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Symbols 
a ……..………………………. radius of curvature [m] 

1a , 2a , 3a , 4a , 5a , 6a ………... gradients of a tensor field 
b , c ………………………….. dimensions [m] 
C …………………………….. knock down factor [ - ] 
d .……………………………. imperfection amplitude [m] 
d …………………………….. diameter of distributed point load [m] 
E .………………………..…… Young’s modulus [N/mm2] 

yf ……………………………. yield strength [N/mm2] 

nf ……………………………. natural frequency [Hz] 
h ……………………………... finite element size [m] 

Gk ………………………….… Gaussian curvature [1/m2] 

mk ………………………….… mean curvature [1/m] 

xk , yk …….………………….. in plane curvature of parameter lines [1/m] 

xxk , yyk , xyk  ………….…….. curvature tensor [1/m] 
l ..…………………………….. span [m] 

xxm , yym , xym  ……………… moment tensor [kNm/m] 

xxn , yyn , xyn , yxn …………… membrane force tensor [kN/m] 

crn …………………………… critical membrane force [kN/m] often determined by a linear 
buckling analysis of a shell without imperfections 

pn …………………………… plastic membrane force [kN/m] calculated by hand from 
crushing or yielding of a cross-section 

ultn …………………………… membrane force [kN/m] just before a shell collapses 
often determined by a nonlinear finite element analysis 

xp , yp , zp …….…………….. distributed load [kN/m2] 
P ……………………………... concentrated load [kN] 

xq , yq , zq …….……………… distributed edge load or support reaction [kN/m] 
s ……………………………... sagitta [m] 
t  …………………………….. shell thickness [m] 
t  …………………………….. time [s] 
u , v …………………………... curvilinear coordinates [m or - ] 

xu , yu , zu ……………………. displacements [m] 
V …………………………….. concentrated shear force in a shell edge [kN] 

xv , yv  ……………………….. out of plane shear forces [kN/m] 
x , y , z  ………………………. local Cartesian coordinates [m] 
x , y , z ………………………. global Cartesian coordinates [m] 
 

xα , yα  ………………………. Lamé parameters [ - or m] 
β…………………………….. reliability index [ - ] 
Γ…………………………….. increase in Gaussian curvature due to load [1/m2] 

iδ  .…………………………… invariants of the gradient of a tensor field 

xxε , yyε , xyγ ………………… strain tensor of the middle surface [ - ] 

xxκ , yyκ , xyρ ……………….. curvature deformation tensor [1/m] 



 

λ …………………………….. load factor [ - ] 

crλ ………………………….. buckling load factor of a perfect shell structure [ - ] 

ultλ ………………………….. collapse load factor of an imperfect shell structure [ - ] 
ν …………………………….. Poisson’s ratio [ - ] 
ρ  ……………………………. mass density [kg/m3] 

xxσ , yyσ , zzσ , yzσ , xzσ , xyσ .. stress tensor [N/mm2] 

xϕ , yϕ , zϕ …………………… rotation of a pin perpendicular to the middle surface [1/m] 
φ  …………………………..… Airy stress function [kNm] 
 

2∇ …………………………… Laplace operator (pronounce nabla squared) 
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Sagitta 
The height of an arch is called the rise 
or the sagitta (pronounce with emphasis 
on “git”) (Latin for arrow). When the 
sagitta s and the span l are known, we 
can calculate the radius a of a circular 
arch. 

2
1 1
2 8

la s
s

= +  

 

For example the dome of the palazzetto 
dello sport (fig. 1)(p. 64) has a span of 
58.5 m, and sagitta of 20.9 m. The 
radius is 
 

220.9 58.5 30.9 m
2 8 20.9

= + =
×

a . 

 
 
Radius/thickness 
The palazzetto dello sport (p. 163) has 
ribs which are 330 mm thick. The shell 
between the ribs is 120 mm thick.     Figure 1. Palazzetto dello sport in Rome  
The ratio radius/thickness is                      [www.galinsky.com] 
 

30.9 260
0.12

= =
a
t

.       

 
When we include the ribs the ratio is 
 

30.9 94
0.33

= =
a
t

. 

 
Table 1 shows this ratio for several shell structures. Clearly, a large ratio shows that little 
material is used. For example, if your design has a ratio a / t = 500, it is really efficient. 
 
Objective 
The objective of these notes is to predict the behaviour of shell structures. After completing 
the course you can answer the following questions about your shell designs. Will it deflect too 
much? Will it yield? Will it crack or break? Will it vibrate annoyingly? Will it buckle? Will it 
be safe? What causes this and how can I improve it? 
 
 

a 
s 

l 
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Exercise: Psychologists say that a person or animal needs an objective in order to determine 
how to look at something. For example, when you are tired, a chair is a thing-to-sit-on and 
when you need to replace a light bulb, a chair is a thing-to-stand-on. Rephrase the former 
sentence using the words “engineer”, “model”, “predict”. 
 
Table 1. Dimensions of shell structures 
structure location, year, 

architect 
geometry dimensions radius a thickness t ratio a / t 

chicken egg 150 106 BC surface of 
revolution 

60 mm 
length 

20 mm 
minimum 

0.2–0.4 mm 100  

Treasury of 
Atreus 
(p. 4) 

Μυκηνες 
Greece 
1100 BC 

surface of 
revolution 

14.5 m 
diameter 

16 m ≈ 0.8 m 20 

Pantheon 
(p. 14) 

Rome 
126 AD 

hemisphere 43.4 m 
diameter 

21.7 m 1.2 m 
at the top 

18 

Viking ship 
Oseberg 
(p. 109) 

Tønsberg 
Norway 
820 AD 

ellipsoid part 21.58 m long 
5.10 m wide 

   

Duomo di 
Firenze 
(p. 42) 

Italy 
1420 
Brunelleschi 

octagonal 
dome 

44 m 
diameter 

22 m   

St. Paul’s 
Cathedral 
(p. 43) 

London 
1675 
Wren 

cone and 
hemisphere 

35 m 
diameter 

15.25 m   

Jena 
planetarium 
[1] 

Germany 
1925 
Bauersfeld 

hemisphere 25 m 
diameter 

12.5 m 60 mm 200 

Algeciras 
market hall 
[1] 

Spain 1934 
Torroja 

spherical cap 
on 8 supports 

47.6 m 
diameter 

44.1 m 90 mm 490 

beer can 
(p. 143) 

1935 cylinder 66 mm 
diameter 

33 mm 0.08 mm 410 

Hibbing 
water filter 
plant [1] 

Minnesota 
1939 
Tedesko 

ellipsoid of 
revolution 

45.7 m 
diameter 

47.24–5.33 
m 

900–150 mm 35–525 

Brynmawr 
rubber 
factory [1] 

Brynmawr 
UK, 1947 
Arup 

elpar on a 
rect. plan 

19.6 x 25.3 m 25.0–32.9 m 90 mm 300–400 

Kresge 
Auditorium 
(p. 115) 

Cambridge 
1955 
Saarinen 

segment of a 
sphere on 3 
points 

48.0 m 
between 
supports 

33.0 m 90 mm 370 

Kaneohe 
Foodland [1] 

Hawaii 
1957 
Bradshaw 

intersection 
of 2 tori on 4 
supports 

39.0 x 39.0 m 
between 
supports 

39.0–78.0 m 76–178 mm 500–1000 

Palazzetto 
dello sport 
(p. 63) 

Rome 1957 
Nervi 

spherical cap 
with ribs 

58.5 m 
diameter 

30.9 m 0.12 m shell 
0.33 m ribs 

260 or 94 

CNIT 
(p. 149) 

Paris 1957 
Esquilan 

intersection 
of 3 cylinders 
on 3 supports 

219 m 
between 
supports 

89.9–420.0  
m 

1.91–2.74 m 
total 
0.06 – 0.12 m 
outer layers 

47–153 

Zeckendorf 
Plaza 
(p. 102) 

Denver, USA 
1958 
Tedesko 

4 hypars 40 x 34 m 
height 8.5 m 

40 m  76 mm 528 

Ferrybridge 
cooling 
towers  
(p. 155) 

Ferrybridge 
UK 
1960 

hyperboloid height 115 m  44 m 130 mm 
repaired 
… mm 

350 

Paaskerk 
(p. 127) 

Amstelveen 
1963 
Van Asbeck 

hypar on 2 
points 

25 x 25 m 
height 10.3 m 

31 m   

Tucker gym 
(p. 135) 

Henrico USA 
1965 
Hanson 

4 hypars 47 x 49 m 
height 4.6 m 

127 m 90 mm 1400 
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Deitingen 
petrol station 
(p. 116) 

Switserland 
1968 
Isler 

segment of a 
sphere on 3 
points 

span 31.6 m 
height 11.5 m 

52 m 90 mm 580 

Saturn V 
(p. 76) 

Houston USA 
1965-1975 

cylinders and 
stiffeners 

height 111 m 5 m   

oil tanker 
(p. 146) 

~1970 all curvatures 
with 
stiffeners 

length 300 m 
width 30 m 

 20 mm  

Savill 
building 
(p. 22) 

Windsor UK 
2005 
Howells 

freeform length 98 m 
width 24 m 

143 m 300 mm 41 

Sillogue 
water tower 
(p. 27) 

Dublin 
2007 
Collins 

surface of 
revolution 

height 39 m 
top diameter 
38 m 

24.8 m 786 mm 32 

 
Summary 
Shell structures display four phenomena that are different from other structures. These 
phenomena are listed below. An engineer working with shell structures needs to understand 
these. 

• Arches are thick because pressure lines (p. 6) need go through the middle third (p. 7). 
Shells are thin because hoop forces (p. 13) push and pull the pressure lines into the 
middle third. 

• Large moments occur in supported edges. This is called edge disturbance (p. 14, 71). 
It happens because the deformed shell needs to connect to the undeformed support. 

• Shells with special curvatures and particular supports behave like flat plates. This is 
called inextensional deformation (p. 109) 

• Small shape imperfections often cause a large reduction of the buckling load. This is 
called imperfection sensitivity (p. 142). 

 
Corbel arch 
When piling blocks we can shift each block a little compared to the previous one. In this way 
we can make an arch without formwork (fig. 2). This arch is called a corbel arch. It can be 
analysed best starting from the top. The top block needs to be supported below its centre of 
gravity. Therefore, it can be shifted up to half its length c. The top two blocks need to be 
supported in their centre of gravity too. Therefore, they can be shifted up to one-fourth of c. 
The shifts produce a row of fractions 1 1 1 1

2 4 6 8, , , ...  The shape of the arch is described by  

1
,

2

n
cx nb y

η=

= =
η∑ . 

Where b and c are the block height and length. If x goes to infinity then y goes to infinity. So, 
there is no theoretical restriction to the span that can be created in this way. However, for 
large spans and small blocks the arch will become extremely high. 

a
2

a

a
4

a
6

a
8

b

x

y

a
2
a
2

a

a
4
a
4

a
6
a
6

a
8
a
8

b

x

y

 
Figure 2. Pile of shifted blocks 
 
 

c

cccc
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Corbel dome 
The concept of a corbel arch (p. 3) can be used for building domes too. The following 
program computes the coordinates x and y. In the derivation was used that the top block has a 
small angle. 
 
x:=0: y:=0: M:=0: A:=0: 
for n from 1 to 100 do 
  M:=M+2/3*((y+a)^3-y^3): 
  A:=A+(y+a)^2-y^2: 
  x:=n*b: 
  y:=M/A: 
end do; 
 
Treasury of Atreus 
In ancient Greece was a civilisation called Mycenaean (pronounce my-se-nee-an with 
emphasis on my). It flourished for 500 years until 1100 BC.1 The Mycenaeans buried their 
kings in corbel dome tombs (p. 4). Some still exist. One is called the treasury of Atreus (fig. 
3, 4). It is located in the ancient city of Μυκηνες (pronounce me-kee-ness with emphasis on 
kee). It has a span of 14.5 m, a radius of curvature of 16 m and a thickness of approximately 
0.8 m. Therefore, a /t = 20. 
 

 
Figure 3. Interior of the treasury of Atreus [gjclarthistory.blogspot.com] 

 

 
Figure 4. Structure of the treasury of Atreus [gjclarthistory.blogspot.com] 

 
1 The following dates provide a time frame: Around 2560 BC the oldest of the three large pyramids 
close to Cairo was build. In 753 BC the city of Rome was founded [Wikipedia]. 
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Cables and arches 
In 1664, Robert Hooke was curator of experiments of the Royal Society of London. He took 
his job very seriously and every week he showed an interesting experiment to the members of 
this society, which included Isaac Newton.2 The members were enthusiastic about the 
experiments and published scientific papers on them. Often they forgot to mention that it was 
Hooke’s idea they had started with. He became rather tired of this, therefore, he kept some 
discoveries to himself. He formulated them in Latin and published the mixed up letters [2]. 
One went like this. 
 
abcccddeeeeefggiiiiiiiillmmmmnnnnnooprrsssttttttuuuuuuuux. 
 
When Hooke died in 1703, the executor of his will gave the solution to this anagram. 
 
Ut pendet continuum flexile, sic stabit contiguum rigidum inversum. 
 
which can be translated as, 
 
As hangs a flexible cable, so inverted, stand the touching pieces of an arch. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Hooke’s discovery 
 
Though not telling the world, it is likely that Hooke shared this discovery with his best friend 
Christopher Wren, who designed St Paul’s Cathedral (p. 43) and supervised its construction 
(1669–1708). 
 
Catenary or funicular 
A chain hanging between two points will adopt a shape that is called catenary (emphasise ca) 
or funicular (emphasise ni) (fig. 6). 
 

cosh cosh
2

T qx qly
q T T

 = − 
 

 

 
T is the horizontal support reaction and q is the self-weight of the chain per unit length. This 
shape is the solution to the differential equation 
 

22

2 1  = +  
 

d y dyT q
dxdx

, 

 
and the boundary conditions 

 
2 Robert Hooke (1635–1703) also encouraged Isaac Newton (1643–1727) to use his mathematical 
expertise on the motions of the planets. Newton discovered his laws around 1684 [Wikipedia]. 
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Figure 6. Catenary, T / q = 4 m, l = 14 m 
 
The chain length is 
 

2 sinh
2

T qlL
q T

= . 

 
Challenging exercise: In 1690, Jakob Bernoulli wrote the following question in the journal 
Acta Eruditorum. What is the shape of a hanging chain? (Translated from Latin.) This 
problem had not been solved before. He got the right answer from three people; Gottfried 
Leibniz, Christiaan Huygens and his brother Johann Bernoulli [3]. (You can find these names 
in your history book too.) If you can derive the chain differential equation and solve it, you 
might be just as smart as they were. 
 
Pressure line 
In the analysis of an arch it is common to draw the pressure line for dead load. The procedure 
is demonstrated in an example (fig. 7) for a uniformly distributed vertical load. We first 
divide the distributed load into concentrated loads. Then we draw the loads head to tail in a 
Magnitude plan. We select a pole O somewhere to the left of the loads. We draw the rays Oa 
through Og (fig. 7, green lines). We proceed to draw the green curve in a Line of action plan. 
For this we start at the left support and draw a line parallel to ray Oa until we cross the line of 
action of force P1. Next we draw a line parallel to ray Ob and so forth. The position of the 
pole O determines the shape of the pressure line. We make adjustments to the pole to design 
the shape. When you have done this a few times, you know what adjustments to make. 
 
An arch constructed to follow a pressure line will carry loads P1 through P6 in pure axial 
compression. Often the pressure line is called funicular (p. 5). However, the shape is more 
like a parabola. In fact, if we would divide the uniformly distributed load in an infinite 
number of very small concentrated loads, the result would be a perfect parabola. 
 

x 

y 

1
2 l1

2 l

T T 

1
2 qL1

2 qL

T 

T 

dyT
dx

2

2( )dy d yT dx
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+

q 
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Figure 7. Line of action plan          Magnitude plan 
 
Exercise: In figure 7, line Oa is a vector that represents a force. Lines Oa, Ob and P1 can be 
rearranged into a parallelogram of forces. Draw this parallelogram of forces in the line of 
action plan. Do you see that the magnitude plan is a clever rearrangement of all 
parallelograms of forces in the line of action plan? 
 
Exercise: In figure 7, suppose that 1P = 2P = .. = 6P = 10 kN. What is the largest force in an 
arch that follows the O′′ (purple) pressure line? 
 
Middle third rule 
There is no tensile stress in a rectangular cross-section, if the resulting force F is within the 
middle third of the thickness (fig. 8). F causes a normal force N = F and a moment M = F e, 
where e is the eccentricity. There is no tension when e is smaller than 1

6 t . Since e is equal to 

M / N there is no tension when 1 1
6 6

Mt t
N

− ≤ ≤ , which is called the middle third rule. 

 
Figure 8. Stress distribution due to an eccentric normal force 
 
Using the pressure line (p. 6) and the middle third rule we can design an arch which has no 
tensile stresses. 
 
Optimal arch 
Suppose we want to build an arch with as little material as possible. The arch has a span l and 
carries an evenly distributed line load q. The sagitta of this optimal arch is about 40% of its 
span. To be exact, the shape of this arch is a parabola with a ratio sagitta to span of 3 to 4 
(fig. 9). The material volume of this arch is 

F 

t 
3 

σ 
2σ F 

t t t 
3 3 

F 

t 

e 

2− σ

4σ 
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2P
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2

3
=

qlV
f

, 

 
where f  is the material compressive strength. The abutment force (horizontal component of 
the support reaction) is 
 

1
6 3 0.29= ≈hR ql ql  

 
These results are mathematically exact, however, self-weight of the arch and buckling have 
been neglected (See derivation in appendix 1). 
 

 
Figure 9. Optimal arch proportions 
 
Barlow’s formula 
A cylindrical shell with a radius a [m] is loaded by a uniformly distributed force p [kN/m²] 
(fig. 10). The normal force n [kN/m] in the shell wall is 
 
n = p a.  
 
This equation is called Barlow’s formula.3 For the derivation we replace the load by 
compressed water. Subsequently, we cut the shell and water in halves (fig. 11). In the cut the 
water pressure is p and the shell forces are n. Vertical equilibrium gives n + n = p 2a, which 
simplifies to n = p a.     Q.E.D. 
 

 
Figure 10. Cylindrical shell loaded  Figure 11. Derivation of Barlow’s  
by an evenly distributed force   formula 
 
Exercise: Show that the normal force n [kN/m] in a pressurised spherical shell is 1

2=n p a . 

 

 
3 Peter Barlow (1776–1862) was an English scientist interested in steam engine kettles [Wikipedia]. 

l

q

3 0.43
4

s l l= ≈

compressed water

p nn
2a

a
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Drafting spline 
A spline is a flexible strip of metal, wood or plastic. Designers use it for drawing curved lines 
(fig. 12). For example when designing and building boats a spline is an indispensible tool. 
The spline is fixed in position by weights. Traditionally, the weights have a whale shape and 
they are made of lead. Often they are called ducks. 
 

 
Figure 12. Spline and ducks for drawing smooth lines 
[Rain Noe, www.core77.com] 

B-spline 
In the earliest CAD programs we could draw straight lines only.4 Every line had a begin point 
and an end point. This was soon extended with poly lines (plines) which also had intermediate 
points. It is faster to enter one pline instead of many lines. This was extended with splines. A 
spline is a curved line that goes smoothly through a number of points (see drafting spline p. 
9). The problem with mathematically produced splines is that often loops occur which is not 
what we want (fig. 13). Therefore, a new line was introduced called basis spline (B-spline). 
Its mathematical definition is a number of smooth curves that are added. A B-spline goes 
through a begin point and an end point but it does not go through the intermediate points (fig. 
13). The intermediate points are called control points. We can move these points on the 
computer screen and the B-spline follows smoothly. It acts as attached to the control points by 
invisible rubber bands. 
 
