XX

where b is the fabric width. Perpendicular to the seams the required prestress is

| Etb*fkghy]

Nyy =%14a

z

where z is accepted maximum distance from the theoretical smooth surface to the tent fabric
[76].

Figure 167. Traditional circus tent (zero Gaussian curvature)
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Figure 168. anopy t the Euopen patent oce in Rijswijk, Netherlands (negative

Gaussian curvature) architect Lewis X Associates, consultant Tentech, contractor Poly-Ned
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Figure 170. Moment trajectories in one of the hypar shells of figure 169 due to self-weight

Umbilics
An umbilic is a point in a tensor field where both principal values are the same. For example
my, =40 kNm/m, m,,, = 40, m,,= 0. Consequently, m;=40 and m,= 40 and Mohr’s circle

is just a point. Principal directions cannot be determined. The reason is that the principal

directions are defined as the directions in which my,= 0. In an umbilic m, = 0 in any

direction. Umbilics are also called umbilical points or isotropic points.

Umbilics draw attention to themselves, however, they are harmless. It seems that shells are
less likely to fail in umbilics then in other locations.

Umbilical patterns

The trajectories (p. 98) around an umbilic (p. 123) have a particular pattern. If the tensor field
is linear in x and y around the umbilic then either a monstar or a star occurs (fig. 171). Both
patterns have three trajectories that go through the umbilic. These trajectories are called
ridges. The ridges of a monstar are always within a 90° angle. The ridges of a star are always
not within a 90° angle. When any two ridges have an angle of exactly 90° then the third ridge
does not occur and the usual orthogonal pattern occurs.

When the three ridges of a monstar coincide a lemon occurs.” When two ridges of a monstar
coincide a pattern occurs that does not have a name. Let us call it a flame.® Figure 172 shows
the trajectory pattern as a function of the ridge angles (see appendix Umbilical patterns).

More patterns are possible if the tensor field around an umbilic is nonlinear in x and y. Then
the number of ridges is unlimited, for example the moment trajectories around a point load on
a shell. These are not studied in these notes.

monstar star

Figure 171. Trajectory patterns around an umbilic in case of a linear tensor field

7 The name lemon is related to the fruit’s shape that can be recognised in the trajectory pattern.
The name monstar is derived from lemon-star.

8 The theory of umbilics has been developed by mathematicians studying differential geometry [77].
They probably thought that the flame was not interesting and did not need mentioning. This has created
confusion amongst engineers who observed trajectories in which two ridges crossed at angles different
than 90° which they thought would not be possible. By giving it a name future confusion can be
avoided.
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Figure 172. Umbilical patterns as a function of the ridge angles ¢; and ¢,

Monkey saddle
A monkey saddle (fig. 173) is a surface described by the function

¥ -3%y?
Z=—7p—
6a
An orthogonal parameterisation (p. 25) is not available. The origin is a point of zero Gaussian

curvature (p. 23) in an area of negative Gaussian curvature. The curvature trajectories (p. 98)
show a star umbilic (p. 124).

Figure 173. Curvature trajectories on a monkey saddle

Exercise: People in Switzerland use the words Kammweg and Talweg. These words are useful
in geometry too. Can you apply these to the monkey saddle?
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Figure 174. Sydney opera house

Architect: Jorn Utzon

Engineering:  Ove Arup and partners

Contractor: Hornibrook Group Pty Ltd.

The building was designed in 1955 and completed in 1973.

The shell roofs are made of precast concrete panels supported by precast concrete ribs.
Cladding: white tiles

Costs: $102 million

Hypar edge moments
The edges of hypar shells are supported by edge beams. The edge beams help the shell by
carrying normal forces but they also cause edge disturbances (p. 14). Figure 175 shows hypar
bending moments for a hinged edge and a fixed edge. The loading p is perpendicular to the
surface and evenly distributed. The hinged edge represents a small edge beam with little
torsion stiffness. The fixed edge represents a strong edge beam or an interior beam which will
not twist because it is loaded symmetrically. The graphs were made by Henk Loof in 1961
[78]. For example, in the graph we read that the largest moment at a non-twisting edge beam
is
4

Mg ==05112-(a11)3,

/
where [ is the length of the edge beam. The related shear force is (slope of the moment
distribution)

v, =1.732PT‘”.
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Figure 175. Bending moments in the edge of hypar shell

Unfortunately, the graphs are not accurate for all situations [79] and finite element analyses
are necessary to check hypar designs.

Berenplaat hypar roof

In Spijkenisse, the Netherlands ... Berenplaat water treatment facility,

Filter house, 107 x 133 m, consists of twenty reinforced concrete shells. Each shell consists of
4 hypars.

Architect: Wim Quist

Built from 1959 to 1964.

Not open to the public.

i

Figure 176. Berenplaat water treatment facility [Yoshito Isono]

Paaskerk hypar roof

The Paaskerk is a church in Amstelveen, the Netherlands.
Its roof consists of one thin hypar shell.

It was built in 1963.

Architect: Johan van Asbeck

Contractor: Woudenberg te Ameide

Plan 21.50x21.50 m, a =31 m

Dutch national monument
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Figure 177. Paaskerk

Surprising flexibility
Figure 178 shows a curved shell roof supported by brick walls. The twisting curvature kyy is
zero. The Gaussian curvature k¢ is negative. The brick walls provide diaphragm boundary

conditions (p. 69) to the shell. (In brick walls occur only normal forces and in plane shear
forces. A significant abutment force from the shell to a wall would not be resisted; the wall
would just crack and bend.) The shell length /,, and shell width / ) are special; they have the

ratio
L | KAw
/ y ke

This particular shell and boundary conditions is surprisingly flexible; it suffers from
inextensional deformation (p. 109) [80]. The deformation is described by

Iikyy . mu  mv Ik . T Ty
Uy =28iN——C0S—, Uy, = P cos==sin——,  u, =COS—COS—.
oL L L1,

The problem can be solved by a significant change to the shell length, width, curvatures or
boundary conditions. However, if the length or the width is doubled, the inextensional
deformation still occurs. The deformation simply repeats itself.
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Figure 178. Curved shell roof supported by brick walls

Exercise: Proof that the above deformation is inextensional indeed. Assume that the shell is
shallow. So, u=x,v=y, k,,and kyy are constant. Note that for positive Gaussian curvatures

this inextensional deformation is imaginary (~/—1) and therefore does not exist.

Parameterisation of a paraboloid in the principal curvature directions

A paraboloid can be described by the following orthogonal parameterisation (p. 25) in the
principal curvature directions (p. 22). In figure 179, the parameters a =1 m and b = -1 m,
produce a hypar (p. 21), which looks like Enneper’s surface (p. 164). The curvilinear
coordinates u and v (p. 31) have the dimension length. It is possible to change the
parameterisation such that # and v have no dimension, however, this makes the equations of

kyxs kyy s 0y, oy, abit more complicated. 1 3,2 2
ke =—(1-——F—-——%+..)
, a 24> 2p?
_ A v 2 2
Y=u(l+ ——=) A= 1, 3" u
5 2b°  2a
B u
y=v(l+——F—m—) B= ky, =0
1++1+B a(a—b) ad )
2 a4 1
T=2 4L a#b ax_1+2 7t At
2a  2b a
V2 1
oy, =l+—+=B+
Yo 2
3,3
a’b
kG

Figure 179. Parameter lines on a paraboloid
a=1m b=-1m -I1m<uy<Ilm, -I1m<v<lm
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Sudden collapse

Shells are very efficient in carrying load. However, this efficiency comes at a price. If a shell
buckles, it collapses with a bang. There will be no warning and it will collapse faster than we
can run.

Truss, frame and plate structures do not have this problem. Usually, they slowly deform a lot
before collapsing and therefore they give clear warnings to evacuate the area.

Consequently, shells need to be extra safe. In other words, for shells we often use larger load
factors and material factors than for most structures. In the eurocode this is organised in
consequence classes. Often, the highest consequence class is appropriate.

Tucker High School

On September 14, 1970, the gymnasium of The Tucker High School in, Henrico County,

Virginia, collapsed completely [81]. Some school children were injured but fortunately there

was no loss of life. The structure was a four element hypar (p. 117) with a plan of 47.2 m by

49.4 m (fig. 180). It had a sagitta (p. 1) of about 4.6 m, large inclined supporting ribs and

centre ribs that were essentially concentric with the shell. The shell was 90 mm thick for the
a 47.2/2x494/2

most part. Therefore, it had a ratio — = = 1400.
t 4.6x0.090

The failure was due to progressive deflection. The lightweight concrete showed much creep.
Three similar structures were subsequently demolished. One of these had a deflection of 460
mm at the centre. Research showed that the collapse could have been simply prevented by
cambering upward the centre point of the shell [81].

Figure 180. Newspaper photograph of the collapsed hypar shell [81]
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Cylinder buckling shapes

The buckling shape of an axially loaded cylinder starts as ring mode or a chessboard mode
(fig. 181). Which one occurs depends on the shell thickness and its radius. When buckling
progresses the ring mode can transform into the chessboard mode. However, these
deformations are very small and rarely visible. When the material starts to deform plastically
the ring mode develops into an elephant foot (fig. 182); the chessboard mode develops into a
Yoshimura! pattern (fig. 183), which are clearly visible.
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Figure 181. Buckling modes of axially compressed cylinders computed by the finite element
method (The deformation is enlarged to make it visible.)

Figure 182. Elephant foot buckling of a tank  Figure 183. Yoshimura buckling of an
wall [82] aluminium cylinder

Exercise: The Yoshimura pattern can be obtained as an origami exercise. Take a sheet of
paper and draw the lines of figure 184 on it. Fold all horizontal lines towards you and all
diagonal lines away from you. When all folds are made, the sheet tends to curve. Curve the
sheet further and close it with sticky tape.

!'Yoshimura Yoshimaru (# £ B L) (approximately 1920-1964) was a professor of applied mechanics
at Tokyo University of Technology. Nine years after the Second World War, he was invited to the USA
to work on shell structures. There, he wrote a report [83] which explained the buckling shape that was
often observed in cylinder experiments. Unfortunately for many of us, his other publications are in
Japanese.
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Remarkable about the Yoshimura pattern is that it is inextensional (p. 109). Fortunately, large
extensions are needed to transform a cylinder directly into a Yoshimura pattern [83]. You can
try this too: Take a sheet of paper, curve it into a cylinder and close it with sticky tape. Then
load the cylinder axially by books until it buckles. If the cylinder and the load are nearly
perfect, then the cylinder deforms into a Yoshimura pattern. Clearly, reality is not perfect.
Nevertheless, several Yoshimura buckles can be recognised in the overloaded cylinder.

™~

- /
AVAVAN \

Sheet of paper

Buckled pper cyliner
Figure 184. Origami exercise

Buckling of a beam supported by springs

Shells can be understood by studying a beam supported by uniformly distributed springs (fig.
185). The bending stiffness of the beam is £/ [Nm?]. The stiffness of the distributed springs is
k [N/m?]. The beam is loaded by an axial force P [kN]. The differential equation that
describes this beam is

4 2
Eld—ZV+Pd—;V+kw=O.
dx dx

Figure 185. Elastic beam supported by distributed springs

The following buckling shape is proposed

. NTX
w=bs1nT,
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k EI

where 7 is the number of half waves of the buckled shape. Substitution of the buckling shape
into the differential equation gives the following solution.

> w:=b*sin(n*Pi*x/l):
> eq:=EI*diff(w,x,x,x,x)+P*diff(w,x,x)+k*w=0:
> Pcr:=expand(solve(eq,P));

p _n2n2E1+ k1>
“ 12 n’n?

This solution is plotted in figure 186 in dimension less quantities. It shows that for long
beams the red line is a good approximation.

P, ~2\JkEI .

3
4
P, 2 3
1
i
0 JEL
1 fix2 2 ax3 3 f3x4 4 ™

Figure 186. Buckling load as a function of the beam length

Ring buckling of an axially compressed cylinder
Consider a circular cylinder (fig. 187).

k=0, k,,=—, k;, =0, a,=a,=1, 0su<l, 0<v<2ma
Somebody proposes the following deformation.

\Y%
Uy =—J‘w(u)du, u,=0, u,= w(u).

a

This deformation is axial symmetric and depends on an unknown function w. Please note the
difference between v (Poisson’s ratio) and v (curvilinear coordinate).

Substitution in the 21 Sanders-Koiter equations (p. 54) gives

EC _d'w Et - dw
120-v?) dx* &2 dx?

This is the same differential equation as that of buckling of a beam supported by springs (p.
137). Apparently we can make the following interpretations.
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Using this analogy, the buckling load of a not short cylinder is calculated as

_ 2
1 Et _06£

’3(1—\/2) T a

and the buckling length is

n., =2k EI =

L., —n\/ﬁ z1.7\/E.
\4/12(1 v?

<
d-
=+

-
.

-
p——

;

/ N

SEEEEE,

Figure 187. Cylinder coordinate system

Exercise: What cylinder part can be represented by a beam and what part by uniformly
distributed springs?

Exercise: Calculate the buckling length of a cylinder made out of a sheet of paper.
Exercise: In what shape does a very long cylinder buckle?

Exercise: What is the difference between the buckling length and the influence length (p. 73)?

Differential equation for shell buckling
The differential equation for shell buckling is an extension of the shallow shell differential

equation (p. 59)
2 2 aZM

2922y 2 _v2u2 O7uy, ou,
VVAV*V2u, + EtTTu, =V°V*(p, +ny, o~ +(nxy+nyx)axay+nyy

E3
12(1-v?)

z

6y2
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It can be easily derived starting with Sanders-Koiter equation 21 (p. 54) by replacing &, by
2

ouy
ox?
shell shapes and elementary loading. The buckling loads thus obtained are called critical
loads. There is a large body of literature on this. Scientists who made significant contributions
are Rudolf Lorenz, Stephen Timoshenko, Richard Southwell, Richard von Mises, Wilhelm

Fliigge, Lloyd Donnell. An overview is given by Nicholas Hoff [84] 2.

ko + et cetera. This differential equation can be solved analytically for elementary

Buckling load factor
A load factor A is introduced in the differential equation for shell buckling (p. 139).

Et3 2222 2.2 62u 82u 82u
——— VIV, + EtTTu, =VV (L p, +hng——=+ h(ny, + 0y ) —=+hn,, —=
12(0-v?) ox? Oxdy oy

A chessboard buckling pattern is assumed.

™o Ty
U, =CCOS—COS——

L1,

The following assumptions simplify the mathematics.
Ny + 1y =0 the buckles occur in the principal membrane force directions,
k., =0.......... the buckles occur in the principal curvature directions.

The buckling pattern and the assumptions are substituted in the differential equation and the
critical load factor is solved (appendix 10).

2 Stephen Timoshenko (1878-1972) was born in Ukraine and became a professor at Kyiv Polytechnic
Institute. In 1919, he fled for the Bolshevik revolution and ended up in the USA where he became a
professor at the University of Michigan and later at Stanford University [Wikipedia].

Richard von Mises (1883-1953) was born in Ukraine. He studied at Vienna University of Technology.
He was a pilot during the First World War and afterwards a professor of applied mathematics in
Dresden and Berlin. He was Jewish and in 1933 he left nazi Germany to teach in Istanbul. Later he
moved to Harvard University, USA [Wikipedia].

Rudolf Lorenz (approximately 1880-1945) was a civil engineer in Dortmund, Germany [84].

Richard Southwell (1888-1970) was a mathematician and engineer. He taught at the University of
Cambridge, Oxford and Imperial College London [Wikipedia].

Lloyd Donnell (1895-1997) was an American engineer, professor at Illinois Institute of Technology
and Stanford University [Wikipedia].

Wilhelm Fliigge (1904-1990) was a German engineer. After the second world war he moved to the
USA and became professor at Stanford University [German Wikipedia].

Nicholas Hoff (1906-1997) was born in Hungary. He studied aeronautical engineering at Stanford

University before the war and eventually became a professor there. He was a student of Timoshenko
[Wikipedia].
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Suppose that buckling is not restrained by edges, then the buckling lengths /, and /, are such
that the load factor is smallest. This was studied by plotting 2., as function of /, and /, for

various values of n k,, (appendix 10). The result is surprisingly simple. Three

xx o 1 yy kxx ’
buckling modes can occur.

2 2
L= —El |kyy| 7\‘ 5= _Et |kxx|
cr cr
J3(1=v?) M J3(1=v?) My

The third buckling mode is due to inextensional deformation. Sometimes these buckling load
factors are negative, which shows that we need to reverse the load to cause buckling.

A Aoa =0

cr3

Exercise: Are the formulas for cylinder ring buckling and cylinder chessboard buckling the
same?

Exercise: What is the buckling formula for a spherical shell loaded by a vacuum?

Challenge: The numerical study seems to show that

>0 (not dangerous)

hep3 <0 for n ]

xx|kxx|+n

A 0 (not dangerous)

o3 = for nxx|kxx|+nyy‘kyy‘=

<0 (dangerous).

her3 >0 for mlleg|+ [k |

Prove or disprove this.

Challenge: Derive the buckling formula for n,, +n,, =0 and k, =k, =0 and k,, #0.

Design check of buckling
For design, the buckling load factors should not be in the interval 0 <A, <1.

This can be explained as follows. Consider a free form shell structure. We specify loads,
safety factors (p. ...) and load combinations (p. ...). We do a linear analysis to obtain the
membrane forces. We do a linear buckling analysis to obtain the buckling load factors for
each load combination. Suppose that a buckling load factor is 0.9. This means that when we
apply this load combination slowly, the shell will buckle at 90% of the full load. Clearly, this
will not do. We need to change the design.
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Catelan’s surface >

The Catelan minimal surface is described by the following orthogonal parameterisation (p.
25).

X =aucosv —l<u<l —%n<v<%n

7 =%a((2u2 +1)sin2v+2v)

| 5 b = cosv
z==al(u” +1)cos?2 —1) xx
z 4a(( " ) v a\/u2+1(u2+coszv)
kyy =~k
—usinvy
kxy—

a(u2 + 1)(u2 +cos? V)
o, = aNu?® +cos? v

o, = a\/(u2 +1)(u? +cos® v)

Imperfection sensitivity

Before 1930, airplanes consisted of frames covered with a fabric which was painted.
However, engineers wanted to build airplanes from aluminium plates that were joined to form
a cylindrical shape. Therefore, scientists started to do experiments on cylinders, for example
Andrew Robertson *. Figure 188 shows the ultimate loads of axially compressed aluminium
cylinders. They are much smaller than the critical load. Robertson ends his paper on the
subject with “Further comment as to the insufficiency of these formulae is unnecessary” [85].

0 F—-—————_————— — ——— — — —
s ®og . critical load
0
ey fn&og .
e:ﬂ . & ‘g 8
0,5 Ly ‘g’u‘&‘f’ ° o .
N 2 % o5 ultimate load
8000 $
80 a °§ [ ‘ as ?
R E D T

a
0 L 1 L —_
0 1000 2000 . 3000 t

Figure 188. Experimental ultimate loads of 172 axially loaded aluminium cylinders [86]
This difference between theory and experiments is caused by invisible shape imperfections.

At first sight, imperfection sensitivity is hard to believe because the experiments were
performed very carefully. The aluminium cylinders had perfectly cut edges and were

3 Eugéne Catalan (1814 — 1894) was a Belgian mathematician and professor at the University of Li¢ge
[Wikipedia].

4 Andrew Robertson (1883 — 1977) was a professor of Mechanical Engineering at Bristol University
[Wikipedia].
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beautifully polished. The cylinders were perfectly centred in the testing machines. The testing
machines were modern and very accurate measuring instruments were used. Nonetheless, the
ultimate loads were much smaller than the critical loads. Not only compressed cylinders but

also bend cylinders and radially compressed domes are very sensitive to shape imperfections.

Experiment

What is the ultimate load of an axially loaded empty beer can? We model
the can as an open cylinder. The wall thickness is 0.08 mm the radius is
32.8 mm, Young’s modulus is 2.1 10° N/mm? and Poisson’s ratio is 0.35
(stainless steel). The critical load (p. 139) is

' ,,

Er? 06 2.1x10° x 0.082
a 32.8

=-25.3N/mm

F,.=2nan, =2x3.14x32.8x(-25.3)=-5200 N

Therefore, it should be able to carry a mass of 520 kg pulled by earth’s gravity. Carefully
stand on the can and it will — probably — carry your weight. Subsequently, use your thumbs to
push a dimple in the can and push it out again. Doing so makes typical clicking sounds.
Notice that the imperfections you made are hardly visible. Now, try standing on the can again.
It will collapse abruptly. The explanation is imperfection sensitivity.

Puzzle

The large difference between the theoretical buckling load (critical load) and the experimental
buckling load (ultimate load) puzzled scientists for approximately 10 years. Is the differential
equation wrong? Are the solutions to the differential equation wrong? Are there more
solutions that we have not found? Is there some mistake in the experimental set up? Has thin
aluminium less stiffness than solid aluminium?

The solution was discovered in 1940 by Theodore von Karman and Qian Xuesen (5% % #&
pronounce tsien? sue? sen) [87].° They calculated the load-displacement curve after buckling.
Figure 189 shows the result of their calculation; n,, is the membrane force in a cylinder and w
is the shortening of the cylinder. Note that load on a perfect cylinder can be increased until the
critical load after which the strength will drop strongly. This behaviour is typical for shell
structures and very different from other structures. Figure 189b shows that very small shape
imperfections cause the ultimate load to be much smaller than the critical load.

> Von Karman (1881-1963) and Qian (1911-2009) worked at Caltech (California Institute of
Technology) as rocket scientists. They developed the knowledge that later showed necessary for the
Apollo program (1961-1972), in which USA astronauts walked on the moon. Von Karman was
Hungarian and he immigrated to the USA in 1930. Qian was Chinese. He immigrated to the USA in
1935 and back to China in 1955 in not friendly circumstances. The discovery of shell imperfection
sensitivity was just a footnote in their lives. More on Von Karman and on Qian can be found in
Wikipedia (Qian’s name is often spelled as H.S. Tsien).
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Figure 189. Buckling of cylinders for different shape imperfection amplitudes [87]

Exceptions to imperfection sensitivity
Some shells are not sensitive to imperfections. Radially loaded open cylinders are not because
they buckle inextensionally (p. 109). Cylinders with torsion loading (ny, #0 or ny, #0)are

not sensitive to imperfections. A hypar roof (p. 102) is sensitive to imperfections if it buckles
in mode 1 or 2 but not if it buckles in mode 3 (p. 140).

Koiter’s law ¢
Equilibrium of a perfect system can be described by

A=A (l—clw—czwz) ,

Where A is the load factor, A, is the critical load factor, w is the amplitude of the deflection,
c;and ¢, are constants characterising the given structure. There are three types of post critical
behaviour (fig. 190). Type I behaviour occurs when ¢; =0 and ¢, <0. The structure is not
sensitive to imperfections. Type II behaviour occurs when ¢; =0 and ¢, > 0. The structure is
sensitive to imperfections. Koiter showed that the ultimate load factor is equal to

2
Mt =er | 1-3(wo L pyfer )3 |,

Where p is a coefficient depending on the imperfection shape and w is the imperfection
amplitude. Type III behaviour occurs when ¢; >0 . The structure is very sensitive to
imperfections. The ultimate load factor is equal to

1
Mis = Ay [I_Z(WO pcl)zJ .

This is called Koiter’s half power law.

Properly supported flat plates display type 1 behaviour; They buckle at small normal forces.
After buckling the load can be increased substantially. Most thin shells display type 111
behaviour.

® Warner Koiter (1914-1997) was professor at Delft University of Technology at the faculties of
Mechanical Engineering and Aerospace Engineering (1949-1979). He wrote his dissertation during the
Second World War, while hiding from Arbeitseinsatz, and published it in 1945 just after the war [88].
The English translation appeared in 1967 [89]. It became famous because it quantifies the imperfection
sensitivity of thin shells.

144



Figure 190. Three types of post buckling behaviour according to Koiter

Knock down factor

In shell design often the following procedure is used. First the critical load is computed by
using the formula or a finite element program. Then this loading is reduced by a factor C that
accounts for imperfection sensitivity. This factor is called “knock down factor”. The result
needs to be larger than the design loading. Often it is determined experimentally. For
example, for reinforced concrete sewer pipes loaded in bending the following knock down
factor is used.

1 |a

C=1-073(1-¢ 16V},

The range in which it is valid is 0.5 < ! <5 and 100 <£ <3000 where /is the pipe length
a t

[90].

If little information is available the following knock down factor can be used.

c-1
6

This is based on figure 188 in which all of the tests show an ultimate load more than 0.166
times the critical load.

Linear buckling analysis
Finite element programs can compute critical load factors A ., and the associated normal

modes. This is called a linear buckling analysis. A finite element model has as many critical
load factors as the number of degrees of freedom. We can specify how many of the smallest
critical load factors the software will compute. If the second smallest buckling load is very
close (say within 2%) to the smallest buckling load we can expect the structure to be highly
sensitive to imperfections.

Often, the critical load factors need to be multiplied by the knockdown factor. The results
need to be larger than 1. Consequently, if all critical load factors are larger than 6, the
structure is safe for buckling.
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Linear buckling analyses are performed on shell models without imperfections. We could add
shape imperfections, however, this would not solve anything. The shape imperfections grow
slowly during loading and this is not included in a linear buckling analyses. For imperfections
to grow we need to perform a nonlinear finite element analysis (p. 146).

Ship design

A steel ship consists of plates strengthened by stiffeners. A linear buckling analysis of the
ship model produces critical load factors for each plate that buckles. However, flat plates
buckle in Koiter’s mode I (p. 144) which does not cause failure. We are interested in buckling
of big curved parts of the ship because these go in Koiter’s mode Il which does cause failure.
A computer cannot tell the difference between plate buckling and shell buckling. The only
thing we can do is go through the load factors from small to large, look at each buckling mode
and continue until we see buckling that involves more than one plate. This can take much
time because a large ship consists of hundreds of plates and has many load combinations.

Nonlinear finite element analysis

When a shell design is ready it is sensible to check its performance by nonlinear finite
element analyses. In these analyses the loading is applied in small increments for which the
displacements are computed. Figure 191 shows the results of finite element analyses of a
simply supported shallow dome.

The ultimate load is mainly affected by shape imperfections, support stiffness imperfections
and yielding or cracking. When these are measured and included in the finite element model,
then the predicted ultimate load has a deviation less than 10% of the experimental ultimate
load [91].

146



Clearly, before a shell has been build we cannot measure the imperfections. Instead these are
estimated. For example, the amplitude of the geometric imperfections is estimated by the
designer and the builder. Often, the analyst will assume that the shape of the geometric
imperfections is the first buckling mode. He or she will add this imperfection to the finite
element model.

It seems logical that an imperfection shape equal to the buckling shape gives the smallest
ultimate load. For columns this is true. However, for shells there exists no mathematical proof
of this. Therefore, another imperfection shape might give an even smaller ultimate load [93].
Of course, the analyst can consider only a few imperfection shapes.

/ linear elastic analysis

by linear buckling analysis

geometrical nonlinear analysis,

| 4 perfect \, l/\lul

B \ buckling mode

- geometrical nonlinear analysis,
A imperfections

N physical and geometrical nonlinear
analysis, imperfections
displacement

e buckling  x snap through @ collapse

Figure 191. Shell finite element analyses of a steel spherical dome [93]

Mystery solved

The critical and ultimate load of shell structures can be determined by both analytical and
numerical analysis. However, these analyses are complicated and many engineers and
scientists feel that we still do not understand imperfection sensitivity [94]. Here it is argued
that shell buckling is not a mystery at all.

In nonlinear finite element analyses we see that when a small load is applied the shell deforms
in a buckling mode. The buckling mode increases the shape imperfections of the shell. The
deformation is very small and invisible to the naked eye. Nonetheless, the deformation
changes the curvature, in some locations the curvature has become larger and in other
locations the curvature has become smaller. It also changes the membrane forces. Inwards
buckles have extra compression and outward buckles have extra tension. When the load is
increased the curvatures and membrane forces change further. At some location the Gaussian
curvature becomes negative and the compression membrane force becomes large. At this
location a local buckle starts. It has a larger length than the earlier buckling mode. This local
buckle grows quickly, other buckles occur next to it and this spreads through the shell in a
second. The shell collapses.

In other words, the shell buckling formulas do not work because the real local curvature and
the real local membrane force are very different than computed by a linear elastic analysis of
a perfect structure.

Measuring shape imperfections

The accurate shape of a shell structure can be measured by a laser scanner. The result is a
point cloud that can be visualised by a CAD program (fig. 192). There is a simple way to
extract shape imperfections from a point cloud. Load the point cloud in software Rhinoceros
and fit a NURBS (p. 9) through the cloud. Choose the distance of the control points equal to
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the buckling length. This fit will not follow the shape imperfections because the control points
are too far apart. The software can compute the distance between a point and the NURBS.
The software does this for all points in the cloud and gives a histogram of these distances (fig.
193). The largest distance is the imperfection amplitude d.

Figure 192. Point cloud of a swimming pool in Heimberg, Switzerland. The laser scanner was
positioned inside. All points that are not on the shell were removed later by hand, for example
walls, light fittings, swimming children [95].

Bart Elferink and Peter Eigenraam (student and teacher at Delft University) scanned four
reinforced concrete shell roofs that were built by the team of Heinz Isler around 1970. The
result is

__1 403,04
d_ﬁA /

where d is the imperfection amplitude (5% characteristic value), 4 is the surface area of the
shell and / is the imperfection length. The partial safety factor is 1.4 [95].