NURBS 
NURBS stands for Non Uniform Rational B-Spline. It is a mathematical way of defining 
surfaces. It was developed in the sixties to model car bodies (fig. 14). NURBS surfaces are 
generalizations of B-splines (p. 9). A NURBS surface is determined by an order, weighted 
control points and knots. We can see it as a black box in which the just mentioned data is 
input and any 3D point of the surface is output. Our software uses this black box to plot a 
surface. NURBSes are always deformed squares. They are organised in square patches which 
can be deformed and attached to each other (fig. 15). We can change the shape by moving the 
control points on the computer screen. 
 

 
4 The first version of AutoCAD was released in 1982. It run on the IBM Personal Computer which was 
developed in 1981. The IBM Personal Computer was one of the first computers that ordinary people 
could afford. It was priced at $1565 [Wikipedia]. Assuming 2.5% inflation, to date it would cost 

(2023 1981)1565 1.025 $4415−× = . 

 
copper hook 
 
lead duck 
 
 
 
felt 
 
spline 
 
paper 
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Figure 13. Types of line 
 

 
 

Figure 14. Chrysler 1960 [www.carnut.com] 
 

 
 
Figure 15.  Faces made of NURBSes. The thin lines are NURBS edges. The thick lines are 
patch edges. Control points are not shown. [www.maya.com] 

line 
 
 
 
polyline (pline) 
 
 
 
smooth pline (spline) 
 
 
 
 
a spline gone wrong 
 
 
 
 
basis spline (B-spline) 
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Continuity 
Surfaces can be connected with different levels of continuity: C0 continuity means that the 
surfaces are just connected, C1 continuity means that also the tangents of the two surfaces at 
the connection line are the same. It can be recognized as not kinky. C2 continuity means that 
also the curvatures of the two surfaces are the same at the connection line. It can be visually 
recognized as very smooth. 
Higher orders of continuity are also possible. C3 continuity means that also the third 
derivative of the surface shape in the direction perpendicular to the connection line is the 
same at either side of the connection line. If a shell has less than C2 continuity then stress 
concentrations will occur at the connection line. Such a stress concentration is called edge 
disturbance (p. 14, 71). 
 
Exercise: What is the level of continuity of the shape of a drafting spline? (p. 9) 
 
Zebra analysis 
People look fat in a convex mirror and slim in a concave mirror. Apparently, the curvature 
determines the width that we see. A neon light ceiling consists of parallel lines of neon light 
tubes. This light reflects of a car that is parked underneath. The car surface curvature 
determines the width of the tubes that we see. Car designers use this to inspect the continuity 
of a prototype car body. Any abrupt change in curvature will show as an abrupt change in 
tube width. The computer equivalent of this inspection is called zebra analysis. 
 
 

 
Figure 16. Simulated reflection of neon light tubes […] 
 
Finite element mesh 
A complicated shell structure needs to be analysed using a finite element program (ANSYS, 
DIANA, Mark, etc.). To this end the shell surface needs to be subdivided in shell finite 
elements (p. 82) which are triangular or quadrilateral. This subdivision is called finite element 
mesh. CAD software (Maya, Rhinoceros, etc) can transform a NURBS (p. 9) mesh into a 
finite element mesh and export it to a file. The finite element program can read this file. 
The size of the finite elements is very important for the accuracy of the analyses. We need to 
carefully determine and adjust the element size in each part of a shell. 
 
NURBS finite elements 
Scientists are developing finite elements that look like NURBSes (p. 9). The advantage of 
these elements is that there is no need to transform CAD model meshes into finite element 
meshes (p. 11). Both meshes are the same. In the future this can save us a lot of time. 
However, it seems that this development is overtaken by another development. CAD 
programs start using polygon meshes (p. 11) instead of NURBSes. These meshes may be used 
directly in finite element analyses. 
 
Polygon meshes 
The problem with NURBSes (p. 9) is that they have so many control points. For example, if 
we have modeled Mickey Mouse and we want to make him smile we need to move more than 
20 control points. This is especially impractical for animations. Therefore, CAD programs 
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also provide polygon meshes (fig. 17). Every part of a polygon mesh consist of a polygon, for 
example, a triangle, a square, a pentagon. The advantage is that we can work quickly with a 
rough polygon model. The mesh is automatically smoothened during rendering to any level of 
continuity (p. 11). 
 

  
Figure 17. Polygon mesh and NURBS mesh […] 
 
Section forces and moments 
Consider a small part of a shell structure and cut away the rest. If there were stresses in the 
cuts they are replaced by forces per unit length [N/m] and moments per unit length [Nm/m] 
(fig. 18). The membrane forces are ,xx yyn n and 1

2 ( )xy yxn n+ . The first two are the normal 

forces and the third is the in-plane shear force. The moments are ,xx yym m and xym . The first 
two are the bending moments and the third is the torsion moment. The out-of plane shear 
forces are xv and yv . 
In a tent structure only membrane forces occur. Therefore, 0xx yy xy x ym m m v v= = = = = . In 
addition, the tent fabric can only be tensioned. Therefore, 1 20, 0n n≥ ≥ , where 1n and 2n are 
the principal membrane forces (p. 98). 

                  
 
Figure 18. Positive section forces and moments in shell parts 
 
 
 

yxn

yxn

xv

yv

yv
xv
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Definition of membrane forces, moments and shear forces 
In thin shells the membrane forces, the moments and the shear forces are defined in the same 
way as in plates. 
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For thick shells the definitions are somewhat different (appendix 8). 
 
Thickness 
A shell has a small thickness t compared to other dimensions such as width, span and radius 
a. The following classification is used. 

■ Very thick shell (a / t < 5): needs to be modelled three-dimensionally; structurally it is not a 
shell 

■ Thick shell (5 < a / t < 30): membrane forces, out of plane moments and out of plane shear 
forces occur; all associated deformations need to be included in modelling its structural 
behaviour 

■ Thin shell (30 < a / t < 4000): membrane forces and out of plane bending moments occur; out 
of plane shear forces occur, however, shear deformation is negligible; bending stresses vary 
linearly over the shell thickness 

■ Membrane (4000 < a / t): membrane forces carry all loading; out of plane bending moments 
and compressive forces are negligible; for example a tent 
 
Shell force flow 
Brick or stone arches are thick (p. 13) because the pressure line (p. 6) needs to go through the 
middle third (p. 7) for all load combinations. Shell structures are often thin. This is possible 
due to hoop forces (fig. 19). The hoop forces push and pull the pressure line into the middle 
third for any distributed loading. In other words, a well-designed shell does not need moments 
to carry load. 
 
In the bottom of a spherical dome the hoop forces are tension (for quantification see p. 38). If 
this dome is made of brick or stone it needs horizontal steel reinforcement, but not much. 
 

 
Figure 19. Forces in a spherical dome due to self-weight 

hoop force (for example nyy) 

meridional force (for example nxx) 
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Exercise: The designer of the Hagia Sophia found an even better solution for the tension hoop 
forces: He put windows at the locations where tension would have occurred. Which part of 
the Hagia Sophia dome can be classified as a shell and which part as arches?  
 
Pantheon 
The pantheon has been built in the year 126 AD in Rome as a Roman temple (fig. 20). Since 
the year 609 it is a catholic church. The concrete of the dome top is made of light weight 
aggregate called pumice (fig. 21). The hole in the roof is called oculus. The name of the 
designer is unknown. The construction method is unknown. It has been well maintained 
through the centuries, which shows that people have always considered it a very special 
structure. You should go there one day and see it with your own eyes. 
 

 
Figure 20. Pantheon painting by Panini in 1734      Figure 21. Pantheon cross-section 
[National Gallery of Art, Washington D.C.]     [engineeringrome.org] 
 
Edge disturbance 
In a well-designed shell with distributed loads and roller supports the moments are very small 
(see shell force flow p. 13). However, rollers are expensive and do not resist wind, therefore, 
shell edges are often fixed. This causes a phenomena typical for thin shell structures: the edge 
disturbance. 
 
Let’s explain it by an experiment of thought. A dome loaded is by self-weight and supported 
by rollers. The membrane forces change the shape of the dome (fig. 22). This deformation is 
small – much smaller than the deformation of a similar size plate, truss or frame structure – 
but it does occur. Subsequently, we remove the rollers, push the dome edge back and fix it to 
the foundation (fig 23). In the process we have curved the shell wall. This curving occurs over 
a small width because the thin shell wall has little bending stiffness. 
 
From the curvature we deduce that moments occur. The moment is large in the edge. The 
moment moves into the shell like a wave that dampens quickly. Of course, wave is not the 
right word because this wave does not move. It is called edge disturbance. It occurs where 

21.7 m

1.5 m

37 m

4.5 m
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ever a shell edge is fixed or pinned to something solid. (see also generalised edge disturbance 
p. 71) 
 

 
 
Figure 22. Dome with roller support   Figure 23. Dome with fixed support 
 
Compatibility moment 
The moments in a well-designed thin shell do not carry load. All load in the shell is carried by 
the membrane forces (see shell force flow p. 13). The shell moment is caused by the 
deformation necessary for the parts to stay connected (see edge disturbance p. 14). Such a 
moment is called compatibility moment. 
 
Comparison of an arch and a dome 
Figure 24 shows two moment distributions. On the left-hand side is shown an arch shaped as 
a horse shoe fixed at the foundation and loaded by self-weight. On the right-hand side is 
shown a cross-section of a spherical dome also fixed at the foundation and also loaded by 
self-weight. (This dome could protect an airport radar from rain and wind.) The left hand 
distribution has been obtained by solving the differential equation. The right hand distribution 
has been obtained by linear elastic finite element analysis. The left and right moment 
distributions are in the same directions and can be compared. 
 
We observe that the arch has moments everywhere and the dome has moments in its edge 
only. The shell moment demonstrates the shell force flow (p. 13) and the edge disturbance (p. 
14). The arch and the shell behave very differently. 
 
 

 
Figure 24. Linear elastic moment distributions due to self-weight in (left) a circular arch  and 
(right) a spherical dome. Symbol a is the radius, t is the thickness, q [N/m] and p [N/m²] are 
self-weight. The dome result is computed for a = 20 m, t = 0.05 m, E = 3·1010 N/m², ν = 0, p 
= 1500 N/m². The plotted dome moment is in the same direction as that of the arch. 
 
Exercise: If you plot the arch moment in figure 24 upside down you see the pressure line (p. 
6). Can you explain this? 
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Plastic deformation in shell edges 
Figure 24 left shows the equation of the arch peak moment. The thickness t does not occur in 
this equation, while it does occur in the equation of the dome moment. When we double the 
thickness, self-weight will double, the arch moment will double and the dome moment will 
increase by a factor four. When we divide moment by section modulus we obtain stress. 
Doubling the thickness halves the arch bending stress but the dome bending stress stays the 
same. 
 
For shell design this means that we often have to accept plastic deformation in supported shell 
edges. Steel edges yield. Reinforced concrete edges crack. Extra attention is required for 
fatigue and durability of shell edges. 
 
Exercise: Consider live load instead of self-weight. What happens if we make a dome 
thicker? Do the stresses become larger, smaller or do they stay the same? Compare this to a 
plate. 
 
Form finding 
A tent needs to be in tension everywhere otherwise the fabric would wrinkle. Therefore, the 
first step in tent design is to determine a shape that satisfies this condition. This is called form 
finding. The designer specifies the support points and prestressing and the computer 
determines a tent shape that is in equilibrium everywhere. 
 
Some architects would like to reverse this procedure and directly specify the shape while the 
computer would find the required prestress. In theory this is possible, however, it is not 
supported by any software because the optimisation to find a suitable prestressing is very time 
consuming [4]. 
 
In contrast, shells do not need form finding. They can be designed as any frame structure: 1) 
choose shape, thickness, supports and loading, 2) compute the stresses, 3) check the stresses 
and improve the design. Repeat this until satisfied. 
 
Fully stressed dome 
Consider a dome loaded by self-weight only. The shape and thickness are such that 
everywhere in the dome the maximum compressive stress occurs (fig. 25). The compressive 
stress is both in the meridional direction and in the hoop direction (p. 13). This dome is called 
a fully stressed dome because everywhere the material is loaded to its full capacity. 
 

 
 
Figure 25. Cross-section of a fully stressed dome [5] (The proportions are exaggerated) 
 
The shape of a fully stressed dome cannot be described by any mathematical function [5]. The 
following program can be used for calculating the dome shape. The thickness of a fully 
stressed dome is undetermined. (Any extra thickness gives both more load and more strength 
which compensate each other.) The program starts at the dome top with a specified thickness 
and stress. For every step in x a value y and a new thickness are determined. 
 

x

y

l

s
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t:=200:       # mm     top thickness 
f:=4:         # N/mm2  compressive stress 
rho:=2350e-9: # kg/mm3 specific mass 
g:=9.8:       # m/s2   gravitational acceleration 
dx:=1:        # mm     horizontal step size 
alpha:=0.1:   # rad    horizontal angle, has no influence on the results 
 
x:=0: y:=0: V:=t*1/2*dx/2*alpha*dx/2*rho*g: H:=f*t*dx/2*alpha: 
for i from 1 to 200000 do 
  N:=sqrt(V^2+H^2): 
  t:=N/(f*alpha*(x+dx/2)): 
  dy:=V/H*dx: 
  ds:=sqrt(dx^2+dy^2): 
  x:=x+dx: 
  y:=y+dy: 
  V:=V+t*ds*alpha*x*rho*g: 
  H:=H+f*t*ds*alpha: 
end do: 
 

 
Figure 26. Derivation of the fully stressed dome program 
 
Approximation of the fully stressed dome 
For realistic material values the computed shape of a fully stressed dome (p. 16) can be 
approximated accurately by the formula 
 

2

4
g xy ρ

=
σ

, 

 
where ρ is the mass density, g is the gravitational acceleration and σ is the stress. 
For example, a fully stressed masonry dome with a compressive strength of 4 N/mm² and a 
span of 100 m has a sagitta (p. 1) of  
 

2

6
2000 10 50 3.13 m

4 4 10
y × ×

= =
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Note that this is a very shallow dome. The above program also shows that the dome thickness 
is everywhere almost the same. 
 
Buckling of the fully stressed dome 
Buckling of a dome occurs at a stress of 0.1 /E t a , therefore, 0.1 /E t aσ ≤  (see buckling p. 
140). The radius of curvature of the fully stressed dome top is (see line curvature p. 20) 
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Substitution of a in the buckling stress equation gives a condition for the dome thickness 
 

220t
g E
σ

≥
ρ

. 

 
For example, the fully stressed masonry dome with Young’s modulus 10000 N/mm² needs a 
thickness 
 

6 2

6
20 (4 10 ) 1.6 m

2000 10 10000 10
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Optimal dome 
Suppose we want to build a dome with a span l that carries its weight with as little material as 
possible. We call this an optimal dome. An optimal dome is not a fully stressed dome (p. 16). 
The cause is that a larger sagitta (p. 1) will give smaller stresses and a much smaller 
thickness, which results in less material. 
 
The sagitta of an optimal dome is about 30% of its span. To be exact, a spherical cap of 
constant thickness has the optimal ratio sagitta to span of 3 to 6 (fig. 27) (derivation in 
appendix 2). 5 
 

 
The thickness of the spherical optimal dome is 
 

2
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g lt
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Applied to the masonry dome example above we find, 
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5 Kris Riemens showed in his bachelor project at Delft University that other shapes can be more 
optimal than the spherical cap [6]. In addition, a varying thickness can reduce the amount of material 
by 15% compared to a constant thickness dome. Therefore, the exact optimal dome has not been found 
as yet. 
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27Figure . Proportions of an optimal spherical dome
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This is much thinner than the fully stressed dome. A 44 mm thick masonry dome with a span 
of 100 m has never been build. We need to keep in mind that this dome would just carry its 
self-weight. Nonetheless, the equations show that great shell structures are possible. 
 

2 2
1 1
2 8

0.3 100 100 57 m
2 8 0.3 100
×

= + = + =
× ×

la s
s

  57 1295
0.044

a
t

= =  

 
Exercise: Consider a glass dome covering a city. What thickness is needed? What thickness is 
needed on the Moon? Can this Moon dome be pressurised with Earth atmosphere? 
 
Global coordinate system 
Shell shapes can be described in a global Cartesian coordinate system x , y , z . For example 
half a sphere is described by 
 

2 2 2 2 2 2 2, ,= − − − − ≤ ≤ − − ≤ ≤z a x y a x y a x a x a . 
 
Local coordinate system 
Consider a point on a shell surface. We introduce a positive Cartesian coordinate system in 
this point (fig. 28). The z direction is perpendicular to the surface. The x and y direction are 
tangent to the surface. The right-hand-rule is used to determine which axis is x and which is y 
(fig. 29). 

 
Figure 28. Global and local coordinate system 
 
 

 
Figure 29. Right-hand-rule for remembering the Cartesian coordinate system 
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Line curvature 
Consider a curved line on a flat sheet of paper (fig. 30). At any point of the curve there is a 
best approximating circle that touches the curve. The middle point of this circle is constructed 
by drawing two lines perpendicular to the curve at either side of the considered point. The 
reciprocal of the circle radius a is the curvature k at this point of the curve. The circle may lie 
above the curve or below the curve. We can choose to give the curvature a positive sign if the 
circle lies above the curve and negative sign if the circle lies below the curve. This is known 
as signed curvature. The Latin name of a best approximating circle is circulus osculans, 
which can be translated as kissing circle. 
 

 
Figure 30. Curvature of a line 
 

Exercise: Choose a local coordinate system x, y on a curve and show that 
2

2
d yk
dx

= ±  

 
Surface curvature 
Curvature is also defined for surfaces. We start with a point on the surface and draw in this 
point a vector z that is normal to the surface (fig. 31). Subsequently, we draw any plane 
through this normal vector. This normal plane intersects the surface in a curved line. The 
curvature of this line is referred to as normal section curvature k. If the circle lies at the 
positive side of the z axis the normal section curvature is positive. If the circle lies at the 
negative side of the z axis the normal section curvature is negative. The direction of the z axis 
can be chosen freely (pointing inward or outward). 
 
The z axis is part of a local coordinate system (p. 19). When the normal plane includes the x 
direction vector the curvature is xxk . When the plane includes the y direction vector the 
curvature is yyk . These curvatures can be calculated by 
 

2 2

2 2,∂ ∂
= =

∂ ∂
xx yy

z zk k
x y

. 

 
The twist of the surface xyk is defined as 
 

2
xy

zk
x y

∂
=

∂ ∂
. 

 
These formulas are valid for the local coordinate system. In the global coordinate system (p. 
19) the formulas for the curvature are 
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Figure 31. Normal section curvature 
 
Note that these curvatures are not the same as the curvatures of the deformation of a flat plate. 
The latter curvatures are defined as 
 

2 2 2

2 2, , 2∂ ∂ ∂
κ = − κ = − ρ = −

∂ ∂∂ ∂
xx yy xy

w w w
x yx y

, 

 
where w is the deflection perpendicular to the plate. 
 
Paraboloid 
A surface can be approximated around a point on the surface by 
 

2 21 1
2 2= + +xx xy yyz k x k xy k y . 

 
Exercise: Check this approximation by substitution in the definitions of curvature and twist. 
 