-50 0 mm 50

Figure 193. Shape imperfections in the shell roof of Heimberg swimming pool [95]
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Stiffeners
If a shell would buckle, it is technically better to use some of the shell material to design
stiffeners (fig. 194).

The argument that proves this statement is simple. By putting material in another position the
cross-section area stays the same. Therefore, membrane stiffness does not change and the
membrane forces do not change. The bending moments in thin shells are small anyway.
Consequently, the stresses do not change and it does not affect the strength of the cross-
section (yielding or crushing). The material change does increase the moment of inertia, the
bending stiffness and the buckling load. Q.E.D.

Of course, “technically better” can be overruled by “expensive to build”, “difficult to clean”,

“just ugly” et cetera.

Figure 194. Cross-sections of two shell parts; left without stiffeners and right with stiffeners.
Note that the cross-section areas are the same while the moments of inertia are different.

Exercise: Have you noticed that small animals like spiders have an exoskeleton and large

animals like elephants have a skeleton? At what size does the transition occur? You can study . \-
this by considering a drop of water enclosed by a spherical shell. The water is loaded by v
gravity and the shell is supported in a point. What is the largest membrane force in the shell?

What thickness is required for strength? Subsequently, enlarge the diameter until the shell - S
buckles. At this diameter the designer needs to consider stiffeners or replace the shell by a

space truss. I look forward to hearing what diameter you found.’

CNIT

The world largest shell structure is in Paris (fig. 196). [ was built in 1956 to 1958 as an
exhibition centre for machines. It is called “centre des nouvelles industries et technologies”
(CNIT). Nowadays, the shell covers shops, restaurants, offices, a convention centre, a hotel
and a subway station (fig. 197). Despite its size the shell is easily overlooked due to the eye
catching Grande Arche, which was built next to it in 1985 to 1989. To go there, take any
public transportation to La Défense Grande Arche.

Architects: Robert Camelot, Jean de Mailly and Bernard Zehrfuss

Engineers: Nicolas Esquillan (shell) and Jean Prouvé (fagade)

Consultant: Pier Luigi Nervi

Contractors: Balancy et Schuhl, Boussiron, Coignet

Construction time: 2.5 years

Structure: Two layers of reinforced concrete, spaced 2 m, connected by
reinforced concrete walls

Shell material: 6070 m® of reinforced concrete

73 [1Z.2

2
pPgE
symbol ~ is read as “is proportional to”, f is the material strength, v is Poisson’s ratio, p is the specific
mass of water, g is the gravitational acceleration and E is Young’s modulus.

7 An incomplete solution to this problem is 2a ~ , where 2a is the transition diameter,
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Figure 195. CNIT design by Esquillan [96]

Figure 19

6. CNIT in 1960 [97]
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lgure I 98. CNIT scaffolding [99]
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Figure 1 99. CNIT duing construction, ;/isiblg-czre the bottom shell and the prefab walls [100]

Each corner of the shell is supported by a large reinforced concrete block that distributes the
load over the lime stone underground. The three blocks are connected to each other by three
prestressed tension rods [101].

Buckling, yielding or crushing?

In steel columns there is interaction between buckling and yielding. This is mostly caused by
rolling stresses and welding stresses. In this note, the theory is summarised and extended to
shells.

Relative slenderness is defined as

B2

o

where, n,,is the yielding or crushing membrane force and ,;, is the buckling membrane

force without yielding or crushing.

If B >> 1 then buckling occurs before yielding or crushing.
If B << 1 then plastic failure or crushing occurs before buckling.
If B = 1 then interaction occurs between buckling and yielding or crushing.

The equation can be rewritten as

- [ —ft _\/1.67££
_\/C—O.6Et2 N cC E:
a

Table 18 shows that a shell made of plastic is more likely to buckle than the same shell made
of glass.
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Table 18. Properties of materials ... and B for C=1/6 and a/t = 30

Material Young’s modulus £ | Compressive strength /| E/f B

Glass 70000 N/mm? 50 N/mm? 1400 0.5
Concrete 35000 40 875 0.6
Aluminium 70000 110 636 0.7
Steel 210000 350 600 0.7
Wood (Pine) 13000 40 325 1.0
Plastic (Acrilic) 2300 70 33 3.0

Exercise: What percentage of shells fails due to buckling and not due to yielding or crushing?

Assume uniform distributions of the material properties 33 < £ <1400, geometry 30 < 4
t

<1000 and knock down factor %S C <1. (The exact answer is

Buckling curves for computational analysis
Figure 200 shows buckling curves for steel columns based on hundreds of experiments [102].

The curves can be adopted for shell structures too, however, there is no experimental

conformation.

> Phi:=0.5%(1+alpha*(beta-0.2)+beta’2):
> G:=1/(Phi+sqgrt(Phi*2-beta’2)):

> alpha:=0.13: f1:=simplify(G): # ao

> alpha:=0.21: f2:=simplify(G): # a

> alpha:=0.34: f3:=simplify(G): # b

> alpha:=0.49: f4:=simplify(G): # ¢

> alpha:=0.76: f5:=simplify(G): # d

> plot({f1,f2,f3,f4,f5, 1/beta”2}, beta=0..3,0..1);

=0.67 = bending stiffness reduction factor at force n=0.24n

1.0
n
np 08' o
b n
Neol ult
0.6 y "
o Ny 0.24
1<€-0.36 \\ ng 036
027024 &
0 0.5 1.0 15 2.0 25 3.0

Figure 200. Eurocode buckling curves for steel columns

When a steel cross-section has residual stresses from rolling or welding and it is loaded in

102499-90(In2+In3) | oy

B

132599

compression, then local yielding can occur. This reduces the bending stiffness, which reduces
the buckling load. Residual stresses can be included in finite element models, however, this

takes much modelling time and computation time. There is a much easier way to include

residual stresses in a finite element analysis. Rewrite the eurocode buckling curves (fig. 200)

Neol

and implement a reduction factor -~

force - (fig. 201) [103]. The derivation below has been performed by Maple.

np

Lo

on the bending stiffness as a function of the normal
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> Phi:=0.5%(1+alpha*(beta-0.2)+beta’2):

> G1:=1/beta2:

> G2:=1/(Phi+sqrt(Phi*2-beta”2)): # ECCS buckling curve
> opl:=solve(G=G2,beta): beta:=opl[2]:

> alpha:=0.13: f1:=simplify(G2/G1): # ao

> alpha:=0.21: f2:=simplify(G2/G1): # a

> alpha:=0.34: f3:=simplify(G2/G1): # b

> alpha:=0.49: f4:=simplify(G2/G1): # c

> alpha:=0.76: f5:=simplify(G2/G1): # d

> plot({f1,f2,f3,f4,f5},G=0..1);

oot 10
on
0.6
0.4
0.2
n
0 02 04 06 08  1.0n,

Figure 201. Reduction factor of the initial bending stiffness as a function of the normal force
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Hyperboloid

72 52 2
A circular hyperboloid of one sheet is defined by —2 + y_2 —Z—b =1.
a a a

An orthogonal parameterisation (p. 25) is

av1 u COosv
av1 Ll sinv

b{l+(l+ )u

-)_):
z=abu
a f1+(1+ )u
2<u<?2
—nT<V<T \/7
—a\/1+u
Gravity

Suppose that gravity acts in the negative z direction. The self-weight pgt of the shell needs to
be decomposed in the local coordinate system (p. 19).

z
oz z 22 2 ) dz
px=-Pgl—  py=-pgi—  p.=%/(pg)" —pi-p —pgt Px &
X o y dy z \/ x y Ppg “pgt  dx
Applied to a hyperboloid (p. 155) the result is
X
—pot —-pgtu
px=¢2 py=0 pf% dz i 7 Px
144 v u? + = (1+u?)
b1+u® a

Exercise: Solven, candn,, fora hyperboloid loaded by gravity.

Ferrybridge

Three reinforced concrete cooling towers collapsed in Ferrybridge, UK in 1965. Fortunately,
nobody was injured. The cooling towers were part of a group of eight at a coal-fired power
station (fig. 200). The base diameter of the towers was 88 m and the shell thickness was 127
mm. The ratio a/t is 44000/127 = 350. They were 115 m high [105].

The towers had been completed in 1964. At November 1% 1965 it was storming. (The wind
speed was 44 m/s at the top edge, which occurs once every 5 years in Ferrybridge.) Vortices
occurred between the towers of the first row (fig. 201). These vortices loaded the towers of
the second row. The vortex frequency was approximately the same as the natural frequency of
the towers (0.6 Hz). An eyewitness said that some towers where moving like belly dancers.
Within an hour three collapsed [106].!

! Despite the strong vibrations, the committee that investigated the collapse concluded that vortex
induced vibration was not the real problem. The reason for this conclusion was that not only the second
row of towers but all towers were seriously damaged at November 1st. The real problem was that an
incorrect wind load had been used in design. The committee did not blame somebody for the collapse.
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The construction costs of the original towers was £290 000 each. The collapsed towers were
replaced and all towers were strengthened with extra thickness of reinforced concrete.
Engineers found ways to operate the remaining towers during reconstruction. If the power
station had been temporarily closed, it would have been very expensive for England. In 2016,
the power station was permanently closed to reduce CO, emission [Wikipedia].

Figure 200. Three collapsed cooling towers Figure 201. Vortex loading on the towers
at Ferrybridge, UK

Modal analysis
A normal mode is a deformation in which a shell can vibrate. The natural frequency f, is the

number of times this deformation occurs in a second. The unit of frequency is Hertz (Hz).
Often the radian frequency o is used, which is measured in radians per second. The definition
is ®=2mn f . A finite element program can compute the normal modes and natural frequencies

of a shell structure. A finite element model has as many normal modes and natural
frequencies as the number of degrees of freedom. For example, if a shell model has 5000
nodes then it has 5000 x 6 = 30000 degrees of freedom. It also has 30000 normal modes and
natural frequencies. A real shell has an infinite number of normal modes and natural
frequencies. Natural frequencies are sorted from small to large. The smallest is called
fundamental frequency. A finite element program does not need to compute all natural
frequencies. The user can specify the number of the smallest natural frequencies that will be
computed.

Figure 202 shows six normal modes and natural radian frequencies of a simply supported
shallow spherical shell [108]. Young’s modulus £ is 2000 N/mm?, Poisson’s ratio v is 0.3, the
length and width are 10 m, the thickness 7 is 100 mm, the radius a is 20 m and the specific
mass p is 7850 kg/m?3,

The code was unclear, the code was interpreted wrongly and communications between the designers
and the wind tunnel experts went wrong [105].
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Figure 202. Normal modes and natural frequencies of a shallow spherical shell

Rigid body modes

If a structural model is not properly supported then a linear finite element analysis (p. 82)
gives an error message: singular stiffness matrix. This means that the computer is determining
the displacements and it cannot decide how large they are.

If a structural model is not properly supported then a modal analysis (p. 156) does not give an
error message. Instead it also computes rigid body modes with natural frequencies f,, = 0 Hz.
A totally free structure has 6 independent rigid body modes; 3 translations in perpendicular
directions and 3 rotations around perpendicular directions. Note that a modal analysis does
not determine the magnitude of any normal mode. This is why it does not give an error

message for unsupported structures.

Equation of motion

The shell differential equation for dynamic behaviour can be simply derived from the shell
buckling differential equation (p. 139) by adding inertia forces to the load (d’Alembert’s

principle ?).

Ef
12(1-v?)

VAVAVAV2u, + EtTTu, = V2V (p, +ny =+ (1, + 1)
Ox

o%u 82u2 o%u
+n
0yox

Z*

Yy ay2

ptii,)

In this 7 is the shell thickness and ii, is the second derivative of the perpendicular

displacement to time.

2 Jean d'Alembert (1717-1783) was a French gentlemen scientist. He was an orphan but inherited a

fortune and did not work for a living [Wikipedia].
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Wave numbers

The wave pattern of a normal mode has peaks and valleys. The number of peak-and-valleys in
a cross-section is the wave number. For example in Figure 202 the top right normal mode has
wave number | in one direction and wave number 1/2 in the other direction.

In beams and plates a small wave number corresponds to a small natural frequency. However,
in shells this is not always the case. For example Figure 203 shows the natural frequencies of
a cylinder that is simply supported at both edges. This graph has been analytically derived by
K. Forsberg and published in the book of Arthur Leissa in 1973 [109]. Every crossing point of
a curved line with a vertical line represents a natural frequency. The slenderness ratio is a/t =

500. m is the wave number in the axial direction and » is the wave number in the
circumferential direction. In the graph / is the length and R is the radius of the cylinder.
Suppose that the ratio //R = 2. A simple normal mode occurs for m = ' and n = 2 (fig. 204).

In the graph we read a corresponding normalised natural frequency of approximately 0.3 (fig.
52, green circle). However, the smallest natural frequency is 0.05 which occurs for m = /2 and
n = 8 (fig. 203, blue circle). This natural mode is shown in Figure 204 right hand side. In fact,
in the graph we can count 19 more modes that have smaller frequencies than the simple mode
(fig. 203, red circles). Many more exist between the graph lines and outside the area of the

graph.
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Figure 203. Dispersion curves of a cylinder with diaphragms at each end [109 p.62]
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m=%,n=2,Q=03 m=Y%,n=8,Q=0.05
Figure 204. Normal modes of the cylinder

Festoon

Typical in vibration analysis and also in buckling analysis are graphs like figure 203. The
envelope of these curves is shown as a thick line. It is called festoon. We have borrowed the
word from decorators.

Vibration experiments

Suppose we shake a shell at some frequency and we observe the wave numbers. Such an
experiment has been done with an aluminium cylinder that is clamped at one edge and free at
the other. The wall thickness is 0.0255 in., the radius is 9.538 in. and the length is 24.63 in.
Figure 205 shows the experimental and the analytical results. In this graph m is not the wave
number but just a number assigned to the normal modes. An excellent agreement is found
between experiment and theory. Other experiments also show an excellent agreement [109].
This confirms the correctness of the Sanders-Koiter equations (p. 54).

600 b
500} £ YA /
|
2 \ /
7 ao0f ! \ \ /
g | | | |
| \ I
3 | \
g 30 I \ / \
- THEORY / \\ /
2001 oE)r(nPEIT'
O m=2 m=0 m=l
A m=3
00}
o é ‘!t é l8 IIO l|2 |'4 II6

NUMBER OF CIRCUMFERENTIAL WAVES,n
Figure 205. Natural frequencies for a clamped-free aluminium cylinder [109 p.118]
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Resonance

A shell can be loaded by a harmonic force, for example a rotating machine or jumping people.
If this loading has the same frequency as any of the shell natural frequencies, it will vibrate
strongly in associated normal mode. Also other dynamic loading can excite a shell in a normal
mode, for example storms and earthquakes. The dominant frequencies of storms vary up to 1
Hz. The dominant frequencies of earthquakes vary up to 10 Hz (fig. 206).