The above function is called paraboloid. If the principal curvatures (p. 22) have opposite signs 
it is a hyperbolical paraboloid (hypar). If the principal curvatures have the same sign it is an 
elliptical paraboloid (elpar). If the principal curvatures are the same, it is a circular paraboloid 
(fig. 32). 
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  Hyperbolical paraboloid (hypar)     Elliptical paraboloid (elpar)    Circular paraboloid 
  Figure 32. Types of paraboloid 
 
Principal curvatures 
In a point of a surface many normal planes are possible. If we consider all of them and 
compute the normal section curvatures then there will be a minimum value 2k  and a 
maximum value 1k . These minimum and maximum values are the principal curvatures at this 
point. 

( )

( )

2 21 1
1 2 4

2 21 1
2 2 4

( )

( )

= + + − +

= + − − +

xx yy xx yy xy

xx yy xx yy xy

k k k k k k

k k k k k k
 

 
The directions in which the minimum and maximum occur are perpendicular. In fact, 
curvature is a second order tensor (p. 97) and can be plotted using Mohr’s circle (for a proof 
see appendix 3). 
 
Savill building 
Savill garden is close to Windsor castle in England. Its visitors centre has a timber grid shell 
roof (fig. 33). The roof was built in 2005 using timber from the forest of Winsor castle. The 
roof dimensions are; length 98 m, width 24 m, height 10 m. The structural thickness is 300 
mm. 

2 2
1 1
2 8

10 24 12.212.2 41
2 8 10 0.3

= + = + = = =
×

l aa s
s t

 

 
The laths are made of larch with a strength of 24 N/mm2. The roof is closed by two layers of 
plywood panels each 12 mm thick (fig. 34). This plywood is part of the load carrying system. 
The weather proofing consist of aluminium plates. On top of this, a cladding of oak has been 
applied. The roof has a steel tubular edge beam. Next to the edge beam the laths are 
strengthened by laminated veneer lumber (LVL), which is bolted to the edge beam (fig. 33). 
The roof is expected to deflect 200 mm under extreme snow and wind loading [8]. 
 
Project manager: Ridge & Partners LLP 
Architect:  Glenn Howells Architects 
Structural engineers: Engineers Haskins Robinson Waters 
   Buro Happold 
Main contractor: William Verry LLP 
Carpenters:  The Green Oak Carpentry Co Ltd 
Falsework supplier: PERI 
Owner:   Crown Estate 
Costs:   £ 5.3 million 
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The building won several awards including one from the Institution of Structural Engineers in 
the United Kingdom. Before construction of Savill building the garden had approximately 80 
000 visitors a year. After construction the garden attracts approximately 400 000 visitors a 
year.6 
 

 
 

   
Figure 33. Savill building [ ] 
 
Gaussian curvature 
The Gaussian7 curvature of a surface in a point is the product of the principal curvatures in 
this point 1 2Gk k k= . It can be shown that also 2= −G xx yy xyk k k k . The Gaussian curvature is 
independent of how we choose the directions of the local coordinate system (p. 19). A 
positive value means the surface is bowl-like (fig. 34). A negative value means the surface is 
saddle-like. A zero value means the surface is flat in at least one direction (plates, cylinders, 
and cones have zero Gaussian curvature). 
 

 
6 Statement by deputy ranger P. Everett in a Youtube movie of 22 September 2007: 
http://www.youtube.com/watch?v=3xNdVDAoI5U 
 
7 Carl Gauß (1777-1855) was director of the observatory of Göttingen, Germany … and a brilliant 
mathematician. The German letter “ß” is pronounced “s”. 
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Figure 34. Cross-section of the Savill building roof 
 
 

     
    positive      negative         zero 

 

Figure 35. Gaussian curvature (contour plot) 
 
A surface having everywhere a positive Gaussian curvature is synclastic. A surface having 
everywhere a negative Gaussian curvature is anticlastic. Tents need to be anticlastic and pre-
tensioned in order not to wrinkle. Some surfaces have a Gaussian curvature that is everywhere 
the same. Examples are a plane, a cylinder, a cone, a sphere, and a tractricoid (p. 26). 
 
The Gaussian curvature is important for the deflection of a shell due to a point load. A large 
Gaussian curvature (in absolute value) gives a small deflection. The Gaussian curvature is 
also important for the membrane stresses in a shell. Membrane stresses occur when the 
Gaussian curvature changes during loading (see theorema egregium p. 113). 
 
Mean curvature 
The mean curvature of a surface in a point is half the sum of the principal curvatures in this 
point 1

1 22 ( )mk k k= + . It can be shown that also 1
2 ( )= +m xx yyk k k . The mean curvature is 

independent of how we choose the local coordinate system (p. 19) except for the direction of 
the z axis. If the direction of the z axis is changed from outward to inward then the sign of the 
mean curvature changes too. For this reason CAD programs often plot the absolute value of 
the mean curvature. 
 
An example of a surface with zero mean curvature is a soap film (p. 46). In a soap film there 
is tension, which is the same in all directions and all positions, which makes it a fully stressed 
design (p. 16). This property is used in form finding (p. 16) of tent structures. 
 
Exercise: A shell has a shape imperfection with magnitude d, length l and width l. Derive the 
following relations between the perfect and imperfect ( )′ curvatures. Assume that d, s l. 
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Note that the mean curvature is important for the change in the Gaussian curvature. 
For example, adding a small imperfection to a shell that has zero mean curvature leads to no 
change in the Gaussian curvature. 
 
Orthogonal parameterisation 
A sphere can be described by 2 2 2 2+ + =x y z a . Another way of describing a sphere is 
 

sin cos
sin sin
cos 0 0 2

x a u v
y a u v
z a u u v

=
=
= ≤ ≤ π < ≤ π

 

 
This is called a parameterisation. The parameters are u and v. There are many ways to 
parameterise a sphere and this is just one of them. When u has some constant value and v is 
varied then a line is drawn on the surface (fig. 36). The other way around, when v has some 
constant value and u is varied then another line is drawn on the surface. In shell analysis we 
choose the lines u = constant and the lines v = constant perpendicular to each other. This is 
called an orthogonal parameterisation. 
 
Other surfaces can be parameterised too, for example catenoids (p. 26) and tractricoids (p. 
26). Unfortunately, for some surfaces an orthogonal parameterisation is not available, for 
example there is no orthogonal parameterisation available for a paraboloid (p. 21, 102, 128). 
It can be easily checked whether a parameterisation is orthogonal. In this case the following 
equation is true. 
 

0∂ ∂ ∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂ ∂ ∂
x x y y z z
u v u v u v

 

 
The proof is simple. If we change u a bit, then x , y and z change a bit. These x , y , z bits form 
a small vector. If we change v a bit, another small vector is formed. These two vectors must 
be perpendicular, so their dot product must be zero. Q.E.D. 
 
 

l

a a

−s d

d
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Figure 36. Parameter lines on a sphere. ( xα and yα will be explained later.) 
 
Exercise: I live at the location u = 0.66029, v = 0.07995. Where do you live? 
 
Catenoid 
A catenoid is formed by rotating a catenary (p. 5) around an axis (fig. 37). It can be 
parameterised by 
 

cosh sin
cosh cos 0 2

x au
y a u v
z a u v u v

=
=
= − ∞ < < ∞ ≤ < π

 

 
The mean curvature (p. 24) is zero everywhere. The Gaussian curvature (p. 23) varies over 
the surface. 

 
Figure 37. Parameter lines on a catenoid 
 
Tractricoid 
A tractricoid (fig. 38) can be parameterised by 
 

(cos ln tan )
2

sin sin
sin cos 0 0 2

ux a u

y a u v
z a u v u v

= +

=
= < < π ≤ < π

 

 
Its volume is 34

3 aπ and its surface area is 24 aπ , which are the same as those of a sphere. It 

has a constant negative Gaussian curvature 2−= −Gk a  (p. 23). Note that a sphere has a 

constant positive Gaussian curvature 2−=Gk a . The mean curvature (p. 24) varies over the 
surface of a tractricoid. 
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Figure 38. Parameter lines on a tractricoid 
 
Interpretation 
We can interpret a parameterisation as the deformation of a rectangular sheet into a curved 
shell (fig. 39). 

                        
 
Figure 39. Deformation of a rectangular sheet 
 
Exercise: In the above drawing, the local z axis is not shown. It can be deduced. In what 
direction is it? Into or out of the page? Inwards or outwards of the shell? 
 
Sillogue water tower  
Sillogue (pronounce silok) water tower stands close to Dublin airport in Ireland (fig. 40, 41, 
42). Its shape is based on efficiency and aesthetics. (Water towers need a wide top diameter to 
obtain small fluctuations in water pressure when water is taken out and refilled.) It received 
the 2007 Irish Concrete Award for the best infrastructural project. It was honourably 
mentioned in the European Concrete Award 2008. 
 
Height: 39 m 
Top diameter: 38 m 
Thickness: 786 mm 
Steel formwork: 6300 m² 
Reinforcing steel: 580 tonnes 
Concrete volume: 4950 m³ 
External painting: 3700 m² 
Capacity: 5000 m³ 
Engineers: McCarthy Hyder Consultants 
Architects: Michael Collins and Associates 
Contractor: John Cradock Ltd. 
Formwork: Rund-Stahl-Bau, Austria 
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Figure 40. Sillogue water tower [Dublin City Council Image Gallery] 
 
 

 
Figure 41. Cross-section of Sillogue water tower [Rund-Stahl-Bau] 
 
 

24.8 m
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Figure 42. Sillogue water tower under construction [Rund-Stahl-Bau] 
 
To calculate the slenderness we measure the radius of curvature from the drawing. This is a 
line from the centre line of the tower perpendicular to the cone edge (fig. 41). The shell 
thickness is 0.786 m. Consequently, the slenderness is a / t = 24.8 / 0.786 = 32. This is a very 
small value in comparison to other shell structures (see table 1 p. 2). This suggests that the 
shell of Sillogue water tower could have been much thinner. 
 
Exercise: Explain the radius of curvature of the water tower. Make a paper model or use your 
visual imagination. Note that the latter is a very powerful tool. 
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Differential geometry 
Surfaces are studied in a branch of mathematics called differential geometry. The mathematicians 
study perfectly rigid surfaces and surfaces with no stiffness at all (topology) which is rather 
restrictive from our point of view. Nonetheless, several formulas in these notes are copied from 
books on differential geometry. Here are three useful formulas [7]. 
 
If an orthogonal parameterisation (p. 25) is available then the shell curvatures can be calculated 
with 
 

2 2 2

2 2 2 3
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where αx and α y are the Lamé parameters (p. 32). 
 
Curvilinear coordinate system 
In shell analysis three coordinate systems are used (fig. 43); 1) a global coordinate system (p. 19) 
to describe the shape of the shell, 2) a local coordinate system (p. 19) to define curvature, 
displacements, membrane forces, moments and loading, 3) a curvilinear coordinate system to 
derive and solve the shell equations. 
The axis of the curvilinear coordinate system are u and v. They are plotted onto the shell middle 
surface. All lines of this coordinate system cross perpendicularly. It looks like a timber grid shell 
(see Savill building p. 22). The x direction in a point is tangent to the local u direction and the y 
direction in a point is tangent to the local v direction. 
 

 
Figure 43. Coordinate systems 
 
In the curvilinear coordinate system it is simple to locate any point (u, v) on the shell surface. 
Also, the positive directions of the membrane forces and moments are clear in any point. For 
example, consider the torus in figure 44. There is nothing unclear about the statement:  

u v

z
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z

global
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“At the location 3 1
2 2( , ) ( , )= π πu v b a  the membrane shear force is 10xyn = kN/m ”. 

 

 
Figure 44. Curved coordinate system on a torus 
 
Shell displacement and load 
Every point of the shell middle surface has a local Cartesian coordinate system x, y, z (fig. 45). 
Every point has displacements xu , yu , zu . Every point is loaded by distributed 

forces xp , yp , zp  [kN/m²]. 
 

 
Figure 45. Displacements and loads 
 
Lamé parameters 
A complication of the curved coordinate system is that the distance between two grid lines varies 
from point to point. Therefore, a small length dx is often not the same as a small length du. For 
the torus in figure 44 we can derive 
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Exercise: Derive these equations by inspection of the torus curved coordinate system. 
 
In general we write 
 

0
0

α    
=     α    

x
y

dx du
dy dv

, 

 
where αx and α y are called Lamé parameters.1 The inverse of the later equations is simply 
 

1 0
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, 0∂
=

∂
u
y

, 0∂
=

∂
v
x

. The Lamé parameters are important when 

differentiating. For example, if we differentiate the membrane shear force ( , )xyn u v to x we need 
to use the chain rule 
 

1∂ ∂ ∂ ∂∂ ∂
= + =

∂ ∂ ∂ ∂ ∂ ∂ α
xy xy xy xy

x

n n n nu v
x u x v x u

. 

 
If an orthogonal parameterisation (p. 25) is available then the Lamé parameters can be calculated 
with 
 

2 2 2∂ ∂ ∂
α = + +
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x y z
u u u

, 

2 2 2∂ ∂ ∂
α = + +
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x y z
v v v

. 

 
The proof is simple. If we change u a bit then x , y and z change a bit and the length of the latter 
bit follows from Pythagoras’ theorem. Q.E.D. 
 
Equation of Gauß 
The Lamé parameters (p. 32) can be used to calculate Gaussian curvature (p. 23). 
 

2 2

2 2
1 1∂ α ∂ α

= − −
α α∂ ∂

y x
G

y x
k

x y
 

 

 
1 Gabriel Lamé (1795–1870) was a French mathematician who taught at universities in Saint Petersburg 
and in Paris [Wikipedia] 
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This is called the equation of Gauß [for a derivation see 8 p. 175]. Applying the chain rule this 
can be written as 
 

1 1 1  ∂α  ∂α∂ ∂ = − +      α α ∂ α ∂ ∂ α ∂     

y x
G

x y x y
k

u u v v
.   

 
For example, the torus of figure 44 has a Gaussian curvature of 
 

2
1 10 1 (1 sin )
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 ∂ ∂ = − + + =  ∂ ∂  + +
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a vk a v abv v b a a vb a
a

. 

Exercise: Are the shapes in table 2 completely determined? 
 
Table 2. Examples of Lamé parameters (p. 32) that produce uniform Gaussian curvatures (p. 23) 
(Uniform means not a function of u and not a function of v.) 
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Intrinsic property 
Consider the sticker shown in figure 46. It has a length and width of 20 cm. The sticker material 
is very flexible. Subsequently, it is carefully glued onto a curved surface without wrinkles and 
cracks. The angles between the lines remain 90°. Figure 47 shows the stretched lengths of the 
sticker lines. 
 

        
Figure 46. Sticker printed on a flexible material       Figure 47. Sticker stretched onto a surface 
 
The Lamé parameters (p. 32) are 
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Substitution in the equation of Gauß (p. 33) gives 
 

2

1 1 0.02 1 0.01
1.1 0.9 1.1 cm 0.9 cm

1 0.03 1 0.02 1 0.01 1 0.01
1 11.3 cm 1.1 cm 0.8 cm 0.9 cm 0.00035

1.1 0.9 10 cm 10 cm cm

 ∂ ∂ −   = − +    × ∂ ∂    
− −

− − 
= − + = − ×  

Gk
u v

 

 
Only surface measurements were used. Apparently, for calculating Gaussian curvature we need 
not measure the shell shape in three-dimensional space. For this reason, Gaussian curvature (p. 23) 
is called an intrinsic property. Mean curvature (p. 24) is not intrinsic. 
 

Exercise: Do the sticker calculation with 
2 2

2 2
1 1∂ α ∂ α

= − −
α α∂ ∂

y x
G

y x
k

x y
. It should produce the 

same result. 
 
Curved roofs with tiles 
Modern tile roofs are always flat. However, the length that tiles overlap can vary, which can be 
used to build curved roofs (fig. 48). Clearly, tiles should divert rain and stay on the roof in a 
storm. This imposes constraints to the slope of tiles. The particle-spring method (p. 105) can be 
used to determine a suitable grid. 
 

dv
du



36 
 

 
Figure 48. Queens palace in Silinduang Bulan, Indonesia [9] 
The curved roofs are made of flat tiles. 
 
Equations of Codazzi 
The equations of Codazzi are [7] 2 
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They are valid if x and y are the principal curvature directions, so xyk = 0. 

Apparently, we cannot create a shell by just choosing functions xxk = …, yyk = …, 

xyk = …, αx = … and α y = … . Our choice must fulfil the equation of Gauß and the equations of 
Codazzi. 
 
Helicoid 
A helicoid (fig. 49) can be described by 
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x av u
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=
=

   and by    
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( )

x a u v u v
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= − +
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Its mean curvature (p. 24) is zero everywhere, therefore, it is a minimal surface.  
 

 
2 Delfino Codazzi (1824–1873) was a mathematics professor at the University of Pavia, Italy. The Codazzi 
equations were also discovered by Gaspare Mainardi (1800–1879) and by Karl Mikhailovich Peterson 
(1828–1881). The latter seems to have been the first [Wikipedia]. 
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–π/2 < u < π/2      –π/2 < v < π/2             –π/2 < u + v < π/2      –π/2 < u – v < π/2      
Figure 49. Helicoid      
 
Exercise: Check the equation of Gauß (p. 33) and the equations of Codazzi (p. 36) for a helicoid. 
 
Challenge: It should be possible to generalise the equations of Codazzi to one equation that is 
valid for 0≠xyk  too. 
 
In plane curvature 
Figure 50 shows curved parameter lines on a curved surface. The lines have a radius of 
curvature yr in the plane that is tangent to the shell middle surface. This radius can be expressed 

in the Lamé parameter αx  (p. 32). The proportions in the figure show that 
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Figure 50. Radius yr of the parameter line v = constant 
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Exercise: Derive that 2 2yx
G x y

kkk k k
y x

∂∂
= − − − −

∂ ∂
 

Challenge: Suppose we have two orthogonal parameterisations of a shell. 
The local coordinate systems in a shell point are x–y–z and r–s–z. Proof or disproof that 

cos sin

sin cos
r x y

s x y

k k k

k k k

= ϕ − ϕ

= ϕ + ϕ
  

where ϕ is the angle between the r axis and the x axis (see appendix 3). 
 
Shell membrane equations 
The shell membrane equations are shown in table 3. These equations describe the behaviour of 
thin shell structures, however, all moments have been neglected. Nonetheless, they are useful 
because for many shells the moments have little influence on their global behaviour. The shell 
equations that do include moments are called Sanders-Koiter equations (p. 54). 
  
In these notes only the equilibrium equations and the kinematic equations are derived. The 
constitutive equations are the same as for flat plates loaded in plane. For their derivations see a 
course on plates. 
 