In other words, when you press the modal analysis (p. 156) button, the computer shows the
natural frequencies of your structure. If these are larger than 10 Hz you do not have a
resonance problem.
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Figure 206. Natural frequencies need to be larger than the dominant frequencies of the load
[110]

Inextensional deformation

If the smallest natural frequency of a shell is very small than the deformation is probably
inextensional. The corresponding wave number will be small too. This behaviour is opposite
to described in the previous sections. It can be explained as that a shell that can move
inextensionally is not really a shell but rather a thin curved plate (see shell behaving like a
plate p. 114)

Hemispheres
Free vibration of a thin hemispherical shell was first studied by Lord Rayleigh * in 1881 [111,

p 11]. He assumed inextensional deformation (p. 109) and derived the natural frequencies.
The smallest natural frequency is *

7 =024074 |—E
a? \p(+Vv)

where p is the mass density for example in kg/m?.

3 The real name of Lord Rayleigh was John Strutt (1842-1919). When his father died, he inherited a title and a
7000 acres family estate. He left the management of the land to his younger brother and devoted his time to
physics at Cambridge University. In 1904, he received a Nobel prize for discovering the gas argon [Wikipedia].

4 The coefficient 0.2407 in the formula has been obtained by finite element analysis. Rayleigh assumed an
unknown factor in his derivation and did not obtain this coefficient. Remarkably, also other early scientists who
studied hemispherical shells (Zwingli 1930, Naghdi 1962, Kalnins 1963) failed to obtain the right coefficient.
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Resonance of a wine glass

The frequencies that people can hear vary from 20 Hz to 20 000 Hz. The human voice can
produce frequencies up to approximately 1000 Hz. This can be used to break a wine glass. For
proof see

http://www.youtube.com/watch?v=sH7XSX10QkM
http://www.youtube.com/watch?v=dU0OqVDI7kc& feature=g-vrec

Spheres

Free vibration of a thin spherical shell was first studied by Horace Lamb in 1882 [112].° A
detailed study was also made by Wilfred Baker in 1961 [113]. ® The smallest natural
frequency is

P \/E 743v—[(743v)? —16(1—v?) ~Olzl\/f
" 2ma\ p 2(1-v?) ~a\p

It has been derived from the shell membrane equations (p. 38). Note that this natural
frequency does not depend on the shell thickness. The equation is very accurate. For a/t = 20
its error is 0.3% [114]. For a smaller thickness it is even more accurate. The equation is
suitable for checking finite element software.

Figure 207. Mode shape of a spherical shell [113] (symmetrical around the vertical axis)

Exercise: Lamb ends his paper with a prediction. “/ find that a thin glass globe 20 centimétres
in diameter should, in its gravest mode, make about 5350 vibrations per second.”[112] Does
this indeed follow from the formula?

Exercise: Consider a hemisphere and a sphere of similar material, size and thickness. The
sound of the sphere is much higher than the sound of the hemisphere. What causes this?

Cylinders

Circular cylinder shells can vibrate in beam modes and in shell modes. In a beam mode it
bends up and down while the cross-section does not deform (n = 1). In a shell mode the centre
line remains straight and the cross-section deforms (n = 2, 3, 4...). For long cylinders a beam
mode gives the smallest natural frequency. For short cylinders a shell mode gives the smallest
natural frequency.

Table 25 shows the smallest natural frequencies of beam modes and of shell modes for
several types of support. Figure 207 shows these natural frequencies as a function of the
cylinder length. The table and the figure do not exactly match. In the table the shell

5> Horace Lamb (1849—1934) was professor of mathematics in Cambridge, England [Wikipedia].

¢ Wilfred Baker (1924-1991) was an explosions expert and accident investigator at Southwest Research Institute,
San Antonio, Texas. He started the company BakerRisk [www.bakerrisk.com].
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frequencies are straight line approximations, while in the figure the festoons (p. 159) of the

exact solutions are shown.

Wilhelm Fliigge was the first scientist to solve cylinder shell natural frequencies in 1943 [114
p. 627]. The compact presentation of Figure 208 has been made by Chris Calladine in 1983
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[114 p. 651].
Table 14. Smallest natural frequencies of cylinder shells for various boundary conditions
[9, p.651] )
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Figure 208. Smallest natural frequencies of cylinder shells for various boundary conditions
[114]7

Exercise: Which curve in figure 208 is the festoon of figure 203?

Membrane force

A membrane force changes natural frequencies. Tension increases and compression decreases
the natural frequencies. For example, consider a simply supported cylindrical shell (Table 25,
f). It is loaded by an axial force F. The natural frequency is

F
= 1——’
fn an Fult

where f,, is the natural frequency without loading and F; ;, is the axial buckling load [115].

Note that when the cylinder almost buckles the natural frequency is almost zero. The normal
mode does not change due to the axial load. The formula is not only valid for the fundamental
frequency but also for higher natural frequencies provided that the buckling mode has the
same shape as the normal mode (higher buckling modes). This property can be used for
monitoring structural damage (see measuring vibrations p. 164)

Shell vibration literature

Between 1880 and 1980, scientists solved many shell problems. Robert Blevins collected the
natural frequency formulas and published these in his book [115]. However, analytical
solutions can only be derived for simple shapes, like spheres, cylinders, cones and curved
panels. Fortunately, around 1980, computers became powerful tools. Between 1960 and 2000,
scientists developed the finite element method (p. 82). Nowadays, it is a simple task to
compute natural frequencies of shells of any shape, with any loading and any supports.

Natural frequency of a square shell

Consider a square shell with diaphragm boundary conditions (p. 69) at each edge (fig. 209).
The shell has a small curvature (shallow), a uniform in plane edge load and a uniform surface
load. Its smallest natural frequency is

2y.2
n? E 5, o E gt (1=vO)ny,
In =y k) 5 5
12(1-v?) pl 4n’p  4ptl 71.7p Et
bending stiffness curvature membrane forces

In this equation the contributions can be observed of bending stiffness, curvature and

. . o ™ .
membrane forces. The equation was derived by substituting u, = COSTCOSTyCOS 27ft in the

equation of motion (p. 157) and it has been validated and extended by finite element
analysis.®

7 Note that the author of figure 208 must have been very smart. He writes 7 quantities fn, E, v, p, a, t,
into just 2 dimensionless quantities and represents 10 equations in one graph for any Poisson ratio and
any thickness. Others need over 100 graphs to display the same information.

8 The contribution of km has been found by John Sewall in 1967 [116]. The term with nxx + nyy has
been found by Edmond Szechenyi in 1971 [117]. The term with nxy has been found by Roland van
Dijk in 2014 [118]. The contribution of kxy has been found analytically and confirmed numerically by
Yordi Paasman in 2016 [119]. The Gaussian curvature kG has no significant influence, which was
shown by Joep Sluijs in 2017 [120].
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Figure 209. Square shell with diaphragm boundary conditions

Exercise: Check the natural frequency formula by applying it to figure 202. Can we also use
the formula to calculate the natural frequency of mode 4?

Exercise: What is the contribution of curvature to the natural frequency of Enneper’s surface
(p. 164) with diaphragm boundary conditions?

Challenge: For which size / is the formula for the smallest natural frequency of a square shell
(p. 163) no longer accurate?

Enneper’s surface
Enneper’s ° surface (fig. 210) is a minimal surface (p. 24) described by

-1
x= 2au(l+v° —=u
( 3 ) ! a(1+uz—i-vz)2
y=—2av(1+u2 —%vz i 1
WS T T 22
7 2a(u2—v2) a(l+u” +v7)
kxy:O

Oy =2a(l+u2 +v2)

oy =2a(l+u* +v?)

<< = —= <y< = 2<u<2 2<y<2

Figure 210. Enneper’s surface; a shallow part and a deep part

Measuring vibrations

Vibrations can be observed by changes in the strain at some point of a structure. A strain
gauge is a small sensor for measuring strains. It is carefully glued onto the surface of a
structure. There is a long thin wire in a strain gauge (fig. 211). When this wire is extended its
electrical resistance changes. In a simple test setup the strain gauge is connected to a box
which is connected to a laptop computer (fig. 212).

9 Alfred Enneper (1830-1885) was professor of mathematics in Gottingen [Wikipedial.
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Figure 211. Strain gauge glued onto a bar Figure 212. Simple test set-up for measuring
vibrations

The box contains electronics which does two things. 1) It measures the electrical resistance of
a strain gauge with a circuit called Wheatstone bridge. This produces a voltage that changes
between approximately -2.5 and 2.5 Volts. 2) It translates the analog voltage into digital
numbers (sequences of 0 and 5 Volts) and puts these on the USB cable. The digital numbers
are read and stored by the software on the laptop computer.

A strain gauge costs approximately €10. Unfortunately, they cannot be removed without
breaking. The box and software cost approximately €200 (for example Mantracourt
DSCUSB).

Spectrum

A measured signal can be approximated by adding a number of sine functions and cosine
functions. An example is the block signal of figure 213. A very good approximation can been
obtained when a large number of sine functions is used. This approximation is called a
Fourier series. '

Apparently the following frequencies are in the block signal: 1/(27) with an amplitude of
1.23, 3/(2m) with an amplitude of 0.30 and 5/(2r) with an amplitude of 0.10. A plot of this
result is called the spectrum of the block signal (fig. 214).

1.23sint
1.23sinz +0.30sin 3¢
1.23sin7 +0.30sin 3¢ +0.10sin 5¢ amplitude
block signal/ 1.23 +
0.5
o 2 4 6 8 0 12
0.30
0.5
0.10+ |
e T s g
271 2n 27
Figure 213. Fourier series approximations Figure 214. Spectrum of a block
of a block signal signal

Fast Fourier transform

19 Joseph Fourier (1768—1830) was a French physicist. He is also known for conjecturing the
greenhouse effect of the Earth’s atmosphere [Wikipedia].
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A fast Fourier transform (FFT) is an algorithm for computing the spectrum (p. 165) of a
signal. Figure 215 shows an example signal. (Micro strain as a function of the time step
number, the time step is 0.01 s.)

| I I I I |
T000 3000 =000 2000 5000 B000 7000

Figure 115. Measured signal

The following Matlab code is used for plotting the spectrum shown in figure 216. In this
example the peaks of the spectrum are natural frequencies.

>> a = [16.0832 16.0825 16.0823 .. 15.6987];
>> Dt = 0.01

>> y = a - mean(a)

>> N = length(y)

>> plot([0:N-1]/Dt/N, abs(fft(y)))

>> axis ([0 1 0 600])

N

TN N /\ N \/\;; AN :

| | i 1 i i i
[En vz e o4 [Ty o o v oo

Figure 216. Spectrum of the signal

Sampling theorem

When measuring vibrations (p. 164), in every time step the strain is recorded. If a vibration
has a frequency fsmaller than 1/time-step it will not be noticed. To be noticed and determined
accurately the time step needs to be smaller than 1/(2f). This is called the sampling theorem
[121].

Transient analysis

A transient analysis is a dynamic finite element computation. The loading is specified starting
at ¢ =0 and varies in time. The response is computed in many very small time steps. For large
structures it takes several hours to compute the response to just one minute of loading. A
storm lasts for approximately 6 hours, therefore, transient analysis is not suitable for
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simulating the behaviour to this loading. An earthquake lasts for less than a minute, therefore,
this loading can — and needs — to be analysed with a transient analysis. Note that the word
“transient” means “lasting only a short time”.

In a transient analysis it is important that the specified time step is sufficiently small. Halve
the time step to see if it is (see mesh refinement p. 84 and apply this to time). It is also
important to specify realistic damping ratio’s (p. 167) for the right modes.

Damping ratio

The amount of damping is expressed in a damping ratio C. (Refer to your dynamics text book
for the definition of the damping ratio.) The damping ratio can be determined experimentally
by exiting a structure in a normal mode, removing the load and observing how the vibrations

decay (fig. 217). The logarithmic decrement § is calculated with

5=t
noox,

where xis an amplitude and x,, is the amplitude n peaks later.
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Figure 217. Damping of a mass spring system

The damping ratio is calculated with

82
(=———.
\/4n2+82

Some results are:

Reinforced concrete structures under service loading £ = 4%,
Reinforced concrete structures under ultimate loading € = 5%,
Welded steel structures £ = 2%,

Bolted steel structures £ = 6%.

Damping ratio distribution

Different normal modes of a structure can have different damping ratios. In a transient
analysis (p. 166) they need to be specified. In many programs Rayleigh damping can be
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selected. In this method the damping matrix is a combination of the mass matrix and the
stiffness matrix. Sometimes Rayleigh damping is referred to as proportional damping. An
advantage of Rayleigh damping is that the transient analysis is faster than with other damping
methods. The damping ratios need to be specified for two modes. The software interpolates
the other ratios almost linearly (fig. 218). It is recommended to specify damping of the first
normal mode and the highest occurring normal mode [122]. To find out which is the highest

mode, increase the number of the second dampened mode until there is no change in
important results.
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Figure 218. Damping ratio as a function of the frequency in case of Rayleigh damping [122]

Shell acoustics
The interior of a reinforced concrete shell roof is often smooth without the usual beams, bars,
cables and columns that clutter the view. However, as a consequence, the reflection of sound

can be unexpectedly strong. The architect needs to consider this and perhaps consult an
acoustic expert.
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Many shells have a funny acoustic property called whispering gallery. When you stand inside
close to the shell and whisper something then on the other side of the shell somebody can hear
it clearly. This is because sound waves are guided by the hard curved surface. The name has
been derived from the famous whispering gallery in St. Paul’s Cathedral (p. 43).

Sounds outside should not enter a building. For this mass is needed. A 70 mm thick reinforced
concrete shell might not be sufficient.

Design improvements

If a design has vibration problems it needs to be improved. For frame structures it is often
possible to change a design such that the loading frequency is in between two natural
frequencies. However, for a shell structure this probably is not possible because the natural
frequencies are very close to another (see fig. 202). Therefore, the smallest natural frequency
of a shell needs to be larger than the loading frequency (fig. 206).

Also it is possible to add dampers to solve vibration problems. (An example is the dampers
used in cars.) Dampers are very effective but also expensive. A transient analysis (p. 166) can
be performed to determine the effect of dampers. However, the damping ratio (p. 167) of the
structure itself also has a large influence and it is difficult to estimate accurately. Therefore, it
is difficult to determine whether dampers are really needed. A practical approach is to design
damper positions but not include dampers in the structure. If later the structure starts to
vibrate, dampers can still be placed. The designer needs to tell everybody that he or she is
following this approach, otherwise later he or she might be blamed for making a bad design.

Bausschinger effect

Figure 221. ...

Fatigue

The stress concentrations can be determined in linear elastic finite element analyses (p. 76)
for all load combinations. In every material point the stress range is important. This is the
largest stress minus the smallest stress. (The smallest stress often is a negative number.)
According to Bausschingers’ effect (p. 168) if the stress range is smaller than two times the
yield stress than yielding happens once and there is no yielding in subsequent load cycles.