Table 3. Shell membrane equations 
kinematic equations ∂

ε = − +
∂

x
xx xx z x y

u k u k u
x

 
1 

∂
ε = − +

∂
y

yy yy z y x
u

k u k u
y

 
2 

2
∂∂

γ = + − − −
∂ ∂

yx
xy xy z x x y y

uu k u k u k u
y x

 
3 

constitutive equations 
 

1 ( )ε = − νxx xx yyn n
E t

 
4 

1 ( )ε = − νyy yy xxn n
E t

 
5 

2(1 )+ ν
γ =xy xyn

E t
 

6 

equilibrium equations 
( ) 2 0

∂∂
+ + − + + =

∂ ∂
xyxx

y xx yy x xy x
nn k n n k n p

x y
 

7 

( ) 2 0
∂ ∂

+ + − + + =
∂ ∂

yy xy
x yy xx y xy y

n n
k n n k n p

y x
 

8 

2 0+ + + =xx xx xy xy yy yy zk n k n k n p  9 

 
 
Membrane forces in a spherical dome 
The forces in a spherical dome can be computed by maple using the shell membrane equations (p. 
38). The dome is loaded by self-weight p only. The result is shown in figure 52. For example, a 
dome with a radius a = 12 m and self-weight p = 2 kN/m² will give a hoop force in the bottom 
edge of  n = p a = 2 ×12 = 24 kN/m tension. 
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Figure 51. Curved coordinates on a spherical dome 
 
> restart: 
> kxx:=-1/a: kyy:=-1/a: kxy:=0: ax:=1: ay:=sin(u/a): 
> ky:=diff(ay,u)/ax/ay: kx:=diff(ax,v)/ay/ax: 
> px:=p*sin(u/a): py:=0: pz:=-p*cos(u/a): # p:=t*rho*g: 
> nxx:=f1(u): nyy:=f2(u): nxy:=0: 
> eq1:= kxx*nxx + kyy*nyy + 2*kxy*nxy + pz = 0: 
> eq2:= diff(nxx,u)/ax + diff(nxy,v)/ay + (nxx-nyy)*ky + 2*nxy*kx + px = 0: 
> eq3:= diff(nyy,v)/ay + diff(nxy,u)/ax + (nyy-nxx)*kx + 2*nxy*ky + py = 0: 
> dsolve({eq1,eq2}); 

, = ( )f1 xs −
2 






 + p 






cos xs

a a _C1

−  + 1 





cos 2 xs

a

 = ( )f2 xs 1
2

 +  − 5 p 





cos xs

a a 4 _C1 p a 





cos 3 xs

a

−  + 1 





cos 2 xs

a















 

> # boudary condition nxx(0)=nyy(0)  
> f1:=-2*(p*cos(u/a)*a+_C1)/(-1+cos(2*u/a)): 
> f2:=1/2*(5*p*cos(u/a)*a+4*_C1-p*a*cos(3*u/a))/(-1+cos(2*u/a)): 
> solve(f1=f2,_C1): 
> _C1:=-p*a: 
>  
> nxx:= -p*a/(1+cos(u/a)):                  # meridional force, pressure line 
> nyy:= -p*a*( cos(u/a) - 1/(1+cos(u/a)) ): # hoop force 
> nxy:= 0: 
> p:=1:       # self-weight [kN/m2] 
> a:=10:      # radius [m] 
> um:=Pi/2*a: # maximum u value [m] 
> f:=-0.3:    # plot factor - 
> plot({[ a       *sin(u/a), a       *cos(u/a),u=-um..um], 
        [(a+f*nxx)*sin(u/a),(a+f*nxx)*cos(u/a),u=-um..um], 
        [(a+f*nyy)*sin(u/a),(a+f*nyy)*cos(u/a),u=-um..um]},   
color=[black,red,green],thickness=[3,1,1]); 
 
 
 

 
 
Figure 52. Membrane forces in a spherical dome 

1
2− pa

pa − papa− pa

hoop force

meridional force

52
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Derivation of membrane equation 1 
An imaginary fibre in the x direction will elongate with xdu (fig. 53). Strain is elongation over 
length, therefore, 
 

 1
x

xx
du
dx

ε = . 

 
The fibre will shorten due to zu (fig. 53). The new fibre length is angle times radius 
 

1( ) (1 )1 × − = −z z xx
xx

xx

s u s u k
k

k

, 

 
therefore, 
 

2
(1 )z xx

xx z xx
s s u k u k

s
− −

ε = = . 

 
The fibre will elongate due to displacement yu (fig. 53). The fibre strain is  

3

( )y y
y y

xx y x
y

s r u s
r u

u k
s r

+ −

ε = = = . 

The total strain is 1 2 3
x

xx xx xx xx xx z x y
u k u k u
x

∂
ε = ε − ε + ε = − +

∂
. 

 
Q.E.D.  
 
Shell membrane equation 2 can be derived in the same way. 
 

 
 
Figure 53. Deformation in the x direction;    in the z direction;          in the y direction 
 
Derivation of membrane equation 3 
The first two terms of equation 3 are the same as for plates (fig. 54). 
 

zuzu

1

xxk

s

z

dx

z

+x xu du
xu

yuyu

s

y
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,1γ = + yx
xy

dudu
dy dx

 

 

 
Figure 54. Deformation in the x and y direction 
 
Since zu is perpendicular to the surface a uniform zu causes shear in the panel (fig. 55). 
 

,2 2γ = + =

xyxy
zz

xy xy z

k dx dyk dx dy uu dydx k u
dy dx

. 

 
Figure 55. Deformation due to displacement in the z direction 
 
In a curved coordinate system a uniform deformation xu  produces a shear strain (fig. 56). 
 

3xy x xk uγ =  
 
In the same way can be derived 4xy y yk uγ = . 
 
The total shear deformation is 

1 2 3 4 2yx
xy xy xy xy xy xy z x x y y

uu k u k u k u
y x

∂∂
γ = γ − γ − γ − γ = + − − −

∂ ∂
. 

 
Q.E.D. 
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Figure 56. Shear deformation due to uniform x displacement in a curved coordinate system 
 
Duomo di Firenze 
The cathedral of Firenze (Florence, Italy) has a dome with a span of 44 m (fig. 57). The builder of 
the dome was Filippo Brunelleschi. As far as we know he had only two examples, the Pantheon 
(p. 14) and the Hagia Sophia. The Pantheon has a span of 43.4 m and is made of concrete. 
However, it had been built 1500 years before and the recipe for making concrete had been 
forgotten. The Hagia Sophia has a span of 31 m and is made of brick. However, it has large 
buttresses which the people of Firenze thought were ugly. Brunelleschi made a brick design with 
an inner and an outer shell (fig. 58). Construction of the dome started in 1420 and took 16 years. 
Many historians see this dome as the end of the middle ages and the start of the renaissance.3 
 

  
 
Figure 57. Duomo di Firenze, Italy  Figure 58. Cross-section of the dome 

 
3 Time frame: In 1505 Leonardo da Vinci painted his Mona Lisa. 
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In the lower part of the dome the hoop forces are tension. This is carried by stone blocks 
connected by iron bars. Without this the dome would crack and collapse. Fortunately, the iron did 
not corrode away in the more than 570 years that the dome exists. Humidity in the masonry is 
carefully monitored. 
 
Saint Paul’s Cathedral 
Saint Paul’s cathedral in London was built from 1675 until 1711.4 The design has been made by 
Christopher Wren who also supervised construction (see cables and arches p. 5). The outside 
dome is made of timber (fig. 59, 60). The inside dome is made of bricks and has an oculus. In 
between is a third dome. This dome is cone shaped and made of bricks. It carries the stone lantern 
and supports the outside dome. Note that the pressure line (p. 6) in the domes and the cathedral 
walls is very clear. This designer knew exactly what he was doing. The dome spans 
approximately 35 m. 
Under the dome is the famous whispering gallery. When you are at this gallery and whisper 
something it can be clearly heard by someone on the other side of the gallery. This is because 
sound waves are guided along the curved wall of the gallery. Clapping your hands produces no 
less than four echoes. The name “whispering gallery” is now generally used for this acoustical 
effect in physics. 
 

  
 
Figure 59. Dome of Saint Paul’s Cathedral [10] Figure 60. Cross-section of the cathedral [11] 

 
4 Time frame: In 1684 Isaac Newton discovered the laws of motion, with which we calculate trajectories of 
objects on earth and in space. In 1765 James Watt invented the steam engine with condenser, which marks 
the start of the industrial revolution. When you visit Saint Paul’s Cathedral you can literally touch the 
civilization that made these big steps in human development. As a consequence we speak English today. 
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Derivation of membrane equation 7 
Figure 61 left top shows a small shell part with only normal force xxn . Three forces act on this 
shell part. Equilibrium in the x direction gives  

1 1 1
1 1( ) ( ) ( ) ( ) 0

2 2 2 2
xx xx

x xx xx
y y

n ndx dx dx dxp dxdy n n
x k x k

∂ ∂
+ + ϑ + − − ϑ − =

∂ ∂
 

This can be simplified to 1 0xx
y xx x

n k n p
x

∂
+ + =

∂
. 

 
Figure 61 left bottom shows a small shell part with only normal force yyn . Three forces act on 
this shell part too. Equilibrium in the x direction gives 
 

2 1 0x yyp dxdy n dx− ϑ =  
 
This can be simplified to 2 0y yy xk n p− + = . 
 
 

 
 

 
 
Figure 61. Equilibrium of a curved plate part in the x direction 
 
Figure 61 right shows a small shell part with only shear force xyn . Four forces act on this shell 
part. Equilibrium in the x direction gives 
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3 3 3 3
1 1( ) ( ) ( ) ( ) 0

2 2 2 2
xy xy

x xy xy xy
x x

n ndy dy dy dyp dxdy n n n dy
y k y k

∂ ∂
+ + ϑ + − − ϑ − + ϑ =

∂ ∂
 

This can be simplified to 32 0xy
x xy x

n
k n p

y
∂

+ + =
∂

. 

 
Substitution in 1 2 3x x x xp p p p= + +  gives 
 

( ) 2 0xyxx
y xx yy x xy x

nn k n n k n p
x y

∂∂
+ + − + + =

∂ ∂
 

 
Q.E.D. 
 
Shell membrane equation 8 can be derived in the same way. 
 
Derivation of membrane equation 9 
A shell part can be curved in the x direction (fig. 62). It needs to be in equilibrium in the z 
direction. This is described by Barlow’s formula (p. 8). 
 

1
1 0xx z
xx

n p
k

+ = . 

 
A shell part that is curved in the y direction gives a similar equilibrium equation 
 

2
1 0yy z
yy

n p
k

+ = . 

 
A shell part can also be twisted (fig. 63). Equilibrium in the z direction gives 
 

3 0xy xy
xy xy z

k dxdy k dxdy
n dy n dx p dx dy

dy dx
+ + = , 

 
which can be simplified to 
 

32 0xy xy zn k p+ =  
 
For a shell part that is curved in all three ways xxk , yyk and xyk the load zp is obtained by 
summation. 
 

1 2 3z z z zp p p p+ + =  
 
Substitution of the previous four equations gives 
 

2 0+ + + =xx xx yy yy xy xy zk n k n k n p  
 
Q.E.D. 
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Figure 62. Equilibrium of a curved shell part  Figure 63. Equilibrium of a twisted shell part 
 
Soap bubbles and soap films 
A free soap bubble is a sphere (fig. 64). When a bubble is attached to an object its shape is more 
difficult to describe. A step in the right direction is that for any bubble the mean curvature mk (p. 
24) is constant over the surface. This is proven here by applying shell membrane equation 9 (p. 
38). 
Soap has the properties of a liquid; there is no shear stress and the normal stress is the same in all 
directions. Therefore, 0xyn =  and xx yyn n n= = . Substitution in equation 9 gives 
 
1
2 ( )

2
+ = − z

xx yy
pk k
n

, 

 
which is by definition equal to mk . The air pressure in the bubble is a little larger than outside 
due to the stress in the soap membrane. The over pressure zp is the same everywhere in the 
bubble and the force n is the same everywhere in the membrane. Consequently, the mean 
curvature is everywhere the same. Q.E.D. 
 
A soap film in a wire loop is free to minimise its area (fig. 65). Therefore, it is called a minimal 
surface. It has equal air pressure on both sides. Therefore, zp = 0, consequently, mk = 0 
everywhere in the film. This property is often used in form finding (p. 16) of tent structures. 
 

   
Figure 64. Free soap bubble Figure 65. Soap film in a wire loop 
 
 
 

xxnxxn
z

,1zp

dx
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xxk
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xyk dx dy
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Beam calculation of a simply supported tube 
Consider a simply supported beam with an evenly distributed load (fig. 66). The cross-section of 
the beam is circular (fig. 67). The load is self-weight p [kN/m²]. 
In a handbook we find the moment of inertia 3= πI a t . 
From figure 67 we derive the distributed line load 2= πq a p [kN/m]. 

Elementary mechanics gives us the moment in the middle 21
8=M ql , 

the stress at the bottom σ =
M a

I
, 

and the deflection in the middle 
4

5
384

qlw
EI

= . 

Substitution in the last two equations gives 
2

4
σ =

pl
at

 and 
4

5
192 2

plw
a E t

= . 

 
Figure 66. Simply supported beam  Figure 67. Cross-section of the beam 
 
Shell calculation of a simply supported tube 
Consider the simply supported beam (fig. 66). The coordinate system is shown in figure 68. We 
see that 

10, , 0, 1, 1= = − = α = α =xx yy xy x yk k k
a

 

0, sin , cosx y z
v vp p p p p
a a

= = = − . 

 
At both ends 1

2u l=  and 1
2u l= −  the tube is closed by a thin diaphragm. This diaphragm can 

carry membrane forces without buckling but it cannot carry bending moments. The middles of the 
diaphragms are fixed. 
 
The boundary conditions are 

1
2u l=  0=zu  1 

0=yu  2 

0=xxn  3 
0u =  0=xu  4 

0=xyn  5 

 

t

a

l

q
p
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Most boundary conditions are obvious. Only boundary condition 5 is explained (fig. 69). The 
shell and the loading are symmetrical. Symmetry and equilibrium have opposite requirements for 
the directions of the stresses at u = 0. Therefore, the only possible stress is zero stress. 
 

 
Figure 68. Local coordinate system of the tube 
 
 

 
Figure 69. Shear stresses in the middle section due to symmetry (left) and equilibrium (right) 
 
Shell calculation of the stresses 
In this section the stresses in the tube are calculated using the shell membrane equations (p. 38). 

Equation 9 simplifies to cos 0yyn vp
a a

− − =  from which we solve cosyy
vn p a
a

= − . 

Equation 8 simplifies to sin sin 0xynv vp p
a x a

∂
+ + =

∂
 from which we solve 12 sinxy

vn pu C
a

= − + . 

Boundary condition (0, ) 0xyn v =  gives 1 0=C . 

Equation 7 simplifies to 2 cos 0 0xxn pu v
x a a

∂
− + =

∂
 from which we solve

2
2cosxx

pu vn C
a a

= + . 

Boundary condition 1
2( , ) 0xxn l v =  gives

21
2

2
( )

cos
p l vC

a a
= − . 

For steel tubes the Von Mises stress (p. 101) in the middle bottom ( , ) (0, )u v a= π is important. 
2 2 23= − + +VM xx xx yy yy xyn n n n n n  

Using σ = VM
VM

n
t

, this can be evaluated to 
2 2 4

max 2 41 4 16
4

σ = − +VM
pl a a

at l l
. 

 
We see that for long tubes ( )>>l a the shell result is the same as the beam result (see beam 
calculation p. 47). For a short tube of 6=l a  the shell result is 5% smaller than the beam result. 
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Exercise: What is the stress in the top of the beam?  
 
Statically determinate 
In the previous section, the stresses everywhere in the tube are calculated using the equilibrium 
equations only. Therefore, the tube is a statically determinate structure. This is typical for shell 
structures: 
 
If the support is statically determinate, then the membrane stresses are statically determinate.5 
 
 
Tube shear stress 
The shear force V in the tube cross-section is (fig. 70) 
 

2

0

sin 2
a

xy
v

vV n dy a pu
a

π

=

= = − π∫ . 

 
The largest shear stress in the tube cross-sections is  
 

1
2

max
( , ) 2xyn u a pu

t t

π −
τ = = . 

 
Expressed in shear force V and cross-section area A it becomes 

8 
 

max 1
2

τ =
V

A
. 

 
Shell calculation of the tube deformation 
In this section the deformation of a simply supported tube is calculated using the shell membrane 
equations (p. 38). The solutions of xxn , yyn  and xyn  are substituted in equations 4, 5 and 6. 

Equation 1 simplifies to ( )2 2 21
4 cos xup vu l a

a E t a x
∂

− + ν =
∂

 from which we solve 

( )2 2 21 1
33 4 cosx

pu vu u l a C
a E t a

= − + ν + . 

Boundary condition 4 gives 3 0=C . 

Equation 3 simplifies to ( ) ( )2 2 21 1
2 3 4

4 1 sin sin yupu v pu vu l a
E t a a xa E t

∂
− + ν = − − + ν +

∂
 from which 

we solve ( )
2

2 2 21 1 1
42 12 2 8(4 3 ) siny

pu vu u a l C
aa E t

= − + ν − +  

Boundary condition 2 gives 
2

2 2 25 1
4 2 192 2

3 sin
8

pl vC l a a
aa E t

 = + + ν 
 

. 

 
5 Statically determinate is a model property. A more advanced model of the same structure can be statically 
indetermined. 
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Equation 2 simplifies to 

( ) ( )
2

2 2 2 2 2 21 1 1 1
4 3 12 2 8cos (4 3 ) cosp v pu vu a l u a l

a E t a aa E t
−ν − + ν = − + ν − +   

2
2 2 25 1

3 192 2
3 cos
8

zupl vl a a
a aa E t

 + + + ν + 
 

 from which we solve  

( )4 2 2 2 2 2 4 451 1 1
2 12 8 8 192(4 )(4 ) cosz
p vu u a u l u l a l

aa E t
= − + − + ν + − −  

The deflection of the middle bottom ( , ) (0, )u v a= π is important. 
 

4 2 4
max 2 2 4

5 4
192 8

 ν + = + +
 
 

z
p l a au

a E t l l
 

 
For long tubes ( )>>l a the shell result is the same as the beam result (see beam calculation of a 
simply supported tube p. 47). The second term is caused by shear deformation. The last term is 
caused by ovalization of the cross-section. For a tube of 20=l a  the shell result is 5% larger than 
the beam result. For a short tube of 6=l a  the shell result is 61% larger than the beam result. 
 
Bernoulli's hypothesis 
Jacob Bernoulli’s hypothesis is: Plane cross-sections remain plane during bending.6 It is the 
starting point for deriving section moments in beams, plates and shells. We can test this 
hypothesis for tubes using the shell solution.7 The deformation in the x direction is 
 

( )2 2 21 1
3 4 cosx

pu vu u l a
a E t a

= − + ν . 

 
This can be written as 
 

=xu C d , 
 

where ( )2 2 21 1
2 3 4
puC u l a

a E t
= − + ν  and cos vd a

a
= . 

 
Factor d is the distance of the considered material point to the neutral axis. It is a function of v. 
Please note the difference between ν (Poisson’s ratio) and v (curvilinear coordinate). Factor C is 
not a function of v and it depends on the considered cross-section. Therefore, xu is linear in d and 

 
6 Jacob Bernoulli (1654-1705) was a professor of mathematics at the University of Basel in Switzerland. 
 
7 Note that in this section Bernoulli’s hypothesis is applied to a beam with a thin-wall circular cross-section. 
Here, it is not applied to the thin shell wall. 
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Bernoulli’s hypothesis is true for tubular sections despite the presence of shear forces. For tubular 
sections it should be called Bernoulli’s theorem.8 
 
Shear stiffness 
Shear stiffness is defined as 
 

=
γs
VGA , 

 
where V is the shear force and γ is the shear deformation of a slice of a beam (fig. 70). For the 
considered tube we obtain 
 

2

0

sin 2
a

xy
v

vV n dy a pu
a

π

=

= = − π∫  

1
2

( , ) ( ,0) 4 (1 )( , )
2

y x xu u u a u u puu a
x a E t

∂ π − − + ν
γ = π + =

∂
 

1 1
2 2

2 24 (1 ) 2(1 )
V a pu E at GApu

E t

− π
= = π =

− + νγ + ν
 

So, 
 

1
2=sGA GA .9 

 
Figure 70. Shear deformation of a tube slice. Bernoulli’s hypothesis (p. 50) has not been used.  

 
8 For other cross-section shapes Bernoulli’s hypothesis is not true due to shear and torsion deformation. 
Fortunately, the linear distribution of normal stresses due to bending – which follows from Bernoulli’s 
hypothesis – is true for all cross-sections of slender beams. 
9 For thick wall tubes the shear stiffness is 31

2 4( )s
tGA GA
a

= +  and the largest shear stress is 

max (2 )t V
a A

τ = + . This has been derived from finite element analysis using volume elements [12]. 
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Gap 
Boundary condition 1 has not been used. Here it is checked if this boundary condition is fulfilled. 
The displacement in the radial direction is 
 

( )4 2 2 2 2 2 4 451 1 1
2 12 8 8 192(4 )(4 ) cosz
p vu u a u l u l a l

aa E t
= − + − + ν + − −  

At 1
2u l= ±  this simplifies to 

2
cosz

a p vu
E t a

−
=  which is not zero. 

 
Therefore, boundary condition 1 is not fulfilled. There is a gap between the diaphragm and the 
shell (fig. 71). To close the gap the shell needs to bend. This deformation is not part of the 
membrane equations. To fulfil all boundary conditions the membrane equations need to be 
extended with bending (see Sanders-Koiter equations p. 54). The phenomenon of strong bending 
close to edges is called edge disturbance (p. 14, p. 71). It is typical for thin shell structures. 
 

 
Figure 71. Boundary condition 1 is not fulfilled 
 
Monocoque 
The first airplane structures were a frame of wood or steel covered with a skin of cotton fabric. In 
1912 a racing plane was built with a skin of three glued layers of wood veneer in total 4 mm thick 
(fig. 72, 73). This skin was also the load bearing structure, so a frame was not applied. The 
French company that build these planes was founded by Armand Deperdussin.10 The plane was 
called the Deperdussin monocoque (Pronounce mo-no-cock without emphasis. Monos is alone in 
Greek; coquille is shell in French) [Wikipedia]. To us it looks like a normal plane but in those 
days its shape was different from any other plane, for example, it had one set of main wings 
instead of two above each other. The plane won several races and set the world speed record. 
Ever since, the word monocoque is used for structures that are fast and derive a large part of their 
strength from their skin. Examples are racing cars, rockets and army tanks. 
 

 
10 Armand Deperdussin (1860–1924) was a French business man [Wikipedia]. 
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Figure 72. Deperdussin monocoque airplane [1913 Musée de l’Air et de l’Space, Paris] 
 
 

 
Figure 73. Fuselage of the Deperdussin monocoque 
[G. Printamp 1912, Smithsonian’s National Air and Space Museum, Washington] 
 
Structural models overview 
In scientific literature often the following names are used for structural idealisations. 
 
structural element name deformation included 
beams Euler-Bernoulli beam bending  
 Timoshenko beam bending and shear 
plates loaded in plane Navier equations extension 
plates loaded  Kirchhoff plate bending 
perpendicularly to 
their plane 

Reissner-Mindlin plate (p. 61) bending and shear 
Von Kármán-Föppl equations extension, bending and  

large displacements 
shells Shell membrane equations (p. 38) extension 
 Sanders-Koiter equations (p. 54) extension and bending 
 several theories extension, bending and shear 
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Shell theory 
In 1888 Augustus Love 11 formulated the basic equations that govern the behaviour of thin elastic 
shells [13, 14]. He used Jacob Bernoulli’s 12 hypothesis (p. 50), which was also used by Gustav 
Kirchhoff 13 in formulating the plate theory. In the years that followed there was much discussion 
on this shell theory. Some inconsistencies were found. Many scientists proposed other equations, 
such as Wilhelm Flügge 14 (1934) [15], Ralph Byrne 15 (1944) [16], Valentin Novozhilov 16 (1951) 
[17], Eric Reissner 17 (1952) [18] and Paul Naghdi 18 (1957) [19]. Also Love himself proposed 
improved equations [20]. Lyell Sanders 19 was the first to remove all inconsistencies from Love’s 
first equations [21]. Independently, Warner Koiter 20 proved that Love’s initial assumptions were 
correct after all and he also derived the correct shell equations [22, 23]. In 1959 there was a 
conference in the aula of Delft University where Sanders presented the correct shell equations and 
Koiter presented the correct shell equations. One of Koiter’s papers on the subject has the clear 
title “All you need is Love.” [24]. 
 
Love’s first equations are called the first approximation theory. Including improvements they are 
referred to as the Sanders-Koiter equations (p. 54). Other theories account for out-of-plane shear 
deformation and are called higher-order approximation theory. They are for thick shells (p. 13). 
 
Before 1959, equations were developed for specific shell shapes. For example, equations for 
cylindrical shells were proposed by Lloyd Donnell 21 (1934) [25] and Leslie Morley 22 (1959) 
[26]. 
 
Sanders-Koiter equations 
The following 21 equations describe membrane action and bending action in thin shell structures. 
Equation 18 is derived below (p. 66). The other equations are not derived in these notes but they 
can be obtained in the same way. The derivation of Sanders and that of Koiter can be found in 
literature [21] and [22, 23] respectively. The derivation of Koiter is based on tensor analysis and 
is most rigorous. The equations are valid for elastic material behaviour and small displacements. 
They correctly predict no stresses for rigid translations. The equations do not change when the 
local coordinate system is rotated around the z axis. The equations correctly produce symmetrical 
stiffness matrices (Betti’s reciprocal theorem). The Sanders-Koiter equations include the 

 
11 Augustus Love (1863–1940) was a mathematician and professor in Oxford. He presented his shell theory 
to the Royal Society at the age of 25 [Wikipedia]. 
12 Jacob Bernoulli (1654–1705) was a professor of mathematics in Bazel [Wikipedia]. 
13 Gustav Kirchhoff (1824–1887) was a German physicist and professor in Berlin, Breslau and Heidelberg. 
He is also well-known in physics for discoveries such as Kirchhoff’s laws on electrical current [Wikipedia]. 
14 Wilhelm Flügge (1904–1990) was professor of civil engineering in Göttingen. After the second world 
war he and his wife moved to the USA and became professors in Stanford [Wikipedia]. 
15 Ralph Byrne (1912–1948) was associate professor of applied mechanics in Caltech, Pasadena. [27, 28] 
16 Valentin Novozhilov (1910–1987) was born in Lublin, Poland. He studied in Saint Petersburg and 
became a professor there [www.shellbuckling.com]. 
17 Eric Reissner (1913–1996) was professor of applied mechanics in MIT and San Diego. His father, Hans 
Reißner (1874–1967) was an aircraft engineer and professor in Aachen and Berlin. The family moved from 
Berlin to the Illinois just before the second world war [Wikipedia]. 
18 Paul Naghdi (1924–1994) was born in Tehran. He studied in the USA and became professor of 
mechanical engineering in Berkeley [Wikipedia]. 
19 Lyell Sanders (1924–1998) was professor of structural mechanics in Harvard [German Wikipedia]. 
20 Warner Koiter (1914–1997) was professor of applied mechanics in Delft [Wikipedia]. 
21 Lloyd Donnell (1895–1997) was professor of mechanical engineering in Illinois [Wikipedia]. 
22 Leslie Morley (1924–2011) was a scientist in the Royal Aircraft Establishment and a professor in Brunel 
University, London [Wikipedia]. 
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equations for plates. In other words, with appropriate values for xxk , yyk , xyk , αx , α y the 
Sanders-Koiter equations simplify to the equations for plates loaded in plane, plates loaded 
perpendicular to their plane (Kirchhoff theory), circular plates and the shell membrane equations 
(p. 38). This is clearly a remarkable achievement of the 20th century scientists. The Sanders-
Koiter equations are a scientific masterpiece. 23 
 
Table 4. Sanders-Koiter equations 
kinematic 
equations 
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xx xx z x y

u k u k u
x

∂
ε = − +

∂
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y
yy yy z y x
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k u k u

y
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2yx
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uu k u k u k u
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uu k u k u
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∂ ∂
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y x
∂ϕ∂ϕ

ρ = + + − ϕ − ϕ − ϕ
∂ ∂

 
9 

constitutive 
equations 2 ( )

1
xx xx yy

E tn = ε + νε
− ν

 
10 

2 ( )
1

yy yy xx
E tn = ε + νε
− ν

 
11 

2 2(1 )
+

= γ
+ ν

xy yx
xy

n n E t  
12 

3

2 ( )
12(1 )

xx xx yy
E tm = κ + νκ

− ν
 

13 

 
23 The following dates provide a time frame. In 1822, Claude-Louis Navier formulated the Navier-Stokes 
equations which describe the behaviour of fluids [Wikipedia]. In 1850, Gustav Kirchhoff completed the 
differential equation that describes the behaviour of plates [Wikipedia]. In 1865, James Clerk-Maxwell 
unified many laws into Maxwell’s equations that describe electric and magnetic fields [Wikipedia]. In 1916, 
Albert Einstein found the Einstein field equations describing the structure of the universe [Wikipedia]. In 
1926, Erwin Schrödinger derived the Schrödinger equation of quantum mechanics describing materials on a 
very small scale [Wikipedia]. 
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Exercise: Novozhilov writes 2y y x x
xy xy z

x y y x

u u k u
u v

 α  α∂ ∂
γ = + −    α ∂ α α ∂ α  

 [17 p. 24]. Show that 

this is just another way of writing Sanders-Koiter equation 3. 
 
Ping pong ball 
Consider a sphere that is deformed into an ellipsoid (fig. 74). Think of a ping pong ball that is 
squeezed by your hand. The code below shows the evaluation of the Sanders-Koiter equations (p. 

56) by Maple. The deformation 2cosz
uu b
a

= , 20.49 sinx
uu b
a

=  has been obtained by trial and 

error to minimize the load xp . The code produces figure 75. Displacement yu and distributed 

force yp are zero and xp is almost zero. Only zp is needed to obtain this deformation. 
 

 
Figure 74. Deformation of a spherical ping pong ball into a prolate ellipsoid shape 
 
> a:=20: t:=0.4: E:=1400: nu:=0.3: b:=1: 
> kxx:=-1/a: kyy:=-1/a: kxy:=0: alphax:=1: alphay:=sin(u/a): 
> ux:=-0.49*b*sin(2*u/a): uy:=0: uz:=b*cos(2*u/a): 
>  

zu
u

xu
a

z
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> ky:=diff(alphay,u)/alphay/alphax: kx:=diff(alphax,v)/alphax/alphay: 
> epsilonxx:=diff(ux,u)/alphax-kxx*uz+kx*uy: 
> epsilonyy:=diff(uy,v)/alphay-kyy*uz+ky*ux: 
> gammaxy:=diff(ux,v)/alphay+diff(uy,u)/alphax-2*kxy*uz-kx*ux-ky*uy: 
> phix:=-diff(uz,u)/alphax-kxx*ux-kxy*uy: 
> phiy:=-diff(uz,v)/alphay-kyy*uy-kxy*ux: 
> phiz:=1/2*(-diff(ux,v)/alphay+diff(uy,u)/alphax-kx*ux+ky*uy): 
> kappaxx:=diff(phix,u)/alphax-kxy*phiz+kx*phiy: 
> kappayy:=diff(phiy,v)/alphay+kxy*phiz+ky*phix: 
> rhoxy:=diff(phix,v)/alphay+diff(phiy,u)/alphax+(kxx-kyy)*phiz-kx*phix-ky*phiy: 
> nxx:=E*t/(1-nu^2)*(epsilonxx+nu*epsilonyy): 
> nyy:=E*t/(1-nu^2)*(epsilonyy+nu*epsilonxx): 
> nxym:=E*t/(2*(1+nu))*gammaxy: 
> mxx:=E*t^3/(12*(1-nu^2))*(kappaxx+nu*kappayy): 
> myy:=E*t^3/(12*(1-nu^2))*(kappayy+nu*kappaxx): 
> mxy:=E*t^3/(24*(1+nu))*rhoxy: 
> vx:=diff(mxx,u)/alphax+diff(mxy,v)/alphay+ky*(mxx-myy)+2*kx*mxy: 
> vy:=diff(myy,v)/alphay+diff(mxy,u)/alphax+kx*(myy-mxx)+2*ky*mxy: 
> tmp:=kxy*(mxx-myy)-(kxx-kyy)*mxy: 
> nxy:=nxym-tmp/2: 
> nyx:=nxym+tmp/2: 
> px:=-(diff(nxx,u)/alphax+diff(nyx,v)/alphay+ky*(nxx-nyy)+kx*(nxy+nyx)-kxx*vx-kxy*vy): 
> py:=-(diff(nyy,v)/alphay+diff(nxy,u)/alphax+kx*(nyy-nxx)+ky*(nxy+nyx)-kyy*vy-kxy*vx): 
> pz:=-(kxx*nxx+kxy*(nxy+nyx)+kyy*nyy+diff(vx,u)/alphax+diff(vy,v)/alphay+ky*vx+kx*vy): 
>  
> plot({ux,uy,uz,px/1.5,py/1.5,pz/1.5},u=0..Pi*a-1); 
 

 
Figure 75. Loading zp  and deformation xu , zu  of a ping pong ball computed by Maple 
 
 
Compatibility equation 
Sanders-Koiter equations 1 to 9 (p. 54) can be combined, resulting in the following equation. 
 

2 22

2 2
∂ γ ∂ ε∂ ε

− + − = − κ + ρ − κ
∂ ∂∂ ∂

xy yyxx
yy xx xy xy xx yyk k k

x yy x
 

 
In the derivation is used that xk , yk  and Gk  are small (appendix 4.). This equation shows that the 
strains of the middle surface are connected to the bending deformation. So, we cannot randomly 
choose functions for the strains εxx , γxy , εyy  and randomly choose functions for bending 

curvatures κxx , ρxy , κyy  and expect this could happen in a specific shell with 

zp

zu xu

u
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curvatures xxk , xyk , yyk . Therefore, this equation is called the compatibility equation. See Shell 
behaving like a plate (p. 114). 
 
Rigid translation 
The Sanders-Koiter equations (p. 54) are accurate for small displacements. However, for large 
rigid translations they are accurate too. For example, consider a reinforced concrete industrial 
chimney with a height of 70 m, a radius a = 2.6 m and a wall thickness t = 0.1 m. During a storm 
the chimney top moves b = 1.0 m which is not exceptional for a chimney of this height. 
 
A rigid translation of the whole chimney (fig. 76) can be described exactly by the displacements  

0, cos , sinx y z
v vu u b u b
a a

= = =  . 

 
Obviously, this translation should not produce strains. 
 

 
Figure 76. Rigid translation of a cylinder cross-section 

From the chimney geometry it follows that 10, , 0, 1, 1= = − = α = α =xx yy xy x yk k k
a

. 

Substitution of these in the kinematic equations 1 to 9 gives 
 

0, 0, 0, 0, 0, 0ε = ε = γ = κ = κ = ρ =xx yy xy xx yy xy , 
 
which is the correct result. Consequently, the large deflection of the chimney top can be described 
by the Sanders-Koiter equations. 
 
Exercise: Large rigid rotations do produce unrealistic strains and stresses. Check the Sanders-
Koiter equations for this. 
 
Shell differential equations 
When the Sanders-Koiter equations (p. 54) are substituted into each other, the following two 
coupled partial differential equations are obtained (assuming 0= =x yp p  and xv , yv ,  

xy yxn n−  are small ). 

 
3

2 2
212(1 )

−Γφ + ∇ ∇ =
− ν

z z
E t u p  
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2 2 0∇ ∇ φ + Γ =zE t u , 
 
where, 

2 2 2

2 2
(.) (.) (.)(.) 2∂ ∂ ∂

Γ = − +
∂ ∂∂ ∂

xx xy yyk k k
x yy x

, 

2 2
2

2 2
(.) (.)(.) ∂ ∂

∇ = +
∂ ∂x y

. 

φ is the Airy stress function,24 which is related to the membrane forces 
2

2
∂ φ

=
∂

xxn
y

, 
2

2
∂ φ

=
∂

yyn
x

, 
2

xy yxn n
x y

∂ φ
= = −

∂ ∂
. 

 
Differential equation type 
Linear partial differential equations of the second order are subdivided in three types; elliptic, 
parabolic and hyperbolic [Wikipedia]. Physicists use this to predict the nature of the solution and 
select a solution method. The membrane part of the shell differential equations (p. 58) is 
 
−Γφ = zp  
 
In a well-designed thin shell, this part dominates the behaviour. It can be shown that the type of 
this differential equation depends on the Gaussian curvature Gk  (p. 23). 
 

0 elliptic, the solution is local
0 parabolic, the solution extends along one straight line
0 hyperbolic, the solution extends along two straight lines,

which are called 

G

G

G

k
k
k

characteristics

> ⇒

= ⇒

< ⇒
 

 
Shallow shell differential equation 
For cylinders and spheres xxk , yyk , xyk are uniform. This reduces the shell differential equations 
(p. 58) to  
 

3
2 2 2 2 2 2

212(1 )
∇ ∇ ∇ ∇ + ΓΓ = ∇ ∇

− ν
z z z

E t u E t u p . 

 
This is a linear eight order partial differential equation in curvilinear coordinates u and v (p. 31). 
 
A shallow shell is a shell with a sagitta (p. 1) that is small compared to its span. For such shells 
the curvatures do not change much over the surface and the above differential equation can be a 
good approximation. 
 
A limitation of the shallow shell differential equation is that we cannot fix xu or yu  on 
boundaries. This leads to inextensional deformation of shell with negative Gaussian curvatures. 
 

 
24 George Airy (1801–1892) was an astronomy professor in Cambridge, England [Wikipedia] 
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Plate boundary conditions 
In general, the solution to an eight order partial differential equation has 8 constants in the u 
direction and 8 constants in the v direction. The constants can be solved by 4 boundary conditions 
on each edge. Figure 77 shows the boundary conditions of a canopy that is fixed on one edge. 
Note that there are too many boundary conditions. So, some boundary conditions cannot be 
fulfilled. 
 
This problem also occurs in plates. It was solved by Gustav Kirchhoff 3 in 1850 [29]. He derived 
the correct boundary conditions of plates from virtual work. Others interpreted his solution as that 
the stresses due to the torsion moment xym go round in the edge (fig. 78-1). Therefore, xym on the 
edge needs be replaced by a concentrated shear force V in the edge (fig. 78-2). 
 

xym dx Vdx= ⇒ xyV m=  

 
 Figure 77. Boundary conditions of a canopy 
 
 

 
 
Figure 78. Forces on an edge part 
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Figure 79. Boundary conditions according to Kirchhoff (plates) 
 
From equilibrium of a somewhat larger edge part (fig. 78-3) it follows that 
 

( ) ( ) 0z y x x xp dxdy v dx v dv dy V dV V v dy− + + − + + − = . 
 
This can be simplified to 
 

0x
z y

dv dVp dy v dy
dx dx

− + − = . 

When 0dy ↓  then 0y
dVv
dx

− − =  which can be written as 

 

y
Vv
x

∂
= −

∂
. 

 
Now we have 4 boundary conditions per edge and the differential equation can be solved (fig. 79). 
 
Thus, according to Kirchhoff, xym need not be zero on a plate or shell edge in the x or y direction. 
Also xv need not be zero on an edge in the y direction, and yv need not be zero on an edge in the x 
direction. Clearly, in reality they are zero. 
 

We need to interpret xym on an edge as a concentrated shear force V in the edge. 
 

We need to interpret v on an edge as a change in the concentrated shear force V. 
 
However, the plate boundary conditions are not entirely correct for shells (see shell boundary 
conditions p. 67). 
 