In most materials there are many imperfections between the crystals where stress
concentrations occur. Also in welded joints there are imperfections with stress concentrations.
Those stress ranges are not computed in finite element analyses and some are larger than two
times the yield stress. In those imperfections local yielding will occur twice in every large
load cycle. Of course this damages the material. Therefore, materials suffer from fatigue even
when the calculated stresses are much smaller than the yield stress.

Figure 222. ...
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Limit state function
Consider a frame that carries a roof terrace. It is loaded by wind load ¥ and live load L (fig.
223). Plastic analysis shows that mechanisms occur at

M M M
W=4—2p, W+2(2—ﬁ)L=4ﬁTp, W+2L=8—L
! !

A limit state function describes collapse of this frame (fig. 224). We engineers have many
synonyms for limit state function, such as yield contour, interaction diagram, utilisation,
yield locus, response surface, strength hypothesis, unity check. Surely, this shows that the
concept is important to us.

L
MP
[
w | My
| 21 | i
| | 0 1 2 3 4 M
Figure 223. Frame structure with load Figure 224. Limit state function

Limit state

A limit state is described by the following information.

- An event, for example deflection > 52 mm or collapse

- A small probability

- Load combinations for which the event shall not occur

- A limit state function (p. 171). Equation or software that checks if the event occurs

Approximation of the limit state function
Suppose we design a frame that is loaded by wind W and live load L (Fig. 223). The load
combinations are

02W.and 14L, ............... Hardly any wind and a large roof party

1.6W,and 0.3 L, ............... Storming and some furniture left on the roof
In this, W, and L. are the 5% characteristic values of the loads (or something similar).

We estimate the column and beam dimensions (first design) and enter these into a frame
analysis program. We use the moments to design better dimensions for the columns and beam
(second design). We repeat the frame analysis. Now, the beam stresses are somewhat too
large and the column stresses are much below yield. So, we choose a somewhat larger beam
cross section and smaller column cross sections (final design). We repeat the frame analysis
and all stresses are fine.

Each of the three designs can be visualised by a limit state function (p. 171) Figure 225 shows
how this may look like. The final design can carry each load combination and is not much
stronger than it needs to be. We can safely approximate the final limit state function with the
envelop of the load combinations (fig. 226).
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Figure 225. Three limit state functions Figure 226. Approximation of the
limit state function of the final
design
> # Z = a + b*W + c*L
> eql:=1=a + b*1.0*Wc + c*1.0*Lc:
> eqg2:= 0 = a + b*1.6*Wc + c*0.3*Lc:
> eq3:= 0 = a + b*0.2*Wc + c*1l.4*Lc:
> solve({eql,eq2,eq3},{a,b,c});

a=-6.81 b=344/Wc c=4.38/Lc

Monte Carlo analysis

The atomic bomb was developed from 1941 to 1945, in Los Alamos, USA. The development
continued with the hydrogen bomb. It was top secret and involved more than 130.000 people
[Wikipedia]. One of the researchers was Stanistaw Ulam.? He worked on neutron diffusion
and had an idea that he explained as follows.

"...in 1946 ... I was convalescing from an illness and playing solitaires. The question was,
what are the chances that ... solitaire laid out with 52 cards will come out successfully? After
spending a lot of time trying to estimate them by pure combinatorial calculations, I wondered
whether a more practical method than “abstract thinking” might not be to lay it out say one
hundred times and simply observe and count the number of successful plays. This was already
possible to envisage with the beginning of the new era of fast computers, and I immediately
thought of problems of neutron diffusion ... I described the idea to John von Neumann, > and
we began to plan actual calculations." [Wikipedia]

They needed a code name for their work and chose Monte Carlo, which refers to the Monte
Carlo Casino in Monaco, where Ulam’s uncle used to gamble with money borrowed from
relatives [Wikipedia].

So, in a Monte Carlo structural analysis, a computer repeats the following experiment many
times. Draw values of steel strength, concrete strength, self-weight, snow load, wind load, et
cetera from their distributions and perform a finite element analysis. Do the unity checks. The
failure probability is the number of failures over the number of experiments (fig. 228).

2 Stanistaw Marcin Ulam (1909-1984) was a Polish-American scientist in the fields of mathematics
and nuclear physics [Wikipedia].

3 John von Neumann (1903-1957) was a Hungarian-American mathematician and computer scientist
[Wikipedia].
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Figure 228. Monte Carlo analysis. Three of 200 analyses are outside the limit state function,
the failure probability is 3/200.

Turkstra’s rule

Meteorologists measure wind. In their records they find the largest wind speed in 50 years at
some location. This is represented by a probability distribution (fig. 231). They can also draw
the distribution of the largest wind speed in any 10 year period and the distribution of the
largest snow depth in any 50 year period. These distributions are called extreme value
distributions for example the Gumbel distribution describes storms well. 4

The meteorologist can also plot the joint probability distribution of wind speed and snow
depth (fig. 229). These are distributions of the largest in one day. Wind and snow act in
different directions, therefore, a joint distribution of the largest in 50 years does not exist. A
Monte Carlo analysis of 1000 000 design lives needs 1000 000 x 50 years x 365 days = 18
250 000 000 simulations. This takes too much time, even on a modern computer.

We could assume that all loads reach their 50 year maximum at the same time. So, the largest
storm in the design live occurs at the same time as the largest snow depth and at the same
time as the largest floor load. Clearly, this is very unlikely and it leads to very expensive
structures. In 1970, Carl Turkstra proposed a solution.® Let’s consider all loads at their
everyday value except for one that has its extreme value [123]. In this way we use the extreme
value distributions and not the joint distribution. The method is reasonably accurate.

wind load distribution

snow load distribution

floor load distribution

combination 1 | extreme everyday everyday
combination 2 | everyday extreme everyday
combination 3 | everyday everyday extreme

4 Emil Gumbel (1891-1966) was a German mathematician. He taught statistics in Heidelberg and Paris.
He was active in politics and often spoke against the Nazi party. He and his family had to leave Europe
in 1940. He became a professor at Columbia University, USA [Wikipedia].

5 Carl Turkstra (1936-2022) was a professor at the Polytechnic Institute of New York, Brooklyn. In
1989, aged 52, he left academia to lead the family lumber business in Canada. His parents were Dutch
immigrants who settled in Hamilton, Canada in 1927.

[online obituary: https://www.legacy.com/ca/obituaries/thespec/name/carl-turkstra-
obituary?id=40027708]
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Drawing a number
In a Monte Carlo analysis, the software draws numbers out of probability distributions. How
do we program this? It is best explained with an example. The Gumbel cumulative
distribution function is (fig. 231)

u—x

F =exp(—exp( )) where u=p—0.5772 0 and oo=cV6/7.
o

The inverse is

NG

x=pn—0-—(0.5772 +In(-In(F)).
T

We draw a random number between 0 and 1, assign this to F and calculate x. The Python code
is

x=mean-stdev*0.7797* (0.5772+math.log(-math.log(random.random()))

._.
=

=
LA
| P P I T

0 | 1 | 2 | 3
Figure 231. Cumulative distribution function (CDF) of the Gumbel distribution (W= 1, c =
0.5)
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Exercise: Plot the probability density function (PDF) of the Gumbel distribution.

Software
It is not difficult to write a program that computes failure probabilities. A simple Python
program can be downloaded from

phoogenboom.nl\bl7 Monte Carlo.py

The program uses the Monte Carlo method, Turkstra’s rule and the envelope of the load
combinations. The program does 1000 000 simulations, which takes a few seconds.

The program has a remarkable property. Each material and each load can be represented by
two ratios.

bias = representative value / mean

coefficient of variation = standard deviation / mean

If we change the input numbers, but these ratios stay the same, the failure probability stays the
same. Note that these ratios have no unit.

Exercise: Does failure probability depend on the units of the input values?

Challenging exercise: We need 2000 failures for computing the failure probability with less
than 5% error. Sometimes this rule is not true and the error is larger than 5%. How often does
this happen? (Poisson distribution.)

Human error

Engineers make mistakes. Of course we have procedures to catch our mistakes on time.
Nonetheless, most structural failures are due to human error [125]. Often we find out during
construction. We cannot statistically predict the magnitude of these errors. Therefore, they are
not included in the calculation of failure probabilities. If you now think that calculating
structural failure probabilities is just an academic exercise, you are right. However, is there a
better way to make our structures safe?

Annual failure probability

The software produces the failure probability in the design live, for example 50 years. For a
design live of 49 years, we need to adjust the extreme value distributions (p 175). The annual
failure probability in year 50 can be obtained by subtracting the 49 year failure probability
from the 50 year failure probability. The annual failure probability varies from year to year.
The annual failure probability is highest in the first year of a structure’s live, unless fatigue is
important [126]. An approximation of the annual failure probability is

P fd
iy

where
Py ... annual failure probability

Pg; ... probability of failure in the design live

R design live in years
This formula is accurate for structures with much variable load compared to self-weight.

Failure probability per year is checked with a personal safety requirement (p. 177). Failure
probability per design live is compared to an economic safety target (p. 178).
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Changing the period of a Gumbel distribution
The period of the Gumbel distribution can be changed. For example, we have the distribution
for the largest in 50 year and we need the distribution for the largest in 100 year. The standard

L s
deviation o stays the same. The mean p becomes p+—

J6 o

Suppose that the largest in 1 year has a normal distribution. It can be shown that the largest in
50 years approximately has a Gumbel distribution. The same occurs for the log normal
distribution and many other distributions.

Weakest link
The Weibull distribution is used for the strength of chains. If the chain length changes, it
remains a Weibull distribution. For example, we have the distribution of the strength of a 2 m
chain and we need the distribution of 50 m. Both, standard deviation ¢ and mean p are
k 2
multiplied by (%) , Where k is solved from I'(1+2k)—(1+ G—z)F 2 (1+%4)=0. An
v

approximate solution is k£ ~ 0832
1!

Personal safety

Consider a citizen of a civilised country. This person can die due to an accident, a health
problem, murder et cetera. Figure 232 shows the probability of dying in one year as a function
of age. A few of these deaths are due to structural collapse.

10 men /
1 -2
100 "’—_:;===:::5:::$:<:Zf:_____ 10

women
1 -3
1000 10
1 —4
10000 10
14 __ 78
180130 1000000
1 1075
100000
1 age -6
1000000 10

0 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Figure 232. Probability of dying of a Flemish (Belgian) citizen in 2017 [127]. The data
behind the curves shows that in 2017 the number of 70 year old men in Flanders was 142 852
of which 3187 died. Another example is that in 2017 the number of 5 year old girls in
Flanders was

180 130 of which 14 died; 11 due to sickness.
A father and his 5 year old daughter go to an amusement park in Paris. This father would not

enter the park, if it would increase her probability of dying. Fortunately, the park structures
are designed for a collapse probability of 1/1000 000 a year. This negligible because 1/1000
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000 + 77/1000 000 = 78/1000 000 (see fig. 232). We engineers say: “Keep her safe and do not
worry about structural collapse.”

Calculating with probabilities

Consider two events A and B. Event A occurs with a probability 0.1. Event B occurs with a
probability 0.2. A and B are independent. This means that occurring of A has no influence on
the probability that B occurs and the other way around.

The probability that A or B occurs is 0.1 + 0.2 =0.3.

The probability that A and B occuris 0.1 x 0.2 =0.02.

Henk

On a typical day, Henk is at home (13 hours), at school (6 hours), in the shopping mall (2
hours) or outdoors (3 hours). His home has a modern load bearing structure with a failure
probability of 10/1000 000 per year. The dominant load in Henk’s city is storm. Henk and his
housemates would recognise serious storm damage and go to the neighbours’ house right
away. Henk’s school has a beautiful large shell roof with a failure probability of 200/1000
000 in its design live of 50 years or 4/1000 000 per year. If this roof would buckle, very few
of the present students or teachers would survive. Henk’s mall has a steel frame structure with
an annual failure probability 10/1000 000. If a column would fail, the other columns still
carry the floors and roof. Perhaps 3 of the about 200 shoppers would die by falling parts.

The probability of Henk dying in a structural collapse this year is

Henk is in the mall and the mall collapses and Henk dies.

Pr= 13/24 x 10/1000 000 x 0 + 6/24 x 4/1000 000 x 1 +2/24 x 10/1000 000 x 3/200

=0 + 1/1000 000 +0.013/1000 000
=1.013/1000 000

which is acceptable (see personal safety p. 176). This example shows that large shell roofs
really need to have small failure probabilities for the ultimate limit state.

Exercise: Change Henk’s calculation into your situation. Include a beautiful shell structure
that you want to build. Is the conclusion the same?

Exercise: In the Netherland are about 10 000 000 buildings, 10 000 bridges and 17 000 000
people. Clearly, any significant collapse is reported in the news and you have read about it.
How many of these buildings and bridges collapsed last year? How many people died in those
accidents? Is the probability of dying in a structural collapse less than 1/1000 000?

Economic safety
Let us look at a structure as a business investment only. We can do so shamelessly because
personal safety is covered above (see personal safety p. 177). The expected cost C, of a

building is

Ce=C[+CS+Cn+Pfo

Cy....... Cost of the land

Cyouonn Cost of the load bearing structure, often just 10% of the building costs

Cp o Cost of all non-structural parts of the building, like windows, interior walls,
bathrooms
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Py..... Probability of structural failure in the design live

Cro. Failure cost, for example, value of the building (depreciated), destroyed machines,

lost production, loss of experienced employees, liability payments

To bring Py down, we need to increase C (fig. 234). Consequently, there is an optimal Py

for which C, is smallest.

Ci

i
1

Mmin i s

o

Figure 234. Expected cost of a building
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This calculation has been performed for many buildings in developed countries. Table 13
shows the results for 12 situations.

1) A new building. It is being designed and will be build.

2) An existing building. The structure is deteriorated and the load is increased. The structure
needs to be checked. Actual dimensions and material properties can be measured which

reduces uncertainty. Repair and strengthening is expensive.

1) Wind is the dominant load. Stability walls that resist storms are large and expensive.

2) Wind load is not dominant.

1) Consequence class 1 (CC1) House, agricultural building, green house, storage building.
2) Consequence class 2 (CC2) Office, 5 storey house, hotel, apartment, shop, school, hospital,

industry building.

3) Consequence class 3 (CC3) High rise, building with 16 or more storeys, hospital with 4 or

more storeys, grandstand, exhibition hall, concert hall, large public buildings [129].

Table 13. Optimal failure probabilities (ULS) in the design live of structures based on costs

only [130]

consequence class

new building

existing building

eurocode EN 1990 no wind wind no wind wind
CCl1 480 11000 2600 36000
1000 000 1000 000 1000 000 1000 000
CcC2 72 2600 480 11000
1000 000 1000 000 1000 000 1000 000
CC3 _ 8 __ 480 __ 72 __ 480
1000 000 1000 000 1000 000 1000 000
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Note that economic safety is a target, while personal safety (p. 177) is a requirement that must
be fulfilled regardless of the target.

Exercise: If you were to die now, society would loose the tax that you will pay in your live.
Calculate how much this is. This really large number is used to represent you or any other
person in the optimisation of structural failure probability.

Exercise: Economic safety (design live) can be governing over personal safety (annual). For
which situations in table 13 is this so for a frame structure? And which for a shell roof?

Challenge: 1) Design a thin steel dome roof for a building in Amsterdam. 2) Calculate its
construction costs. 3) Calculate its failure probability. 4) Change the thickness and continue at
step 2. 5) Plot expected cost as a function of failure probability. 6) Read the optimal failure
probability?

Table 14. Statistics for the city of Amsterdam [ ...]

distribution | u o/u
Concrete compressive strength, C35 normal ... N/mm?
Steel tensile strength, ... normal ... N/mm? | ..
Office floor load, 1 day largest gamma 0.50 kN/m? | 0.4 + A/(10 m?)
1 year largest
50 year largest Gumbel 1.50 kKN/m? | 0.4
Wind load 1 hour largest Weibull 0.10 kN/m? | 1.0
1 year largest
50 year largest Gumbel 1.00 kN/m? | 0.25

Safety index 8

Often, we use the safety index [ to express failure probability. This is a number between 2
and 5. It can be computed by

B= ()
27'CPf

Where () is the Lambert function and P is the failure probability. Examples are

10 000 1000 100 10 1 0.1 0.01
Py 1000000 | 1000000 | 1000000 | 1000000 | 1000000 | 1000000 | 1000000
B 2.34 3.09 3.73 4.26 4.76 5.20 5.62
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Appendix. Optimal arch

An arch with a sagitta of about 40% of the span needs the least material. This appendix
presents the proof.

For an evenly distributed load ¢ [N/m] the arch has a parabolic shape (fig. 1).

X X
—s[1+23 ||1-22 I
¥ S(Jr lj( lj’ .

where / is the span and s is the sagitta.

q
N t
N s Y
(e
\ \
\ / \
Figure 1. Parabolic arch
The volume of the arch is
1
21
Vol = j twdz, )
xz—%l

where ¢ = ¢ (x) is the thickness, w is the width and dz is a small distance along the arch. The
thickness ¢ is related to the axial force N = N(x).

twf=N, 3)

where f'is the compressive strength of the material. The axial force /N in the arch has a vertical
component V and a horizontal component H (fig 2.).

N_d

= 4
s @)

This is valid for x < 0. The vertical components ' need to be in equilibrium with the loading ¢
(fig. 2).

V=-xq (5)

This is valid for x <O0.
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Figure 2. Section forces

Substitution of equations 3 to 5 in equation 2 gives

0 2
-xq d.

Vol=2 [ 1= (6)

1 f dxdy

x=—=/
2
. 2_ 42 2 -
Using the Pythagorean theorem dz“ = dx“ + dy~ we obtain
2
d 1 d
z 7
dxdy dy dx
dx

Substitution of equations 1 and 7 in equation 6 and evaluation of the integral gives

2 2

165~ +3!

Vol =ql D5 T . ®)

24fs
For the minimum volume it holds
dVol

=0, 9
s (€))
from which s can be solved.
3

Q.E.D.
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Appendix. Optimal dome

A dome with a sagitta of about 30% of the span needs the least material. This appendix
presents the proof.

The shape is assumed to be a spherical cap (fig. 3).

y
Figure 3. Dome dimensions and coordinate system

The radius of curvature is

s 12
a==—+—.
2 8s

The dome surface area is

A= J‘J.\/dx +dyxde= 271‘[ 1+( )xdx na 2a—\/4a2—12j. (1)

0=0x=0
We assume the thickness ¢ to be constant. The vertical support reaction is

Apgt
wl

n, =

A% b

Where p is the specific mass, g is the gravitational acceleration. The horizontal support
reaction is

V=i 4a> - 12

The meridional stress in the dome foot is

cs:%«/ 240 ,,_2 a—\4a® -1%). 2)

ny =n,
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The hoop stress in the dome foot is smaller than the meridional stress. The stress in the dome
top is

limo=1a
ho° T2P8

We assume that the dome is fixed at the support. The thickness for which the dome almost
buckles is ! (see buckling p. 140)

ca

L_Et ¢ 31-v1) 22, (3)

v Cy3(1-v?) 4@

where 1/C is the knockdown factor for including imperfections. The material volume V of the
dome is found by substituting (1), (2) and (3) in

(&)

V=At,

which can be evaluated to
2 4
—(2a-~aa? -2 ) 2P0 302
V—(2a 4a lj 7K Cy3(0-v7).
This can be rewritten in dimensionless quantities

2
e =22 4L 1] £ where L=

1
? 2
ompglic3a—vy) | 1V P * !

. . . . . s
Figure 30 shows the dimensionless material volume as a function of 7

0.4
VE \

2npg 1Y 31-v?) 03 \
0.2 \
0.1 N

| | |

I I ! |
0 0.1 0.2 0.3 0.4 0.5
Figure 4. Material volume V as a function of sagitta s

The roots of d—Vare s=—£l, —ﬁl , ﬁl, ﬁl.
ds 2 6 6 2

~ |«

! Thin domes almost always buckle before yielding or crushing. It can be shown that for yielding or
crushing to occur due to self-weight the span / needs to exceed 1 km.
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B3

.. . s
Therefore, the minimum material volume occurs at 7 = ?z 0.3. Q.E.D.

The optimal ;Value does not depend on the material E, v, p, it does not depend on the span /,

it does not depend on the imperfections C and it does not depend on the gravity g (earth or
moon).

2
. . . 2 [
The thickness at minimum volume is ¢ = %C«B(l -V )pgT .

Since Cyf3(1-v2) ~ 64/3(1-0.27%) =10,

2
the thickness is approximately ¢ = %%.
3 2
. . Et 2, _a a a
The thickness can be written as 2pg12 C\3(1-v7) = 1—3 27 - 41—2—1 .

Figure 31 shows the dimensionless thickness as function of ; For §Values larger than 0.3

the thickness does not change much.

0.4 \
Ex \
2pg°Cy3(1-v?) 3
02 \¥/

| ! | ]

T T T T
0 0.1 0.2 0.3 0.4 0.5
Figure 5. Thickness t as a function of the sagitta s

0.1

In this derivation it is assumed that the thickness is everywhere the same. However, the stress
in the top is 25% smaller than in the foot of the dome. Therefore, the top can be 25% thinner.
A varying thickness would give a somewhat different optimum sagitta.

The horizontal support reaction of the optimal dome is evaluated to 7, = %l pgt.
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Appendix. Curvature tensor
This appendix proves that curvature is a tensor. Consider a point on a shell middle surface. In
this point are a local coordinate system x, y, z and a rotated local coordinate system 7, s, z. A

point (x, y) can be expressed in (7, 5) by

X=rcosQ—ssin@

y=rsing+scosQ

The shell middle surface can be described by (see page 20)

_1 2 1 2
z=5ko X" Tk Xy +5k,,y

Only second order terms are included because higher order terms are much smaller close to
the origin of the local coordinate system. Substitution of the former into the latter gives

z= %kxx(VCOS(p —ssinq))2 +kyy, (rcos@—ssin@)(rsing +scos Q) +%kyy (rsinp+ SCOS(p)2
The definition of curvature is (see page 20)

2 2 2
k _0z kSS:E, 0z

arz ’ 6_5'2 s Oros

Substitution of the former into the latter gives
k. =k cos? P+ky, sin” @+kyy,2sin@cos
koo =k sin’ P+ky, cos? ¢ —ky,2sin@cos¢

kys = (k) —ky)singcos @ +k,, (cos? ¢— sin’ ()

A quantity that can be transformed to another coordinate system by these equations is by
definition a tensor (dimensions 2, rank 2). Q.E.D.

The transformation equations can be rewritten as

Ky =3 (kg + ey ) + % (ke =k y,) €08 20 + Ky 5101 260

kg :%(kxx +kyy) —%(kxx —ky,)c082¢ — k), sin2¢

ks = —%(kxx —ky,)sin2¢ + k), cos2¢

and as

{krr krs}z[ cos@  sin (pﬂkxx kxy]|:COS(p —sin (p}
k., kg —sin@ cos@ || ky, ky, |[sing cose

and as

k,-j: Z kantmitnj i=r,s j=r,s

Mm=x,y N=X,y

The equations can be plotted by Mohr’s circle.
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Appendix. Membrane force tensor

This appendix shows that shell membrane forces can be transformed to another coordinate
system in almost the same way as regular tensors. Consider a local coordinate system x, y, z
and a rotated local coordinate system r, s, z. Consider two small triangular shell parts.

Yy

The equilibrium equations of these parts are

n,lcos@—n.lsing=ny cosQ+n, sing
n1CosQ+n,,. lsing=n,, sin@+n,, cose
ng1sin@+nglcos=n,, cosp—n,,sing

nglsin@—ng.lcose=ny, sinQ—n, cose
This can be written as

My = My cos?p+n,, sin? o+ (1, + 11 )SINQCOS P

Yy

Ngg = Ny sin® @+ n, cos® - (Myy, + 1), )SINGCOS @

vV
=(n,, — N, )SINQECOS P+ cos® @ —n,,, sin’
Mpg =My = My ¢ ¢+ny, G =1y ¢

Ny =Ny, =1, )SINQPCOSQ+ 71, cos? P—ny, sin’ [0)
and as

N, = %(nxx +nyy)+%(nxx —nyy)COSZ(p-i-%(nxy +n,,)sin2¢

Ngg = %(nxx +n,,) —%(nxx —ny,,)c08 2@—%(nxy +n,,)sin2¢
- 1 1 ; 1

Mg = 5 (g, =Ny ) =5 (Mg =1y, )SIN2Q + (1, + 1), ) COS 2¢

Ny = —%(nxy —nyy) —%(nxx —n,,,)sin 2(p+%(nxy +n,,)cos2¢

and as
[nrr nrs}_[cosw sin(p} Ny Ny |:COS(p —sin(p}
Mg Ny —SINQ COSQ || nyy Ny, || SING  COSQ
and as

ny; = Z anntmitnj i=r,s j=r,s

m=x,y n=x,y
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Appendix. Asymmetric tensors
This appendix gives the properties of the membrane force tensor.

Invariants

Ny + 1, (trace)
Ny, =My, (determinant)

n,,, —n

Xy yx

Principal values (no shear stress, eigenvalues)

Ny +1 Ny — N ny—n

ny= xx2 yy+\/( = yy)2+nxynyx (p:arctann—xx
yx

Ny +1 Ny — N n,, —hy

ny = ”2 B4 —\/( xx2 yy)2+nxynyx (pzarctanyyn—
Xy

Largest and smallest normal force

Ry +1 Ny — N N, +n Ny, +1
=W +\/( = yy)2+( d yx)z (pz%arctan ald
2 2 2 Ny — R
Moy + 1y _\/(nxx o + 1y 2 o — Larctan Ry +n
2 2 2 2 Ny — N
Largest and smallest shear force
Ny, — 1 Ry — 1N Ry, +n N, —n
y  Tyx xx Py 2 xy " yx 2 __1 xx
- 5 +\/( 2 )" +( 2 ) ¢ = —arctan ———=—

—-n n,—n n,, +n
wy " Myx x "My o My Ty
+\/( )"+ ( 5 )

Mohr’s circle
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ny—n
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My

ny,, —Hy
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Appendix. Compatibility equation

In this appendix the shell compatibility equation (p. 57) is checked.

>ux:;= cl+ c2*u+ c3*v+ c4*u2+ cS'u*v+ cb*vA2+ c7*ur3+ c8*uM2*v + cO*utVA2 +
c10*vA3:

> uy:=c11 + c12*u + c13*v + c14*u”2 + c15*u*v + c16*v"2 + c17*u”3 + c18*u”2*v + c19*u*v"2 +
c20*vA3:

> uz:=c21 + ¢c22*u + c23*v + c24*u2 + c25*u*v + c26*v 2 + c27*u3 + c28*u”2*v + c29*u*v 2 +
c30*v"3:

> epsilonxx:=diff(ux,u)/alphax-kxx*uz+kx*uy:

> epsilonyy:=diff(uy,v)/alphay-kyy*uz+ky*ux:

> gammaxy:=diff(ux,v)/alphay+diff(uy,u)/alphax-2*kxy*uz-kx*ux-ky*uy:

> phix:=-diff(uz,u)/alphax-kxx*ux-kxy*uy:

> phiy:=-diff(uz,v)/alphay-kyy*uy-kxy*ux:

> phiz:=1/2*(-diff(ux,v)/alphay+diff(uy,u)/alphax-kx*ux+ky*uy):

> kappaxx:=diff(phix,u)/alphax-kxy*phiz+kx*phiy:

> kappayy:=diff(phiy,v)/alphay+kxy*phiz+ky*phix:

> rhoxy:=diff(phix,v)/alphay+diff(phiy,u)/alphax+(kxx-kyy)*phiz-kx*phix-ky*phiy:

> |:=-diff(epsilonxx,v,v)/alphay*2 + diff(gammaxy,u,v)/alphax/alphay - diff(epsilonyy,u,u)/alphax”2:

> r:=-kyy*kappaxx + kxy*rhoxy - kxx*kappayy:
> u:=0: v:=0: kx:=0: ky:=0: kxx:=kxy"2/kyy:
> simplify(l-r);

0

Q.E.D.
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Appendix. Cylinder equation

In this appendix the shell cylinder equation (p. 73) is derived.