Exercise: In plates xym = 0  in a fixed edge along the x or y direction. In shells this can be 
observed too, however, there are exceptions. Can we show this with the Sanders-Koiter equations? 
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Reissner-Mindlin plate theory25 
It is possible to come up with a new shell theory that does not have interpretation problems of the 
boundary conditions? In fact, the Reissner-Mindlin theory [29] for thick plates predicts xym , xv  
and yv on edges realistically without interpretations (fig. 77). However, to compute these values 
accurately we need to use very small finite elements on the edges. For example, when a plate is 
180 mm thick we need to use finite elements that are less than 20 mm wide. This is impractical 
due to large computation time and therefore almost never applied. A practical element for a 180 
mm plate is more than 250 mm wide. For this mesh xym will not be zero on the edges also not 
when the Reissner-Mindlin theory is used. Therefore, also in the Reissner-Mindlin theory we 
need to interpret the torsion moment on an edge as a concentrated shear force in the edge. 
 
Edge shear stresses 
The shear stress in a plate edge or shell edge is 26  
 

2
3 3 10
2 2

x
xz

v V
t t

σ = − . 

 
The formula is valid when the local x axis points in the direction of the edge and the local y axis 
points outwards (fig. 80). Unfortunately, finite element programs using shell elements do not 
compute this stress. If important, we need to calculate and check this stress by hand. 
 
The concentrated shear force produces a local stress peak. In many structures a local stress peak is 
not important because the stress will redistribute (steel yields, reinforced concrete cracks). 
However, a stress peak is important for materials that do not yield such as glass. A stress peak is 
also important for fatigue. 
 

 
25 The name of this theory refers to Eric Reissner and Raymond Mindlin. Eric Reissner (1913–1996) was a 
professor of applied mechanics at MIT and the University of California San Diego [Wikipedia]. Raymond 
Mindlin (1906–1987) was a professor of applied science at Columbia University, USA [Wikipedia]. From 
our point of view they were very skilled in mathematics. They had to be because they did not have 
computers. 
 
26 In 2010, Johan Blaauwendraad (professor of structural mechanics at Delft University) used Reissner’s 
plate theory (p. 61) to derive the stresses in plate edges. He showed that the shear stress distribution is 
exponential and the factor of the peak stress is 3

2 10  [29]. In 2013, Rutger Zwennis (at that time a student 

at Delft University) modelled a plate loaded in torsion using volume finite elements [30]. He showed that 
the peak stress due to V includes the factor 4.48 instead of 3

2 10 = 4.74. Who is right? The Reissner plate 

theory is not exact because Reissner made several assumptions in the derivation. The finite element 
analyses is not exact either because the number of elements is restricted. In these notes the safe choice of 
3
2 10 has been made. Future computers will be able to determine the factor very accurately. 
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Figure 80. Shear stresses in a free shell edge 

 
Reinforced concrete plate edges 
In reinforced concrete plates it is common practice to put hairpins in the edges (fig. 81). A hairpin 
is a reinforcing bar that is bend in the shape of a U. The hairpins have the same diameter and 
spacing as the bars perpendicular to the edge. There is a good reason for these hairpins. They 
carry the concentrated shear force (fig. 82). 

 
  Figure 81. Reinforcement in a               Figure 82. Strut-and-tie model of a 
  cross-section of a concrete plate edge               reinforced concrete plate edge 
 
Edges that are not in the x or y direction 
If an edge is not in the x direction or y direction, the shear force xv and the torsion moment 

xym need to be transformed to the edge direction. For this we need to rotate the local coordinate 
systems of the edge finite elements such that one of the axes is in the direction of the edge. The 
obtained concentrated shear force on a free or simply supported edge can be easily checked 

because it is equal to 2
xy xx yyV m m m= ± − , where xym , xxm and yym are the moments before 

rotation. 
 
Proof: Plate moments are a tensor (p. 97). 1m and 2m are the principal values (p. 98). The 

product 1 2m m is an invariant (p. 23) of this tensor. Therefore, 2
1 2 xx yy xym m m m m= − = 

2
ss tt stm m m− . Suppose that the s axis is perpendicular to the shell edge. Since the edge is free or 

simply supported 0=ssm . Therefore, 2 2 2
xx yy xy stm m m m V− = − = − . Q.E.D. 
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Palazzetto dello sport [31] 
The palazzetto dello sport (p. 1) was built for the 1960 summer Olympics in Rome (fig. 1). It 
hosted basketball. Nowadays, it is a sports and community centre. 
The buttresses are made of prefab concrete. The shell and ribs are made of reinforced concrete 
that was cast in situ. The formwork of the shell consisted of 1620 cassettes supported by steel 
tube scaffolding. The cassettes were made of 25 mm thick ferrocement (fig. 83). Ferrocement is a 
thin layer of mortar with a steel wire mesh inside. 
 
Construction sequence of the dome Completed 
- Placing the buttresses 
- Building the scaffolding for the cassettes. The scaffolding included 
circular rings made of curved rails of an old railway track. These rings 
were horizontally elevated onto temporary columns of steel tubes. 

 

- Building a timber template of a large part of the shell internal surface 
- Drawing the grid onto the template 

August 1956 

- Fabrication of moulds for the cassettes. First, onto the timber template 
the inside shape of one cassette was made of bricks and plaster (fig. 84). 
Second, a cassette was made onto this inside shape. Third, this cassette 
was moved down and several moulds were made of this cassette. Etc. 
- Prefabrication of  30 cassettes a day 
- Placing the cassettes onto the scaffolding (fig. 85, 86 ) 

December 1956 

- Placing reinforcing bars in and on the cassettes 
- Pouring concrete (fig. 87) 

 
February 1957   

 
 
architect:  Annibale Vitellozzi (1903-1990) 
engineer:  Pier Luigi Nervi (1891-1979) 
contractor:  Bartoli 
 
Computer analyses were not performed. Structural calculations were done by hand and checked 
by scale model tests. 
 
 

 
Figure 83. Cross-section of the shell and ribs Figure 84. Mould fabrication 
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Figure 85. A cassette […, 1957] 
 

 
Figure 86. Scaffolding and cassettes […, 1957] 
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Figure 87. Construction site during concrete pouring […, 1957] 
 

≠xy yxn n  
Sanders and Koiter independently derived that for shells ≠xy yxn n . This is a very strange result 
because shear stresses on perpendicular faces of an infinitesimal cube have the same 
magnitude xy yxσ = σ (fig. 88). If the shear stresses are the same, the shear membrane forces must 
be the same. Nevertheless, Sanders and Koiter are right. This strange results follows from 
moment equilibrium around the z axis of an elementary shell part (see derivation of equation 18 p. 
66). It can also be seen in the definition of membrane forces for thick shells in appendix 7. 
 
Finite element programs plot the mean membrane shear force 1

2 ( )+xy yxn n . It would be 

interesting to plot the quantity 1
)2 ( −xy yxn n  too, however, finite element programs do not have 

this option. It can be shown that 1
)2 ( −xy yxn n  does not change when the local coordinate system 

rotates around the z axis (it is an invariant). When 1
)2 ( −xy yxn n  is large compared 

to 1
2 ( )+xy yxn n then the shell is very thick and should be modelled by volume elements instead of 

shell elements (see shell thickness p. 13). 
 

 
Figure 88. Shear stresses on a small cube        Figure 89. In plane shear forces on a shell part 
 

xyσ

yxσ

xy yxσ = σ

xy yxn n≠

z

x

y
yxn
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Challenge: The tensor 
 
 
  

xx xy

yx yy

n n

n n
 is not symmetrical. Are the principal directions perpendicular? 

In what situation are the principal values complex numbers? 
 
Derivation of equation 18 
In this note the eighteenth Sanders-Koiter equation (p. 54) is derived. Consider moment 
equilibrium of a small shell part around the z axis (fig. 90). When the part is only twisted, the 
bending moments can produce a resulting moment around the z axis. 
 

1z xx xy yy xyM m dy k dx m dx k dy= −   
 
When the part is curved but not twisted the torsion moment can produce a resulting moment 
around the z axis. 
 

2z xy yy xy xxM m dx k dy m dy k dx= −  
 
The in plane shear forces can also produce a moment around the z axis. 
 

3z xy yxM n dy dx n dx dy= −  
 
The total moment around the z axis must be zero. 
 

1 2 3 0z z zM M M+ + =  
 
This evaluates to 
 

( ) ( ) 0− − − + − =xy xx yy xx yy xy xy yxk m m k k m n n . 
 
Q.E.D. 
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Figure 90. Moment equilibrium around the z axis 
 
Shell boundary conditions 
The plate boundary conditions (p. 59) are not completely correct for shells. A shell edge has 3 
displacements and 1 rotation. If a value is imposed to one of these a support reaction occurs. 
Table 5 shows the formulas for computing the support reactions. They are derived from 
equilibrium of small edge parts (fig. 91 and 92). The table is valid for an edge in the x direction 
and the y axis pointing outwards. Clearly, instead of imposing a displacement, a distributed edge 
load can be applied. The table can also be used for formulating these boundary conditions. 
 
 

 
Figure 91. Equilibrium of a shell edge loaded by a distributed shear force xq  
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Figure 92. Equilibrium of a shell edge loaded by a distributed normal force yq    
 
Table 5. Boundary conditions for an edge in the x direction and the y axis pointing outwards 
             Kinematic (K)                               Dynamic (D)   
Impose displacement xu   or apply line load x yx xxq n k V= − . 1 

 
Impose displacement yu   or apply line load y yy xyq n k V= − . 2 

Impose displacement zu   or apply line load z y
Vq v
x

∂
= +

∂
. 

 
3 

Impose rotation           y−ϕ   or apply line moment yym− . 4 

 
Table 6. Boundary conditions for an edge in the x direction and the y axis pointing inwards 
Impose displacement xu   or apply line load x yx xxq n k V= − + . 5 

Impose displacement yu   or apply line load y yy xyq n k V= − + . 6 

Impose displacement zu   or apply line load z y
Vq v
x

∂
= − −

∂
. 

 
7 

Impose rotation           y−ϕ   or apply line moment yym . 8 

 
Table 7. Boundary conditions for an edge in the y direction and the x axis pointing outwards 
Impose displacement xu   or apply line load   x xx xyq n k V= − . 9 

Impose displacement yu   or apply line load   y xy yyq n k V= − . 10 

Impose displacement zu   or apply line load   z x
Vq v
y

∂
= +

∂
. 

 
11 

Impose rotation              xϕ   or apply line moment   xxm . 12 
 
Table 8. Boundary conditions for an edge in the y direction and the x axis pointing inwards 
Impose displacement xu   or apply line load x xx xyq n k V= − + . 13 

Impose displacement yu   or apply line load y xy yyq n k V= − + . 14 

Impose displacement zu   or apply line load z x
Vq v
y

∂
= − −

∂
. 

 
15 

Impose rotation              xϕ   or apply line moment xxm− . 16 

V

V

yq

0y xy yyq dx V k dx n dx+ − =
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Exercise: Proof that xym = 0 in a free corner. 
 
Canopy example, shell boundary conditions 

The canopy in figure 93 has curvatures 10,= = = −xx xy yyk k k
a

. Substitution of these curvatures 

in the shell boundary conditions (p. 67) gives the canopy boundary conditions. 
 

 
Figure 93. Shell boundary conditions of the canopy 
 
Diaphragm boundary condition 
A tube is often closed by a thin wall, called diaphragm (fig. 94). The diaphragm can be bend 
easily out of its plane but it resists deformation in its plane. Therefore, the diaphragm prevents 
displacement of the tube edge perpendicular to the tube. It also prevents displacement of the tube 
edge in the direction of the edge. The other displacements are free. This is called a diaphragm 
boundary condition. It is often applied in shell analysis. (Examples on p. 47 and p. 163) 
 
 

 
Figure 94. The diaphragm boundary condition can replace a diaphragm. 
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Edge in the y direction 
xx xyn k V− = 0 

yu = 0 

zu = 0 

xxm = 0 

Edge in the x direction 
xu = 0 

yy xyn k V− = 0 

zu = 0 

yym = 0 

 
Overview of the shell variables 
The table below gives an overview of the variables in the Sanders-Koiter equations (p. 54). The 
variables that need solving are green. They are called dependent variables. Note that there are 21 
dependent variables and 21 Sanders-Koiter equations. Boundary conditions (p. 67) are imposed 
on the red edges. 
 
material, thickness E   ν   t 

 
curvature 
 

             
Lamé parameters 
 

       
in plane curvature 
of the parameter 
lines 
        
displacement 
 

             
strain of the middle 
surface 
 

             
slope 
 

             
deformation 
curvature 
 

             
membrane force 
 

                   
u

v yxn

u

v xyn

u

v yyn

u

v xxn

u

v xyρ

u

v yyκ

u

v xxκ

u

v zϕ

u

v yϕ

u

v xϕ

u

v xyγ

u

v yyε

u

v xxε

u

v zu

u

v yu

u

v xu

u

v yk

u

v xk

u

v yα

u

v xα

u

v xyk

u

v yyk

u

v xxk

2K

2D

1K

1D

3K

4K

5K

5D

6K

6D

7K

8K

9K

9D 10D

10K 11K

12K

13K

13D

14K

14D

15K
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moment 
 

             
shear force, 
out of plane 
 

        
load 
 

             
 
Generalised edge disturbance 
An edge disturbance is a large moment at a discontinuity in a shell. This moment is local and at 
some distance of the discontinuity it is much smaller. Examples of discontinuities are 
 
- Fixed edge or pinned edge 
- Point load or line load 
- Discontinuity in the distributed load 
- Discontinuity in the derivative of the distributed load 
- Discontinuity in the middle surface 
- Discontinuity in the slope of the middle surface (C0 continuity p. 11) 
- Discontinuity in the curvature of the middle surface (C1 continuity) 
- Change in sign of the Gaussian curvature (p. 23, see differential equation type p. 59) 
- Discontinuity in the material stiffness 
- Discontinuity in the shell thickness 
 
Exercise: Which of the above discontinuities occur in a torus? 
 
Beam supported by springs 
A long beam is supported by uniformly distributed springs (fig. 95). The bending stiffness of the 
beam is EI [Nm²]. The stiffness of the distributed springs is k [N/m²]. The differential equation 
that describes this beam is 
 

4

4 0d wEI k w
dx

+ = . 

 
At the left beam end a displacement is imposed and the slope is zero. The right beam end is far 
away. The boundary conditions are 
 

0if 0 then and 0

if then 0 and 0

wx w w
x
wx w
x

∂
= = =

∂
∂

→ ∞ = =
∂

 

 
 

u

v zp

u

v yp

u

v xp

u
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u

v xv

u

v xym

u
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u

v xxm
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Figure 95. Beam supported by distributed springs and loaded by an imposed displacement 0w  
 
The solution is 
 

0 (sin cos )exp
i i i

x x xw w
l l l
π π −π

= + , 

where 

42i
EIl
k

= π  

 
is the halve wave length. 

Figure 96 shows displacement w, moment
2

2
wM EI

x
∂

= −
∂

and shear force MV
x

∂
=

∂
. 

 
Figure 96. Displacement w, moment M and shear force V in the beam 
 
Exercise: Suppose that the beam end is not fixed but pinned. What is the ratio of the pinned 
largest moment and the fixed largest moment? 
 
Exercise: Suppose that the imposed displacement is removed, the left beam end is fixed and a 
uniformly distributed load q is applied to the beam. What changes to the differential equation, 
boundary conditions and solution? 
 
 

0
(cos sin )exp

i i i

M x x x
l l lw k EI
π π −π

= −

0
(sin cos )exp

i i i

w x x x
w l l l

π π −π
= +

i

x
l

1 2 3

1

0

0.5

1−

0.5−

0.05

0.05−

3/4 1/4
0

cos exp
2 i i

V x x
l lw k EI
π −π

= −
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Influence length 
In figure 96 we see that the peak values occur at the left beam end. At some distance from the end 
the values are much smaller. At a distance ix l= , all values are a bit smaller than 5% of the peak 
values (ignoring the signs). This distance is called the influence length. The influence length 
happens to be the same as the halve wave length il .  
 
Exercise: What is the exact value of “a bit smaller than 5%” ? 
 
Influence length of a cylinder edge 
Consider a circular cylinder (fig. 97). 
 

10 0 1 1xx yy xy x yk k k
a
−

= = = α = α =  

 
An axial symmetric displacement is described by 
 

( ) 0 ( ) 0x y z zu w u du u u w u p
a
ν

= − = = =∫  

 
Please note the difference between ν (Poisson’s ratio) and v (curvilinear coordinate). Surface load 
is not applied 0zp = . These 9 equations have been substituted in the Sanders-Koiter equations (p. 
54). The result is (see derivation in appendix 5) 
 

3 4

2 4 2 0
12(1 )

Et d w Et w
du a

+ =
− ν

 

 
This is the same differential equation as that of a beam supported by springs (p. 71). Apparently 
we can make the following interpretation. 

3

2 212(1 )
Et EtEI k

a
= =

− ν
 

 
Using the analogy, the influence length of a cylinder edge is 
 

4
24

2
3(1 )

i
EIl a t
k

π
= π =

− ν
  2.4il a t≈  

 
Figure 97. Cylinder parameterisation and dimensions 
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Exercise: Apparently, a shell can be sometimes interpreted as a beam supported by uniformly 
distributed springs. Which shell part is the beam and which shell part are the springs? 
 
Influence lengths of all shells 
Figure 98 gives influence lengths of edges of elementary shells. In more complicated shells the 
influence length of edge disturbances (p. 14, 71) can be estimated by comparing to the elementary 
shell shapes. 
 

 

 

 
 
Figure 98. Influence lengths of elementary shell shapes [32] 
 
Finite element mesh 
The influence length can be used to choose a finite element mesh (p. 11, 84). If we use elements 
that approximate a solution linearly we need at least 6 elements in a length il  in order to obtain 
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solutions with some accuracy (fig. 99). This provides a rule for the finite element length 
perpendicular to a shell discontinuity. Clearly, smaller elements will improve the accuracy. 
 

 
 
Figure 99. Piece-wise linear approximation of a solution 
 
Exercise: For plates the recommended element size is 2t. Suppose that a shell needs elements this 
size. What is the a/t ratio of this shell? Is this a thin or a thick shell? Do thinner shells need 
smaller or larger elements than 2t ? 
 
Boiler drums 
Cylindrical boiler drums are made to contain pressurised water. The connection between the 
cylinder and a cap is an edge disturbance (p. 71). This edge disturbance can be analysed manually 
due to the axial symmetry in geometry and loading [32]. Figure 100 and 101 show results for 
different cap shapes. Figure 100 shows C1 continuity (p. 11). Figure 101 shows C0 continuity. The 
displayed membrane stresses are in the hoop direction. The displayed moments are in the 
meridional direction. In figure 100 the stress due to the maximum moment is approximately 30% 
of the stress due to the membrane force in the same direction. In figure 101 the stress due to the 
maximum moment is approximately 11 times the stress due to the membrane force in the same 
direction. Consequently, the drum in figure 101 is likely to yield when pressurised. This does not 
result in failure because the membrane forces continue to carry the load. For repeated loading 
fatigue will be a problem. Therefore, drum caps as in figure 101 are rarely applied. 
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Figure 100. Membrane forces and moments in a hemispherical drum cap (v = 1/3 and a / t = 100) 
[32 p. 175] 

 
 
 
Figure 101. Membrane forces and moments in a shallow drum cap (v = 1/3, a / t = 100 and oφ = 
p / 4) [32 p. 182] 
 
Saturn V 
The rocket that brought people to the moon and back was called Saturn V (pronounce Saturn five). 
More than 20 Saturn Vs were built between 1965 and 1975. The parts were made by American 
aircraft companies. The Douglas Aircraft Company made an important part called S-IVB 
(pronounce S4B). It consisted of 8 shells and an engine (figs 102, 103). Note that the wall of the 
fuel tank is also the wall of the rocket. NASA made a rough design of S-IVB and specified the 
loads. The loads included an acceleration of 5 m/s2, a fuel pressure of 6 bar and a fuel temperature 
of -253 oC. The engineers of Douglas designed the details and did a lot of testing [33, 34]. In the 
process they came up with orthogrid and isogrid (p. …). 
 