> ux:=-nu/a*int(w(u),u): uy:=0: uz:=w(u):

> pz:=0:

> kxx:=0: kyy:=-1/a: kxy:=0: alphax:=1: alphay:=1:

> ky:=diff(alphay,u)/alphay/alphax: kx:=diff(alphax,v)/alphax/alphay:

> epsilonxx:=diff(ux,u)/alphax-kxx*uz+kx*uy:

> epsilonyy:=diff(uy,v)/alphay-kyy*uz+ky*ux:

> gammaxy:=diff(ux,v)/alphay+diff(uy,xs)/alphax-2*kxy*uz-kx*ux-ky*uy:

> phix:=-diff(uz,u)/alphax-kxx*ux-kxy*uy:

> phiy:=-diff(uz,v)/alphay-kyy*uy-kxy*ux:

> phiz:=1/2*(-diff(ux,v)/alphay+diff(uy,u)/alphax-kx*ux+ky*uy):

> kappaxx:=diff(phix,u)/alphax-kxy*phiz+kx*phiy:

> kappayy:=diff(phiy,v)/alphay+kxy*phiz+ky*phix:

> rhoxy:=diff(phix,v)/alphay+diff(phiy,u)/alphax+(kxx-kyy)*phiz-kx*phix-ky*phiy:

> nxx:=E*h/(1-nu”2)*(epsilonxx+nu*epsilonyy):

> nyy:=E*h/(1-nu”2)*(epsilonyy+nu*epsilonxx):

> nxym:=E*h/(2*(1+nu))*gammaxy:

> mxx:=E*h”*3/(12*(1-nu”2))*(kappaxx+nu*kappayy):

> myy:=E*h”*3/(12*(1-nu”2))*(kappayy+nu*kappaxx):

> mxy:=E*h”*3/(24*(1+nu))*rhoxy:

> vx:=diff(mxx,u)/alphax+diff(mxy,v)/alphay+ky*(mxx-myy)+2*kx*mxy:

> vy:=diff(myy,v)/alphay+diff(mxy,u)/alphax+kx*(myy-mxx)+2*ky*mxy:

> nz:=(kxy*(mxx-myy)-(kxx-kyy)*mxy)/2:

> NXy:=NXym-nz:

> nyx:=nxym+nz:

> px:=-(diff(nxx,u)/alphax+diff(nyx,v)/alphay+ky*(nxx-nyy)+kx*(nxy+nyx)-kxx*vx-kxy*vy):
> py:=-(diff(nyy,v)/alphay+diff(nxy,u)/alphax+kx*(nyy-nxx)+ky*(nxy+nyx)-kyy*vy-kxy*vx):
> pz:=-(kxx*nxx+kxy*(nxy+nyx)+kyy*nyy+diff(vx,u)/alphax+diff(vy,v)/alphay+ky*vx+kx*vy):
> simplify(px);

> simplify(py);

0
> collect(simplify(pz),w(u));
3 4
Eh Eh d
—2w(u) + 5. _4W(u)
a 12(1-v)\ du
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Appendix. Section forces and moments in thick shells
In thin shells the membrane forces, the moments and the shear forces are defined in the same
way as in plates (see definition of membrane forces ... p. 13). For thick shells (p. 13) the
definitions are somewhat different because of the curvature (p. 19).

X b

.[ (Gxx(l kyyz)+cxy xyZ)dZ .[ (ny(l kxe)+(5xy Z)dZ
—lt _lt
2 2
]t ll‘
I(ny(l Z)+nykxyz)dz J(ny(l kxe)+Gxx yZ)dZ
lt lt
J- (o (1-k Z)+ny xyz)zdz I (o y(l kxxz)—HSXy z)zdz

1t lt

my, 2[.[ (o (I—kyyz)+0,,k,,2)zdz + I (0 (1 =k 2) + Ok 2)2dz]

71 jt

1 1
2t t

V= j (0, (1-k)yz)+0,,ky,z)dz J. (0),(I1-kyz)+ 0k, 2)dz
1 -3t

Exercise: Show that the above definitions comply with Sanders-Koiter equation 18.
(Terms with for example kyy ky, can be neglected because they are small.)

Derivation /|
The equations in the principal directions are simple /L ds kg
(see figure); for example
1
2 1
ny,. = I o, (1-kyz)dz kg /

Here it is shown that the kernel

> 7 [ 1
o, (1—kyz) LAl ¥ | o (k_ —z)dskg,
T/ .4 | SS
2 A
in the principal directions , s becomes = "l 2 (1= ks 2)ds
[ s
G (1=ky2) + 0y ks 2 — 3
Ny ds = I 0y (1= kg
in the general directions x, . 1,
2

dnrr:=(dnxx+dnyy) /2+ (dnxx-dnyy) /2*cos (2*f) +dnxym*sin (2*f) :
dnss:=(dnxx+dnyy) /2- (dnxx-dnyy) /2*cos (2*f) ~-dnxym*sin (2*f) :
dnrsm:= - (dnxx-dnyy) /2*sin (2*f) +dnxym*cos (2*f) :
srr:=(sxx+syy) /2+ (sxx-syy) /2*cos (2*f) +sxy*sin (2*f) :
sss:=(sxx+syy) /2- (sxx-syy) /2*cos (2*f) -sxy*sin (2*f) :
srs:= - (sxx-syy) /2*sin (2*f) +sxy*cos (2*f) :
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krr:=(kxx+kyy) /2+ (kxx-kyy) /2*cos (2*f) +kxy*sin (2*f) :
kss:=(kxx+kyy) /2- (kxx-kyy) /2*cos (2*f) ~kxy*sin (2*f) :

krs:= - (kxx-kyy) /2*sin (2*f) +kxy*cos (2*f) :
dgr:= dgx*cos (f)+dqy*sin(f) :
dgs:=-dgx*sin(f) +dgy*cos (f) :
srz:= sxz*cos (f)+syz*sin(f) :
ssz:=-sxz*sin (f) +syz*cos(f) :
eq0:=krs=0:
1 2 kxy

f:=solve(eq0,f); = — arct. [———————)

f 2arcan p——

eql:=dnrr=srr* (l-kss*z) :

eqg2:=dnss=sss* (1-krr*z) :

dnrs:=srs* (l-kss*z) :

dnsr:=srs* (l-krr*z) :

eq3:=dnrsm=(dnrs+dnsr) /2:

opl:=solve({eql,eq2,eq3}, {dnxx,dnxym,dnyy}) : assign(opl):
dnxx:=collect (dnxx,sxx) ; dnxx = (-kyyz + 1) sxx + kxysxyz
dnyy:=collect (dnyy,syy) ; dnyy:= (-kxxz + 1) syy + kxysxyz
dnxym:=collect (dnxym, sxy) ;

—%zkxx — %zkyy + 1] sxy + %kxysxxz + %kxysyyz
dnxy:=sxy* (1-kyy*z) +tkxy*syy*z; dnxy =sxy (-kyz+ 1) + kxysyyz
dnyx:=sxy* (1-kxx*z) +kxy*sxx*z; dnyx =sxy (-hkxxz + 1) + kxysxxz
simplify (dnxym- (dnxy+dnyx) /2): 0

wmym:=(

eq4 :=dqr=srz* (1l-kss*z) :

eqg5:=dgs=ssz* (1-krr*z) :

opl:=solve({eq4,eq5}, {dgx,dqy}) ; assign(opl):
dgx:=collect (dgx,sxz); dqx:=(-kyyz+ 1) sxz + kxysyzz
dqy:=collect(day,syz) ; dqy:=(-kxxz+1)syz + sxzzkxy
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Appendix. Stresses in thick shells

surface
1 k 6 k +n m
1 _ »w »w xy T Fyx xy
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6, ~0
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3
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170, +1 k m,,. +m
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Yy ¢ 2 Yy t2 ¢ Yy Xy 4 ¢
GZZzO
G,, =0
G, =0
1k, Nyt 6 k, Mg+,
Ow =TT O e e
Derivation

sxx:=(sxxt+sxxb) /2+ (sxxt-sxxb) *z/t: # Bernoulli’s hypothesis

syy:=(syyt+syyb) /2+ (syyt-syyb) *z/t:
szz:= 0:
syz:=-4*syzm/t*2* (z-t/2) * (z+t/2) :
sxz:=-4*sxzm/t 2% (z-t/2) * (z+t/2) :
sxy:=(sxyt+sxyb) /2+ (sxyt-sxyb) *z/t:
# Definitions of membrane forces, moments and shear forces
eql :=nxx=int (sxx* (1-kyy*z) +sxy*kxy*z,z=-t/2..t/2):
eq2:=nyy=int (syy* (1-kxx*z) +sxy*kxy*z,z=-t/2..t/2):
nxy:=int (sxy* (1-kyy*z) +syy*kxy*z,z=-t/2..t/2):
nyx:=int (sxy* (1-kxx*z) +sxx*kxy*z,z=-t/2..t/2):



eq3:=nxym= (nxy+nyx) /2:

eqd :=mxx=int ( (sxx* (1-kyy*z) +sxy*kxy*z) *z,z=-t/2..t/2):
eq5:=myy=int ( (syy* (1-kxx*z) +sxy*kxy*z) *z,z=-t/2..t/2):
mxy:=int ((sxy* (1-kyy*z) +syy*kxy*z) *z,z=-t/2..t/2):
myx:=int ((sxy* (1-kxx*z)+sxx*kxy*z) *z,z=-t/2..t/2):
eq6:=mxym = (mxy+myx)/2:

gx:=int (sxz* (1-kyy*z) +syz*kxy*z,z=-t/2..t/2); qxr=€§smmu

qy:=int (syz* (1-kxx*z)+sxz*kxy*z, z=-t/2..t/2); qu=%-$th

opl:=solve({eql,eq2,eq3,eqd4,eq5,eqb}, {sxxb,sxxt,sxyb,sxyt,syyb,syyt})
assign(opl):

sxxt:=mtaylor (sxxt, {kxx, kxy, kyy},62);

Sxxt = 5 -|--—ky—'Z mxx——lgzgﬁlzl-%(-l-+-J4kyy)nxx—-J4nxymkxy
£ t t t 2 2

syyt:=mtaylor (syyt, {kxx, kxy, kyy}, 2);

swd:=-"EQQEQZE-+ 5 +-£E£ inyy—-J;nankxy+-(-L +-J-kxx]nyy

t 2 t 2 t 2

sxyt:=mtaylor (sxyt, {kxx, kxy, kyy}, 2);

ﬂth:—%-léZ?Ez-+-[i% +”%-j%£ +-%-£¥anuym-—-%nkg%ﬁzz —-%nbwnxx

+-[J-+—l—bm%-i-bw)nmm1—-lvabw

t 4 4 4

sxxm:=mtaylor ( (sxxt+sxxb) /2, {kxx, kxy, kyy},62);
N— kyy;nxx _ kxyn:xym n n)tcx
syym:=mtaylor ( (syyt+syyb) /2, {kxx, kxy, kyy},62);
gwm?i_byﬁmmz+_bxﬁw’+ ey
sxym:=mtaylor ( (sxyt+sxyb) /2, {kxx, kxy, kyy},62);
wgm1F=—%?-§Q%ﬂ££ +—[-%—£%£ +_%?_&E[)nuym___%_ka?UW + nﬁﬁn

sxxb:=mtaylor (sxxb, {kxx,kxy, kyy},2) ;

mmb?=[—£;—%J%Z)nmx—-ﬁﬂﬂ%ﬂﬂi4—[%-—-%'bw)nmf%éganan

t

syyb:=mtaylor (syyb, {kxx, kxy, kyy}, 6 2);

EZZEEIBL-+ _6 +_£§£ Inm/+-J4nxymkxy+-(—L —-J4kxxJnyy
t 2 t 2 t 2

sxyb:=mtaylor (sxyb, {kxx,kxy, kyy}, 2);

1 kxymxx 6 1 kxx 1 ky 1 kxymyy 1
_ - _ —_— L - = = 7 _kx
> p +( 2 + > +—2 S| mm = ; + g oy nxx

syyb == -

sxyb == -

1 1 1 1
+—[ P fxx — 4 hgjruym-+ 4 nyy kxy
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Appendix. Increase of the Gaussian curvature
The quantity —k,, K +k,,py, —ky K, is approximately equal to the increase of the shell

Gaussian curvature k; during loading.

Proof
In the local coordinate system the shell surface can be approximated by (p. 21)

_1 2 1 2
z=5 ke X™ +kyyxy+ 5k, y7.

A displacement can be approximated as

— _1 2_1 -1 2
Uy SUzo TOXH Q)Y =5 KX =5 Py XV =5 K V.
The deformed shape is

2 2
2ty =ty + QX+ @+ 2y =K )X+ (kg =3P )y + 3 (K, — K )07

The curvatures after deformation are

62(z+u)
—2Z:kxx_Kxx9
Ox
62(z+uz)_ ]
oxdy w ~2Pxys
62(z+uz)_k
5" =Ry T Ky

Before deformation the Gaussian curvature of the middle surface is

2
kG =kychyy — k.

After deformation the Gaussian curvature is

_ 1 2
kGd - (kxx - Kxx)(kyy - Kyy) - (kxy _pry) .
The increase in Gaussian curvature is

— 1.2
kg —kg = —knyxx +kxypxy —kxxKyy + K Ky =7 Py -

The last two terms are very small compared to the other terms and can be neglected for shells
with significant curvatures. They cannot be neglected for flat plates.

Q.E.D.

The increase of the Gaussian curvature can also be written as
1 1 1
kGd - kG = _(kyy _EKyy)Kxx + (kxy _pry)pxy - (kxx _EKxx)Kyy .
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Appendix. Umbilical patterns

Identifying umbilical patterns

It is often difficult to recognise the umbilical pattern from the finite element principal
directions, especially when several umbilics occur close to each other. Fortunately, they can
be recognised computationally too.

Six gradients a; can be computed from the tensor finite element results around an umbilic.

O, O,
a = =—
ox oy
om om
ay= o g, W
Ox oy
om om
as = Xy ag = Xy
ox oy

The directions of the ridges are the roots of

ag tan’ Q+(ay—ay +a5)tan2(p+(a1 —az —ag)tan@ —as

f_

((12 - a4)tan3 (P"r‘ (al —a3 —4a6)tan2 (p—(a2 —day +4a5)tan(p—(a1 —a3) .
For example, Figure 146 shows f for ;= 1, a, =2, a3=3, a4=4, a5=5, ag=6 N/mm>.
The roots can be computed using the Newton-Raphson algorithm. When the directions of the

ridges are known the umbilical pattern can be identified using Figure 172.

Exercise: What umbilical pattern follows from the following?

\ o )

2
Figure ... Function f of @, the three roots are angles of ridges with the x axis

Table 14. Values of a,to ag for the patterns of figure 171

Cll a 2 03 Cl4 Cl5 a6
Monstar 2 0 0 0 0 3
Star 0 2 0 0 1 0
Lemon 2 0 0 0 0 1
Flame 1 -1 0 0 0 1
Orthogonal | 0 1 0 0 0 0
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Simplified umbilical patterns
For the curvature tensor there is a substantial simplification; a5 =a, and ag = a3. This

follows from applying the curvature definitions (p. 20) to
T =X A OXT 03T T + XY+ XY T

For the membrane force tensor of plates loaded in plane there is a simplification too;
as =—ay and ag =—a; provided that there is edge load only therefore p, and p,, are zero.

This follows from Sanders-Koiter equation 4 and 5 (p. 54).

Invariants of tensor gradients
The gradients g; defined in the previous section depend on the direction of the local x axis and

y axis. It is useful to have quantities that do not depend on the coordinate system. The
following quantities have this property. They are called invariants. They are valid for all
points of a shell, not only for umbilics (p. 123).