Exercise: The Saturn V rockets were not reusable. The cost of each launch was 185 106 dollar 
[Wikipedia]. Suppose that all costs in the end are labour cost. Suppose that all people make 
approximately the same hourly salary. What percentage of the USA population was working to 
launch Saturn Vs? 
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Figure 102. The S-IVB part of the Saturn V [Wikipedia] 
 

 
 
Figure 103. Shell components of S-IVB [33] 
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Finite difference method 
One way of solving the Sanders-Koiter equations (p. 54) is the finite difference method. This is a 
computational method for finding approximate solutions to differential equations. The method uses a 
grid of points, for example 100×100 points (fig. 104). In the points, the values of the 21 dependent 
variables (p. 70) are computed. In total this is approximately 210 000 variables. For the computation 
we need as many equations. The 21 Sander-Koiter equations are discretised around the points. For 
example, equation 4 
 

z
x xx x xy y

u k u k u
x

∂
ϕ = − − −

∂
 

 

is discretised around point 307 as. 
 

,303 ,304,304 ,303 ,303 ,3043.5 3 3.5 3
, 3.5 3 99 99 99 9

9
307 91

99 99 9

0 ( , ) ( , )
2 2( , )

y yz z x x
x xx xy

x

u uu u u u
k k

+− +
= −ϕ − − −

α
 

Some grid points are outside the shell. These are solved with the boundary conditions (p. 67), for 
example, boundary condition 16K 
 

0xϕ =  
 
gives 
 

,303, 304x xϕ = −ϕ  
 
All equations are written in a large square matrix and the dependent variables are solved and plotted. 
This method uses much computer memory and much computation time but it is easy to program. A bit 
of python code is shown below. A complete program can be downloaded from 
http://phoogenboom.nl/b17_code.txt 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 104. Finite difference grid. Green dots  are locations of discrete displacements xu , yu , zu . 

Red triangles  are locations of discrete rotations xϕ . The red triangles outside the shell are 
eliminated by boundary conditions. 
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for j in range(100) # Add Sanders-Koiter equation 4 to the matrix 
   for i in range(99) 
      row=row+1 
      M[row,p[phix]+j*101+i+1]=-1 
      M[row,p[uz  ]+j*100+i+1]=-99/alphax((i+0.5)/99,j/99) 
      M[row,p[uz  ]+j*100+i  ]= 99/alphax((i+0.5)/99,j/99) 
      M[row,p[ux  ]+j*100+i+1]=-0.5*kxx  ((i+0.5)/99,j/99) 
      M[row,p[ux  ]+j*100+i  ]=-0.5*kxx  ((i+0.5)/99,j/99) 
      M[row,p[uy  ]+j*100+i+1]=-0.5*kxy  ((i+0.5)/99,j/99) 
      M[row,p[uy  ]+j*100+i  ]=-0.5*kxy  ((i+0.5)/99,j/99) 

 
Exercise: The above code uses 100×100 grid points. Upgrade it to m×n grid points. 
 
Canopy example, finite difference solution 
The finite difference method (p. 79) has been applied to the canopy example (p. 69). The numbers are 
E = 107 kN/m2, ν = 0.15 (reinforced concrete), length l = 12 m, width = 4 m, radius a = 2 m, shell 
thickness t = 0.060 m (a / t = 33), no self-weight, point load F = 100 kN in corner. In other words: in 
node 9999, 1 1

2 99yq l  = 100 kN. 

xxk = 0,  yyk = –1/a,  xyk = 0,  xα = l,  yα = π a,   0 ≤ u ≤ 1,   0 ≤ v ≤ 1 
The result is shown in figures 105 to 111. The horizontal axis shows u and the vertical axis shows v. 
 

 
Figure 105. Canopy xu , yu and zu [m] 
 

 
Figure 106. Canopy xxε , yyε and xyγ  

 

 
Figure 107. Canopy xϕ , yϕ  and zϕ [rad] 
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Figure 108. Canopy xxκ , yyκ  and xyρ [1/m] 
 

 
Figure 109. Canopy xxn , yyn , xyn  and yxn [kN/m] 
 

 
Figure 110. Canopy xxm , yym  and xym [kNm/m] 
 

 
Figure 111. Canopy xv  and yv [kN/m] 
 
Exercise: Do figure 105 to 111 show all dependent variables? 
 
Exercise: When we know the displacement functions xu , yu , zu , we can use the Sanders-Koiter 
equations to calculate all other dependent variables easily. This is demonstrated in the ping pong ball 
example (p. 56). From this point of view we need to solve only 3 dependent variables: xu , yu  and zu . 
When we have solved these we know all. Nonetheless, in the finite difference method we solve 21 
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dependent variables. Why is this? In other words, what is so special about a ping pong ball that it is an 
exception? 
 
Challenge: Use the program b17_code to study influence length (p. 73) as a function of xxk , yyk , xyk  
and xk . Are the equations on page 74 correct? 
 
Shell finite elements 
There are three types of shell finite element; 1) flat elements, 2) elements based on the Sanders-Koiter 
equations (p. 54) and 3) elements based on reduction of a solid element. 
 
Flat elements are triangles or quadrilaterals. A flat element is based on a simple combination of an 
element for plates loaded in plane (walls) and an element for plates loaded perpendicularly (floors). 
Each node has six degrees of freedom (dofs) (fig. 112, 113, 114). The red dofs do not really contribute 
to the element accuracy. They are added to make the element fit in a general purpose finite element 
program. Flat elements have two requirements for the mesh: 1) the elements need to be small due to 
their low accuracy [43] and 2) each quadrilateral really needs to be flat and cannot have a twisted 
shape. 
 

 
Figure 112.     Figure 113.  
Element for plates loaded in plane  Element for plates loaded perpendicularly 
 

 
Figure 114. Degrees of freedom of flat shell elements 
 
Exercise: Suppose that a finite element mesh is in the principal curvature directions. Can flat 
quadrilateral elements be used? 
 
Curved elements can be derived from the Sanders-Koiter equations. A well known element of this 
type is the semiloof element [44]. It has been derived by Bruce Irons based on discussions with Henk 
Loof. 1 The element has 3 degrees of freedom in 8 nodes and 1 rotational degree of freedom in 8, so 

 
1 Bruce Irons (1924–1983) was professor at Swansea and Calgary. He was specialised in programming finite 
elements. He made important contributions to this field and wrote three books on computational analysis. He 
suffered from multiple sclerosis and committed suicide, together with his wife, at the age of 59 [Wikipedia]. 
 
Henk Loof (1929–1988) was professor at Delft University of Technology, Faculty of Civil Engineering. He was 
very skilful in the mathematics of shell structures. He was not married and lived in the city of Den Haag 
together with his sister [source Johan Blaauwendraad and Coen Hartsuijker]. The “oo” in Loof is pronounced as 
the “o” in go. 

+ rotation dof 
 

displacement dof 
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called, Loof nodes (fig. 115). This thin shell element has high accuracy, however, it is difficult to 
implement in a finite element program. Therefore, it is not much used. 
 

 
Figure 115. Degrees of freedom of a semiloof element 
 
Shell elements can also be derived from solid elements. In the process some degrees of freedom are 
replaced by others and the constitutive equations are simplified (fig. 116). These elements have 3, 4, 6 
or 8 nodes with each 6 degrees of freedom and can be implemented conveniently. The elements with 
4 nodes can be twisted. The elements with 6 and 8 nodes can be curved as well (fig. 117) [45]. Most 
finite element programs use shell elements derived from solids. 

 
Figure 116. Eight node volume element reduced to a four node shell element 
 

 
Figure 117. Shell elements with 3, 4, 6 and 8 nodes 
 
Element aspect ratio 
The aspect ratio of a rectangular shell element is defined as length over width. Many finite element 
programs have a restriction on the aspect ratio. For example 
 

1
20

length 20
width

< <  

 

 
The development of the semiloof element can be described shortly. Irons met Loof at a conference in Newcastle 
in 1966. Irons presented a paper on integration rules and Loof presented a paper on shell finite element analysis 
[46]. In an informal setting they must have talked at length about shell behaviour and shell mathematics. In the 
years that followed Irons derived a finite element with rotation degrees of freedom in unusual points at the 
edges. He referred to these points as Loof nodes after his good friend Henk Loof. When he presented his 
element at a conference in 1974 he modestly called it the SemiLoof element [44]. Surely a better name for the 
element is the Irons-Loof element but this name change did not take place. The semiloof element is regarded by 
specialists a scientific master piece [48]. 

Loof node
node 
 

 

dof 
 

 rotational dof 
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The reason for this restriction is that if the element stiffness in two directions is very different, the 
structural stiffness matrix has both very large numbers and almost zero numbers on the main diagonal. 
As a consequence the computed displacements and stresses may have little arithmetic accuracy (p. 
94). However, in modern software this is not a problem because high accuracy number 
representations are used. Sometimes, we need to use an aspect ratio of 1000 and this does not need to 
give accuracy problems. 
 
Mesh refinement 
Like all finite elements, a shell element is accurate when it is small. An engineer who is experienced 
in finite element analysis can just see whether the elements in a model are sufficiently small. 
However, when in doubt, the following procedure is used. 1) Do the analysis with any mesh. 2) Halve 
the element size. 3) Repeat the analysis. 4) If the important results do not change significantly, the last 
mesh is sufficient. If the important results change significantly, continue at step 2. 
 
For example, the first analysis gives a deflection of 24 mm. The second analysis, with half size 
elements, gives a deflection of 26 mm. If you think that 2 mm is sufficient accuracy than you are 
done. We can estimate the exact result that would be obtained by an extremely fine mesh. For this add 
the difference to the last result. In this example the exact result is approximately 26 + 2 = 28 mm. 
 
Refining a shell mesh to half element size, requires approximately 4 times as many nodes, 16 times as 
much memory plus computer hard disk space and 64 times as much computation time. 
 
Model accuracy 
The accuracy of an element depends on the situation in which it is used. Therefore, accuracy cannot 
be expressed as a fixed percentage. What we do know is the smaller the elements, the smaller the 
error. For example, the model deformation can have an error of O(h). (pronounce “order h”). This 
means that the error is proportional to the element size h. It is the smallest finite element accuracy 
possible. Other errors are O(h2) and O(h3). The table below gives the errors of shell finite element 
models [49, 50]. 
 
 deflection membrane forces moments shear forces 
flat elements O(h3) O(h) O(h2) O(h) 
semiloof elements ? ? ? ? 
reduced solid elements 
without mid-side nodes 

O(h2) O(h2) O(h2) O(h2) 

reduced solid elements 
with mid-side nodes 

O(h2) O(h2) O(h2) O(h2) 

 
Model accuracy can be determined by performing three analysis; the second with half element size 
and the third with one-fourth element size. This gives three equations 
 
> eq1:= u=u1+C*h^b: 
> eq2:= u=u2+C*(h/2)^b: 
> eq3:= u=u3+C*(h/4)^b: 
> solve({eq1,eq2,eq3},{b,u,h}); 

from which the order of the error can be solved. 2 1
2

3 2
log

−
=

−
u u

b
u u

 

Result extrapolation 
In the example on mesh refinement (p. 84) it is assumed that the deformation has an error O(h), which 
is conservative. The table below shows more formulas for estimating the exact result from two 
computation results. 
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 O(h) O(h2) O(h3) 
h2 = 0.500 h1 u = u 2 + (u 2 - u 1) u = u 2 + (u 2 - u 1)/3 u = u 2 + (u 2 - u 1)/7 
h2 = 0.707 h1 u = u 2 + 2.41(u 2 - u 1) u = u 2 + (u 2 - u 1) u = u 2 + 0.547(u 2 - u 1) 
h2 = 0.794 h1 u = u 2 + 3.85(u 2 - u 1) u = u 2 + 1.70(u 2 - u 1) u = u 2 + (u 2 - u 1) 
 
The table results have been obtained from two equations. For example 
 
> eq1:= u=u1+C*h^2: 
> eq2:= u=u2+C*(0.500*h)^2: 
> solve({eq1,eq2},{u,C}); 
 
Exercise: A finite element type approximates the membrane force xxn  as uniform over the element 
surface (see figure). We want to compute the membrane force in the shell edge at y = 0. What is the 
order of the error? 

 
 
Bohemian dome 
A Bohemian dome consist of identical circle segments. A parameterisation that follows these circles is 
convenient for construction (fig. 118). 2 
 

cos
cos
sin sin

x a u
y a v
z a u a v

=
=
= +

 

 
However, this parameterisation is not orthogonal. An orthogonal parameterisation (p. 25) of a 
Bohemian dome is 

cos( )
cos( )
[sin( ) sin( )]

x a u v
y a u v
z a u v u v

= +
= −
= + + −

             

sin cos 2 1 cos( )cos( )

sin cos 2 1 cos( )cos( )

cos sin

xx x

yy y

xy

u vk a A A u v u v
a A AB

u vk a B B u v u v
a B AB

u vk
a AB

= α = = + + −

= α = = − + −

=−

 

 
Exercise: Neither of the Bohemian dome parameterisations are in the principal curvature directions (p. 
22). How do we know? 

 
2 The Bohemian dome was first studied by Antonín Sucharda (1854–1907), who was a mathematics professor at 
Brno University, Czech Republic [Wikipedia]. The Czech Republic consist of several parts, of which one is the 
old Kingdom of Bohemia. 

1xxn
2xxn
3xxn

xxn

0 1h2h3h 12h
y
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Parameterisation along circles   Orthogonal parameterisation  
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π < < π − π + < < π −
 

Figure 118. Bohemian dome (a = 10 m) 
 
Selecting the element type 
Suppose we can do an analysis with four node elements or eight node elements. Which element type 
is best? Of course, we want accurate results and a fast computation. Figure 119 shows some 
computation result as a function of the number of nodes. This graph is typical for complicated 
structures. If we are satisfied with an error of 10% or larger then O(h) elements require the least 
number of nodes and the least computation time. If we need a smaller error then the O(h2) elements 
need the least computation time. From this we conclude, 
 
Choose the most accurate element that is available, unless you are just testing. 
 
Also the shape of the elements is important. Quadrilaterals are more accurate than triangles of the 
same order. 
 
 

 
Figure 119. Typical convergence of a finite element result for O(h) and O(h2) elements 
 
Integration points 
In finite elements the material behaviour (stresses, stains, yielding, cracks, et cetera) is computed in a 
number of points (fig. 120). These points are called integration points or Gauss points. The stresses et 
cetera in other points of the element are computed by interpolation and extrapolation. 
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Figure 120. Possible locations of integration points in triangular elements 
 
Locking and hourglass modes 
In some element types the in plane or out of plane bending stiffness is too large. This is called shear 
locking. Some element types are too stiff for extensional deformation (p. 109). This is called 
membrane locking. These locking problems can be solved in three ways; 1) very fine mesh 2) 
different elements or 3) reduced integrations. In reduced integrations specific integration points that 
are needed for exact computation of the element stiffness are omitted. This can be an effective trick to 
improve the element accuracy. Most finite element programs use reduced integration. It can be 
switched off but it is not wise to do so. 
 
Due to reduced integration the elements may have no stiffness at all for particular deformations. 
Consequently, the elements can deform in a pattern that looks like hourglasses (fig. 121). This 
deformation is called an hourglass mode or a zero energy mode. Clearly, this is not what we want and 
all handbooks give warnings for the phenomenon. However, an hourglass mode can only occur in a 
perfectly regular mesh with special boundary conditions. In a practical finite element model these 
hourglass modes are extremely rare. The author has observed few despite many years of experience. If 
you would ever see an hourglass mode in a finite element model, please make a picture of the screen 
and send it to me. 
 

 
 
Figure 121. Deformation of square elements into an hourglass mode 
 

 
Figure 122: Hourglass mode at the left support of a deep beam finite element model 
(Abaqus, 4 node constant shear elements) 
[Curtesy of A. Al-Sharqi, CIE4180 course, assignment 1, November 2023] 

hourglass shape 

node 

thickness 

integration point 
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Finite element boundary conditions 
Boundary conditions on displacement or slope are called kinematic boundary conditions. Boundary 
conditions on membrane forces, shear forces or moments are called dynamic boundary conditions. In 
the finite element method we only specify the kinematic boundary conditions. The dynamic boundary 
conditions are fulfilled automatically, however, not very accurately. Only for small finite elements the 
dynamic boundary conditions are fulfilled accurately. 3 
 
Canopy finite element boundary conditions 
A complication is that the finite element method computes 1

2 ( )xy yxn n+ instead of xyn  and yxn . If 

we want to check the finite element results at boundaries we need to rewrite the shell boundary 
conditions (p. 67). 

The canopy in figure 123 has curvatures 10,= = = −xx xy yyk k k
a

. Substitution in Sanders-Koiter 

equation 18 (p. 54) gives 0xy yx
V n n
a

− + − = , in which is used that xyV m=  (see plate boundary 

conditions p. 60). On the front straight edge the shell boundary conditions is 0yx xxn k V− =  or 

0yxn = . From these two equations it follows that 
2 2

xy yxn n V
a

+
= . On the free curved edge the shell 

boundary condition is 0xy yyn k V− =  or xy
Vn
a

= − . From this and Sanders-Koiter equation 18 it 

follows that 3
22

xy yxn n V
a

+
= − . In one shell corner both boundary conditions on 

2
xy yxn n+

meet. The 

only solution that fulfils both equations is 0
2
+

=xy yxn n
 and 0V = . 

 
 

 
Figure 123. Finite element boundary conditions 
(The only boundary conditions we enter into the program are xu = yu = zu = ϕx = 0 and 100=F kN.) 
 

 
3 The dynamic boundary conditions are fulfilled automatically because they are used in deriving the weak 
formulation or the virtual work equation, which is used in deriving finite elements. Some scientist do not agree 
with this statement. They say it is the other way around; boundary conditions are derived from the virtual work 
equation. It is a chicken or the egg problem. 
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Canopy finite element analysis 
A linear elastic finite element analysis has been performed of the canopy. The numbers are E = 107 
kN/m2, ν = 0.15 (reinforced concrete), length = 12 m, width = 4 m, radius a = 2 m, shell thickness t = 
0.060 m, point load F = 100 kN in corner, no self-weight. The boundary conditions on the fixed 
curved edge have been specified. The boundary conditions on the free edges are a result of the finite 
element computation. The analysis has been performed by SCIA Engineer 16 (2019) with 4 node 
quadrilateral elements. Out of plane shear deformation was switched off. 
 
The results are shown in figure 124 to 133. Table 9 shows the forces and moments in four points in 
the edges. The following conclusion can be drawn from the point of view of finite element analyses. 
Some variables are small on shell edges but not zero; also not for very small finite elements. This is 
caused by the shell boundary conditions (p. 67). 
 
Note that this shell is almost thick (see thickness p. 13). 
 