8 = (a) —az)ag — (ap —ay)as
Oy =ajaz —a52 +ayay —ag

2 2
63 =(Cl] +a3) +(612 +a4)

2 2
84 =(az —ag)” +(ay —as)
ds =4(aja3 - a52 Naray — aé) —(aqja4 + aya; — 2a5a6)2

86 = 4(t% — 3a6t1 )(tlz + 3a5t2) — (fztl + 9(15(16 )2 [1 =a;—az —dag [2 =day —ay +as

An infinite number of invariants exists. After all, the above six invariants can be added,
multiplied et cetera in an infinite number of ways. This does not mean that all invariants can
be constructed from the above invariants. Probably, invariants exist that cannot but a
mathematical proof of this does not exist as yet.?

Interpretation of the invariants of tensor gradients

Invariants (p. 114) do not depend on the direction of the x and y axis. Physical reality does
neither. So, invariants are good candidates to describe physical reality. The following
interpretations of invariants have been found.

Invariant §; gives information on the umbilical pattern. Where &; >0 monstars occur, where

d; < Ostars occur, where §; = 0 orthogonal patterns or nonlinear patterns occur. Where
invariant 5, = 0 lemons or flames occur. More applications of invariants are likely to be
found.

2 Invariants are not easy to find. Invariant 8;, 85 and 8¢ have been derived by A. Thorndike et al. in
1978 [A.S. Thorndike, C.R. Cooley, J.F. Hye, The structure and evolution of flow fields and other
vector fields, Journal of Physics A: Mathematical and General, Vol. 11, No. 8, pp. 1455-1490, 1978].

Invariant 8,, 83 and &4 have been discovered by Wouter van Stralen in 2013
[W.J. van Straalen, Invarianten van tensoren, De onafhankelijkheid van assenstelsels rondom umbilics,

Bacheloreindwerk, Delft University of Technology, 2013 (in Dutch)
online: http://homepage.tudelft.nl/p3r3s/BSc_projects/eindrapport van_stralen.pdf ].
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Invariant proof

>restart:

>x:=r*cos (f) -s*sin (f) :
>y:=r*sin(f)+s*cos (f):
>nxx:=pl+al*x+a2*y:
>nyy:=p2+a3*x+ad*y:

> nxy:=p3+a5*x+ab*y:

>nrr:=1/2* (nxx+nyy) +1/2* (nxx-nyy) *cos (2*f) +nxy*sin (2*f) :
>nss:=1/2* (nxx+nyy) -1/2* (nxx-nyy) *cos (2*f) -nxy*sin (2*f) :
>nrs:= -1/2* (nxx-nyy) *sin (2*f) +nxy*cos (2*f) :

>bl:=diff (nrr,r):

>b2:=diff (nrr,s):

>b3:=diff (nss,r):

>bd:=diff (nss,s):

>b5:=diff (nrs,r):

>b6:=diff (nrs,s):

> simplify((bl-b3) *b6- (b2-b4) *b5) ;
al a6 —a2 a5 —a3 a6 + a4 a5

Ridge angles as function of constants q; to a,
Ny =p+aix+ayy

Ny, =p+a3x+agy

nxy: asx+dagy
X=rcosQ
y=rsinQ

1 1 ;
n,, =5(nxx + nyy) +§(”xx —nyy)cos 2¢+ny, sin2¢

_1 1 i
Ry —3(”xx +n,,) =5 (M —11y,,)COS 20 — 11, SIN 20

Ny = —%(nxx —ny,)sin2¢Q +n,, 0s2¢

The principal directions y in the r-s coordinate system is

2n
tan 2y = A
Ry =N

For aridge

y=0ory==m.

o=

Substitution of Eqgs (1), (2), (3) and (5) in (4) gives

0 ag tan’ 0+(ay —ay +a5)tan2(p+(a1 —az —ag)tan @ —as

(ap —a4)tan3 o+ (a —a3 —4016)‘[am2 ¢—(ay —ay +4as)tan@—(al —a3)

The denominator is important because when any two ridges have an angle of n/2 the third
ridge is cancelled out of this fraction. Therefore, there can be one, two or three roots.
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The roots can be computed using, for example, the Newton-Raphson algorithm.
The derivative of Eq. (4) is

(4 tan’ QO+t tane+13)(1+ tan’ (p)2

d
—tan2y = 7
7 Y (7

¢ ((ay - a4)tan3 o+ (a—az - 4a6)‘[an2 ¢—(ay —ay +4as)tang —(al — Cl3))2

1 =ag(a) — a3 —4ag) —(ay —ay +as)(ap —ay)
1) ==2(ay —ay)(a) —a3) - 8asag
ty =—as(ay —ay +4as) —(a) —az —ag)(a) — a3)

Constants q; to a, as function of the ridge angles
To obtain the patters of fig. 171 we choose a Cartesian coordinate system in an umbilic and

assume a linear variation in the second order tensor, for example the normal forces.
Ny =P+qX+ary
Ny, =p+azx+agy (D)

Ny, = asx+agy

Cylinder coordinates are introduced.

X=rcosQ

y=rsinQ @)

The principal direction v is defined by

tan2y= 2 ©)
Myx =y

For the ridges holds

T=0 “4)

Substitution of Eqgs (1), (2) and (4) in (3) gives a third degree polynomial intan¢.

ag tan’ QO+ (ay —ay + 015)‘[an2 ¢+(ag—a3—ag)tanp—as; =0 ®))

Suppose the roots of this polynomial are by, b, and b;. Then it can be written as

(b —tan @)(b, — tan @)(b3 —tan¢) =0. (6)

This can be evaluated as

tan> @ — (b + by + by ) tan” @+ (byby + byby + byby ) tan @ — bybyby = 0. (7)

Comparing Eq. (5) to (7) we observe,
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a, —ay tas _

=—(by +by +b3)
ag
4 —d3—de = byby +bybs + by
ag
55— bbby

ag

The roots are the angles of the ridges (fig. 171)

b = tan o,
b, =tan,
by =tan @y

Substitution of Eqs (9) in (8) and evaluation gives

a; —az = (ccc + ssc+css + scs) C
a, —ay =—(sss+ccs +csc+scc) C
as =sss C

ag =ccc C
where C is an unknown factor and

S§8S = sin @ sin @, Sin Q5

€SS = COS @] SIn @, Sin Q3
SCs =sin @ cos @, sin 3
ssc = sin @) sin@, cos @3
€cs = COS Py COS Py Sin @3
€sc = Cos( sin @, COSP3
scc = sin @y cos @) cos 3

ccc = CoS (] COS Py COS P3

Invariants as a function of the ridge angles

81 = C? cos(py — ) cos(@3 — @) cos(p3 — )

63 —4(81 +82)=(a1 —aj —206)2 +(a2 —ay +2a5)2 =C2

4 . 2 .2 . 2
8¢ =3C" sin” (¢ — @1 )sin” (@3 —@p)sin” (@3 —@,)
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Appendix. Buckling equations

;> my = 0:mx =0 kxy=0:

> uz = C-cos Pirx 'COS Piy :
: Ix ly

> Gl = kxxdiff(uz, y, y) — 2 -kxy diff (uz, x, y) + byydiff (uz, x, x)
> G2 = kexdiff (GL, y,y) — 2 kxydiff (G1. x. y) + kyy diff (G, x, x)
> DI = diff (uz, x, x) +diff (uz, y,») :
> D2 = diff (DI.x.x) +diff (D1.y,y) :
> D3 = diff (D2, x.x) +diff (D2.y,y) :
> D4 = diff (D3, x.x) +diff (D3.y,¥) :
> Pl := lambda- ( pz + mex-diff (uz, x, x) + (mxy + myx) -diff (uz, x, ¥) + myy-diff (uz, v, v)) -
> P2=diff (Pl x,x) +diff (P1,y.y) :
> P3=diff (P2, x,x) +diff (P2, y.y) :
> eq = %-D4+E-I-G2:P3:
: 12-(1—+7)
> Al = solve(eg, lambda) :
72 e V2
2 ()
-Et n-r 1 1 Iy Ix Ixly
> A2 = : — |5+ >
| (1-v) e 2
K [1’2 K n
> simplify( Al —A2);
0
> Ix:=[cos(a) :ly = l'sin(a) :
> A3 = simplifo( A2) -
o -EFf abs(kjcx) :
Sy ™
o 15— Ef abs(hw) |
_ (1) ™
1
= 5: =03:t=3:]=—"
> E nu=03:r=3:7 2bs ()
1 1 -1 1 1 E-t -3 E-t
> kxx = . chy = : X = Y =
150 o 300 1000 2 o 1000 2
: r (l—vz) r (l—vz) (I*V) (I*V)
> nxx-abs(fex) + nyy-abs(b);
. —0.00001919935600
> p/ot[ {23, 24, A5}, a=0 ..%,—3 ..2):_
1Y/ ||
-
0 T T T T T T T 1
T bis in bis Sm in T bis
6 B 16 T 16 s 16 7
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Appendix. 3D reinforcement

Designing
In a small cube of concrete the following reinforcement ratios can be applied [143, P.C.J.
Hoogenboom, Reinforced Solid, Wikipedia, ...].

; _Gxx+‘cxy‘+|GXZ| 0 _ Oy |0y +‘Gyz
x = > - ’ z
Iy g Iy Iy

where fy is the rebar yield strength. If a ratio is negative, no reinforcement is needed.

e +|ze|+‘csyz

Sometimes a bit less reinforcement is sufficient too, especially in case of multiple stress states
due to multiple load combinations It is convenient to just try less reinforcement and apply the
check below.

If the bars are placed in the principal directions than the required reinforcement ratios are

pr=—1 pr="2, py=23
1= > 2= 3=
Iy fy fy

For fibre reinforced concrete the reinforcement ratio is

p=4ﬂ.
Iy

Challenge: Derive the factor 4 considering that most fibres are not in the tensile direction and
do not have full development length.

Checking reinforcement
Suppose somebody designed reinforcement and we need to check it. For this, the eigenvalues
of the following matrix need to be smaller than or equal to zero [143].

Oxx — pry ny Oxz
Oxy Syy ~Pyfy O)z
Oxz cyyz Oz~ pzfy
Where 6,,, G, ... ct cetera are the computed linear elastic stresses p,, p,,, p, are the

reinforcement ratios and f), is the steel yield stress.

This rule can be easily explained. Concrete shrinks while curing, the bars do not, so small
cracks are everywhere. The concrete between the bars cannot carry tension. The concrete
principal stresses need to be negative. The principals stresses are the eigenvalues of the
concrete stress tensor. In the ultimate limit state, the concrete stress tensor consists of the
computed linear elastic stresses minus the stresses carried by the reinforcement when
yielding.

Crushing of the concrete needs to be checked too. This is explained in the following note.

Checking concrete stresses
Crushing failure of concrete can be checked with the Mohr-Coulomb criterion
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o3 o1,

fe Ji

where 65 and oy are the smallest (most negative) and largest principal stresses of the concrete
stress tensor (see Checking 3D reinforcement, p. 181), f.. is the concrete compressive
strength (negative value), f; is the concrete tensile strength. The latter is not zero because

between the shrinkage cracks there are chunks of concrete that are not cracked. These chunks
form the compression diagonals.

The Mohr-Coulomb value can be interpreted as following;
- when it is for example 0.87 than 87% of the capacity of the material has been used;
- when it is for example 1.23 than the material is overloaded by 23%. In fact, if this
were the real material it would already have been crushed;
- when it is for example -1.30 the material is prestressed which makes it stronger for
additional load.
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Appendix. Tensors

Tensor properties
The sum of two tensors is a tensor.

RT;R' + RT,RY =R(T; + T,)RT QE.D.

The product of two tensors is a tensor.
RTR'RT,RY =RTR'RTyRY = RT,IT,RT =RT;T,RT Q.E.D.

The inverse of a tensor is a tensor.
RT'RT =RT'R'"=RRT) ' =RTY " (RT)™" =(RTRT)™' Q.E.D.

For example, an eccentricity tensor e can be defined.

I:exx €xy }l:nxx Ryy :| _ |:mxx My :I
Ex Cyy [ My Myy My

We know that this eccentricity tensor is a tensor because of the above properties.

Challenge: Suppose that we designed a shell, performed a finite element analysis and want to
improve the shape such that the eccentricity is in the middle third. Which rule can be derived
for this? Will successive shape improvements converge?

Tensor invariants
A 2x2 tensor has two quantities that do not change when the coordinate system rotates around
the z axis. Using the moment tensor as an example, these quantities are

e F iy, trace
2

xy

m

m m determinant

xx My =
These quantities are called the invariants. Clearly, the invariants can be added, multiplied et
cetera, to produce more quantities that do not change when the coordinate system rotates
around the z axis. For example,

2

XX

2

2
+ mey +my,

m
Also the principal values m; and m, can be expressed in the invariants.

Exercise: Derive that m)zcx + 2m)2Cy + miy does not depend on the direction of the coordinate

system by combining the invariants.

Exercise: Show that ky =k, + \/k,%l —kg and ky =k, —+ kr%z —kg -

Exercise: Derive the following equations. k12 + k22 = k)%x + 2k§y + k)z,y = 4k,%l —2kg
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Exercise: Derive that \/ cs)zcx -c + ciy + 30)20, does not change when the coordinate

XX ny
system rotates around the z axis.

Reinforcement is a tensor too

The reinforcement that designers choose for concrete shells looks like trajectories. This is
because the bars are most efficient when they cross perpendicularly. It would be optimal if the
bars follow the stress trajectories in the shell surface. This means four layers of bars; two
close to the inner surface and two close to the outer surface. However, usually this is not
possible because different load combinations give different stress trajectories. Nevertheless,
two layers of practical reinforcement can be described by a second order tensor field. The bar
cross-section areas are the principal values a; and a, in for example mm?/m or kg/m?. The

reinforcement tensor is

The amount of reinforcement of a small shell part with length/; and width/, is a;/5/; + ay1j1 .
Per shell area this is a; +a; , which is equal to a,, +4,,, . A computer can determine the

reinforcement tensor field as an optimisation problem (three dofs per node.) The objective is
to minimise the total amount of reinforcement. The constraints are strength, crack width and
development length.

Invariants of two tensors

When two 2x2 tensors are added or multiplied et cetera, the resulting tensor has the four
invariants of the individual tensors and two extra invariants. Using curvature and moment as
an example, the extra invariants are

koxty +2kymy, +kyom,,

kxy (myy = myy) — My (kyx — kyy)

More independent invariants of two 2x2 tensors have not been found [144, J. van Hulst,
Invarianten van gecombineerde tensoren, Uitknikken van schaalconstructies,
bacheloreindproject, Technische Universiteit Delft, Faculteit Civiele Techniek en
Geowetenschappen, juni 2018 (In Dutch with English summary), online:
https://phoogenboom.nl/BSc_projects/eindrapport van_hulst.pdf].

Exercise: The invariants of two tensors both occur in the Sanders-Koiter equations. Can you
spot them?

Exercise: Derive that ky m,, —2k,,m,, +k, m, does not change when the coordinate

system rotates around the z axis.

Exercise: Derive that %K oMy + %p My + %K yy M, does not change when the coordinate

system rotates around the z axis.
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