 
Figure 124. Deformation of the canopy due to just the point load 
 
 

    
Figure 125. Deflection due to the point load in the global z direction [mm] 
(positive is up and negative is down) 
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Figure 126. Normal force xxn [kN/m] 
 

  
Figure 127. Normal force yyn [kN/m] 

 

   

Figure 128. In plane shear force 
2
+xy yxn n

[kN/m]  

    
Figure 129. Bending moment xxm [kNm/m] 
 

0.05 kN/m−

1.77 kN/m−

0.00 kN/m

0.00 kN/m

0.00 kNm/m

Largest computed value
The exact value is infinite
because of a singularity in
the linear elastic model.
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Figure 130. Bending moment yym [kNm/m] 
 

     
Figure 131. Torsion moment xym [kNm/m] 
 

   
Figure 132. Out of plane shear force xv [kN/m] 
 

    
Figure 133. Out of plane shear force yv [kN/m] 
 

0.61 kN/m−

0.00 kNm/m

1.60 kN/m−

1.77 kNm/m

3.47 kNm/m
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Exercise: What element size follows from the influence length? (p. 73) Is the element size in figure 
124 okay? 
 
 
Table 9. Computation results at four edge locations for five element sizes [51] 
element 
size 

xxn  yyn  1
2 ( )xy yxn n+  xxm  yym  xym  xv  yv  

 kN/m kN/m kN/m kN kN kN kN/m kN/m 
edge location (u, v) = (0, ½) 

400 mm 315.03 56.31 -6.961 -0.942 -0.1715 0.1136 -4.289 1.125 
200 mm 310.21 51.05 -3.784 -1.191 -0.2061 0.0539 -6.797 2.256 
100 mm 309.32 47.75 -2.860 -1.252 -0.1939 0.0191 -7.485 2.909 
50 mm 309.28 46.72 -2.689 -1.262 -0.1902 0.0046 -7.590 3.161 
25 mm 309.30 46.47 -2.654 -1.264 -0.1897 0.0005 -7.600 3.251 

edge location (u, v) = (0, 1) 
400 mm -3065 -460.56 230.29 -1.452  0.079 0.3110 3.8521 -1.0232 
200 mm -3238 -500.50 332.82 -1.417 -0.069 0.1121 3.9945 -0.3229 
100 mm -3475 -563.62 421.55 -1.501 -0.118 0.0141 3.0948 -0.6421 
50 mm -3781 -640.10 502.97 -1.483 -0.130 -0.031 3.2192 -2.2137 
25 mm -4162 -726.31 585.39 -1.343 -0.121 -0.051 8.6338 -6.4897 

edge location (u, v) = (½, 1) 
400 mm -1638.4 -12.55  1.8226 -1.4533 -0.0302 3.5035 0.0577 -0.6357 
200 mm -1654.7 -3.276 -0.0439 -1.4203 -0.0180 3.4789 0.0563 -0.6179 
100 mm -1658.7 -0.832 -0.3383 -1.4064 -0.0097 3.4716 0.0532 -0.6141 
50 mm -1659.7 -0.216 -0.2564 -1.4002 -0.0051 3.4693 0.0518 -0.6133 
25 mm -1660.0 -0.054 -0.1493 -1.3972 -0.0026 3.4684 0.0511 -0.6131 

edge location (u, v) = (1, ½) 
400 mm 4.415 19.91  0.5417 0.0329 -12.8505 1.8623 -4.288 6.765 
200 mm 3.058 46.57 -0.8098 0.0644 -12.8053 1.7954 -3.864 6.473 
100 mm 1.143 55.31 -1.4361 0.0147 -12.8041 1.7755 -2.504 6.355 
50 mm 0.336 57.52 -1.6548 0.0022 -12.8038 1.7712 -1.863 6.320 
25 mm 0.090 58.06 -1.7299 0.0002 -12.8035 1.7703 -1.659 6.307 

 
Exercise: Do the computed edge forces and moments comply with the canopy finite element 
boundary conditions? (p. 69) 
 
Exercise: What model accuracy (p. 84) follows from table 9? 
 
Singularities 
A singularity in a linear elastic model is a point with very large membrane forces, moments, shear 
forces or stresses. If the stress in a singularity were determined exactly, its magnitude would be 
infinite. Singularities can be expected at point loads, at point supports, at re-entrant corners and where 
line supports stop (fig. 134). 
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Figure 134. Locations of singularities 
 
Singularities can be removed from a model. The singularity under a point force can be removed by 
replacing the force by a stress on a realistic area. The singularity in a re-entrant corner can be removed 
by rounding the corner with realistic radius and allowing the material to yield at a realistic stress. The 
singularity at a point support can be removed by contact elements and geometrical nonlinear analysis. 
However, adding details to a model is extra work. In addition, a finer mesh and nonlinear analyses 
cost extra computation time. Most engineers choose not to remove singularities and instead interpret 
the computation results. For example, we know that the peak stress at a point support is unrealistic, so 
we ignore it and calculate the real support stress by hand; σ = F / A. 
 
Typical of singularities is that smaller elements give larger stresses. Therefore, do not apply the rule 
of halving the element size (p. 84) to a singularity. 
 
Almost all models with shell finite elements have singularities. Please keep this in mind when reading 
contour plots of finite element results. Often the computed peak value needs to be ignored because it 
occurs in a singularity. 
 
Exercise: What type of singularities occur in the canopy? (p. 88) 
 
Exercise: A finite element analysis is performed. Every time we half the element size, the stress peak 
increases by 7 N/mm2. Clearly, this stress peak goes to infinity. Which function describes this? Show 
that the integral of this function from zero to some value is finite. In other words; the linear elastic 
stress peak is infinite but the resultant force is not. 
 
Largest model that your PC can process 
Modern computer programs for numerical analysis use numbers with double precision. This means 
that each number is stored in 8 bytes of memory. One byte is equal to 8 bits. A bit is represented by an 
electrical switch with can assume either of two voltage levels.  
 
The most important operation that a finite element program performs is solving a very large system of 
equations that is represented in a matrix. This matrix has a length and width equal to the number of 
degrees of freedom (dofs) of the finite element model. This matrix needs to be stored in the memory 
of the PC. For example, if a model with 15000 dofs is analysed the computer needs 15000 × 15000 × 
8 = 1.8 109 bytes of memory. This is 1.8 GB (gigabyte). A powerful new PC (2019) has 
approximately 32 GB memory of which about 3 GB is used by Windows. Therefore, the model of this 
example can be analysed in memory. The linear elastic computation can be performed within a 
minute. 
 
If the matrix does not fit in memory, then the software can move most of the matrix to the hard disk. 
This computation is called out-of-core. For example, if a model has 105 dofs the required hard disk 
space is 105 × 105 × 8 = 80 GB. A partition on a hard disk might have 460 GB (2019), of which 300 
GB might be free for performing the analysis. This is more than sufficient for analysing this example. 
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The linear elastic computation can take half an hour or more. If you listen carefully, you can hear the 
hard disk becoming active. Then you know that the computation will take more than a minute. 
 
Many finite element programs use smart methods to optimise the computation. 1) The matrix is often 
symmetrical so only half of it needs be stored. 2) Most of the numbers in the matrix are just zero. The 
non-zero numbers occur around the matrix diagonal. Therefore, only the numbers within some 
distance from the diagonal need be stored. 3) This distance is called band width. The band width can 
be reduced by sorting the node numbers of the finite element model. 4) Some programs have an 
iterative solver that does not need any matrix for solving the system of equations. 
Therefore, the largest model that can be analysed depends strongly on efforts of the software 
engineers. For example, the finite element program Ansys can analyse a model of 106 dofs in half an 
hour on a normal PC (2007). The largest model also depends on the analyses choices that the software 
user makes, for example, yes or no node sorting. 
 
Moore’s law 
Moore’s law is [52] 
 
Computation power doubles every two years. 
 
This law describes the development of computation power since 1971. It is expected to be valid in the 
near future too. So, if your current PC cannot analyse a particular model, it is not difficult to calculate 
when your future PC can do this job. 
 
Arithmetic accuracy 
A double precision number has approximately 16 significant digits and a magnitude range of 
approximately 10−308 to 10+308. Some accuracy is lost in every addition, subtraction, multiplication and 
division. This is inevitable. After solving a large matrix the result can have just 3 significant digits. 
This is sufficient for most applications. The software should give a warning if the calculation is not 
accurate but some programs do not. 
 
Arithmetic accuracy can be checked in a simple way. Add all loads and add all support reactions. If 
these are not in equilibrium, the equations have not been solved accurately. 
 
Exercise: The accuracy of a finite element model depends on model accuracy and arithmetic accuracy. 
Suppose that we have a model and we reduce the element size. Which accuracy increases and which 
reduces? 
 
Exercise: Show that 3 significant digits means an error of at most 1%. 
 
Finite element benchmarks 
Shell elements need to be tested to determine their accuracy. Three tests are often applied; a cylinder 
(fig. 135), a hemisphere (fig. 136) and a hemisphere with an opening (fig. 137). The cylinder is closed 
on both ends by a diaphragm, therefore, the edge nodes are fixed in the x and y directions. Note that 
due to symmetry just part of the shells needs to be modelled. A finite element program can be checked 
by comparing the displacement under the forces with the results of others. The reference displacement 
of the cylinder directly under the force is 1.8248 mm [53]. The displayed mesh is too course for most 
applications. Approximately 1000 elements will be needed to obtain 1% error. The reference 
displacement of the hemisphere is 0.0924 m directly under the forces. Approximately 200 elements 
will be needed to obtain 1% error. The reference displacement of the hemisphere with an opening is 
0.0935 m directly under the forces. Approximately 100 elements will be needed to obtain 1% error. 
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Figure 135. Cylinder loaded by opposite forces 
 

 
Figure 136. Hemisphere loaded by opposite forces 
 

 
Figure 137. Hemisphere with an opening loaded by opposite forces 
 
Exercise: Which benchmark deforms extensionally and which in-extensionally? (see inextensional 
deformation p. 109) 
 
Modelling thick shells 
In a thick shell (p. 13) the shear deformation can be important compared to bending deformation. 
Shear deformation is included in Mindlin-Reissner elements (p. 61). These elements can be necessary 
to obtain sufficient accuracy. 
 
In a very thick shell the normal stress is not distributed linearly over the thickness and the shear stress 
is not a parabola over the thickness. Volume elements can be necessary to compute the stresses 
accurately. The element mesh needs to have several volume elements in the shell thickness. Volume 
elements are also called solids, bricks or tets. The latter is short for tetrahedrons. 
 
 
 
 
 

E = 6.825 107 N/m2 

ν = 0.3 
a = 10 m 
t = 0.04 m 

2 N 2 N 

2 N 2 N 

x y 

z 

z 

2 N 2 N 

2 N 2 N 

x y 

18 o 

E = 6.825 107 N/m2 

ν = 0.3 
a = 10 m 
t = 0.04 m 

105 N 

300 mm 

105 N 

E = 3 106 N/mm2 

ν = 0.3 
a = 300 mm 
t = 3 mm 

300 mm m 300 m 

x

y

z



96 
 

Averaging at nodes 
In the finite element method, all elements in the model are in equilibrium. However, the stresses et 
cetera on either side of element edges can be different. This is a result of approximations in the 
element formulation. Many programs can average the computation results at the nodes to make the 
stresses on either side of the element edges the same. This improves the accuracy and produces 
smooth contour plots (fig. 138). It needs to be kept in mind that this also removes real jumps in the 
results. For example, a real jump in the stresses occurs when adjacent shell elements have different 
thicknesses. 
 

 
          Not averaged    Averaged at nodes 
Figure 138. Contour plots of a finite element result 
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Influence of coordinate system on the FEM results 
When a finite element program plots membrane forces or moments the result can be a mosaic of 
colours that does not make sense (fig. 140). This is because every finite element has a different local 
coordinate system x-y-z (p. 19). Most programs align the element coordinate systems in some 
direction, for example in the hoop direction and the meridional direction (see shell force flow p. 13). 
For a complicated shell structure the program probably does not put the local coordinate systems in 
the directions you would like them to be. For example, at the edges of a shell the coordinate system 
needs to be in the direction of the edge to determine the concentrated shear force (p. 59). Another 
example is that for a reinforced concrete shell the local coordinate system needs to be in the directions 
of the reinforcement (see designing reinforcement p. 104). The directions of the local coordinate 
systems can be changed by hand (click on the elements) but this can be a lot of work. 
 
Fortunately, some finite element results do not depend on the coordinate system, for example 
principal stresses (p. 101) and Von Mises stress (p. 101). Some finite element results do not depend 
on the coordinate system, except that the sign depends on the direction of the z axis (inwards or 
outwards), for example the principal moments 1m , 2m  and the principal out of plane shear force v (see 
principal values p. 98) 
 

  
Figure 140. Bending moment yym in the fixed edge of a deformed semispherical dome. 
The colors make no sense because the element coordinate systems are not aligned. 
(Tobias Blankenstein 2019) 
 
Tensors 
A tensor is a physical quantity that transforms in a particular way when the coordinate system rotates. 
For example, moment in a shell is a second order tensor. It transforms in the following way when the 
local coordinate system rotates around the z axis from x–y–z to r–s–z. 
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In this, θ is the angle between the s axis and the x axis. 
 
When the coordinate system changes the tensor numbers change too. However, every tensor has a 
core that does not change with coordinate system changes. This core consists of the principal values 
(p. 98) and Mohr’s circle. When you think about it, anything physical cannot depend on the choice of 
a coordinate system. This must be the cause of most quantities in these notes being tensors. 
 
The other tensors in shells are 
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Principal directions 
The principal directions of a moment tensor (p. 97) are defined as the directions in which 0xym = . 
They are computed by 
 

1
1 2

2
arctan xy

xx yy

m
m m

θ =
−

 

1
2 1 2θ = θ + π  

 
Computed with similar equations are the principal directions of other tensors. As the equations show, 
they are perpendicular, except in umbilics (p. 123). 
 
The direction of the principal shear force is computed by 
 

arctan y

x

v
v

θ = . 

 
Principal values 
The moments in the principal directions (p. 98) are called principal values. They are also the largest 
and smallest moments that can be found by rotating the local coordinate system. They are computed 
by 

( ) ( )2 21 1
1 2 4xx yy xx yy xym m m m m m= + + − +  

( ) ( )2 21 1
2 2 4xx yy xx yy xym m m m m m= + − − + . 

 
The principal values of other tensors (p. 97) are computed with similar equations. The principal shear 
force is computed with 
 

2 2
x yv v v= + . 

 
Trajectories 
Software can plot principal directions (p. 98) in every finite element of a shell. By hand we can draw 
lines that follow the principal directions (fig. 141). We call these lines trajectories. Shells have many 
trajectories, for example curvatures k1, k2, normal forces n1, n2, shear force v, moments m1, m2 and 
stresses 1σ , 2σ in the bottom, middle and top surface. These trajectories do not need to coincide. In 
other courses other words are used for trajectories, for example hydraulic engineers call them flow 
lines, electro engineers call them field lines and mathematicians call them integral curves. (See also 
umbilics p. 123.) 
 
Membrane forces around a square opening 
Consider a large wall with a square opening, for example a window in a castle. A finite element 
analysis shows how the membrane forces go around the opening (fig. 141). It is tempting to expect 
that the trajectories (p. 98) form an optimal arch (p. 8) above the opening. Note that reality is 
different. 
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Figure 141. Membrane force trajectories around a square opening in a large wall 
(Linear elastic, ν = 0.2, no self-weight, vertical evenly distributed load, no horizontal load) 
Red is tension, green is compression. 
 
Exercise: Are there singularities (p. 92) in the wall membrane forces? 
 
Ellipsoid 

An ellipsoid can be described by 
2 2 2

2 2 2 1x y z
a b c

+ + = . 

It can be also described by an orthogonal parameterisation (fig. 142).  
 

2
2 2 2 2

2 2

2 2 2 2

2

2 2

cos sin cos

cos sin sin cos

sin 0

a Bx a u A a u b u
a c

y b v u B b v c v

A cz c v a b c
a c

−
= = +

−

= = +

−
= ≥ ≥ >

−

 

 
In this parameterisation xyk = 0, consequently, the parameter lines are also the curvature trajectories 
(p. 98). 
 

 
 
Figure 142. Curvature trajectories on an ellipsoid 
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Exercise: What is the Gaussian curvature of an ellipsoid at u = v = 0?  
 
Stresses 
The stresses in a shell are computed in both surfaces and in the imaginary middle surface (fig. 143). 
For this we consider three small cubes which each have 6 stress components (fig. 144). We use 
Bernoulli’s hypothesis (p. 50) to derive the stresses. The result for thin shells (p. 13) is shown in table 
11. The result for thick shells is shown in appendix 7. The derivation for both thick and thin shells is 
in appendix 6 and 7. 
 
Please note that the stress formulas for thin shells are the same as those for slender beams and 
columns with rectangular cross-sections. For example, the stress in a beam is moment over section 
modulus xx M Sσ = . In a shell the moment is per unit width and the section modulus is per unit 

width, therefore 2 21
6( ) ( ) 6xx xx xxm w wt m tσ = = . 

 
Some finite element programs plot the stresses in the global coordinate system x - y - z  (p. 19), which 
is useless for shell structures. 
 
 
 

 
 
Figure 143. Small cubes in a shell 
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Figure 144. A small cube has six stress components. 
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Table 10. Stresses in thin shells 
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Von Mises stress 
For metals the equivalent stress according to Von Mises is important. If this stress is larger than the 
yield stress then the material would have yielded. 
 

( ) ( )2 2 2 2 2 21
2 ( ) ( ) ( ) 3VM xx yy yy zz zz xx xy xz yzσ = σ − σ + σ − σ + σ − σ + σ + σ + σ  

 
Local yielding does not mean that the structure collapses. Collapse occurs only when one or more 
yield lines form a failure mechanism. The Von Mises criterion is not suitable to check stresses in 
concrete, masonry or timber. It seems that the Von Mises criterion can be used for plastics, but there 
is little experimental evidence to confirm this. 
 
Principal stresses 
The principal stresses 1σ , 2σ , 3σ  are the eigenvalues of the stress tensor.  
 

xx xy xz

xy yy yz

xz yz zz

 σ σ σ
 
σ σ σ 

 
σ σ σ  

 

 
The principal directions are directions of the eigenvectors. Unfortunately, there exist no practical 
formulas for calculating principal stresses of a three-dimensional stress state. For hand calculations 
Maple can be used to calculate eigenvalues and eigenvectors quickly. Below is an example. For 
numerical implementation the Jacobi algorithm is recommended [54]. 
 
> with(linalg): 
> S:=matrix([[1.,2.,3.],[2.,5.,-6.],[3.,-6.,9.]]); 

 := S












1 2 3
2 5 -6
3 -6 9.  

> eigenvalues(S); 
, ,-2.590969166 4.128270173 13.46269899 

> eigenvectors(S); 
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
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Top and bottom surface principal stresses 
At the top or bottom surface zz zpσ =  and 0xz yzσ = σ = . In this case the eigenvalues can be 
computed by 
 

( ) ( )2 21 1
1 2 4xx yy xx yy xys = σ + σ + σ − σ + σ  

( ) ( )2 21 1
2 2 4xx yy xx yy xys = σ + σ − σ − σ + σ   

3 zs p=  
 
Usually the principal values are ordered from large to small 
 

1 1 2 3

3 1 2 3

max( , , )
min( , , )

s s s
s s s

σ =

σ =
 

2σ  is the value that is left. 
 
Hypar curvature 
Consider a shell defined by the function (fig. 145) 
 

x yz h
b c

=  

 
This shape is called a hypar, which is short for hyperbolical paraboloid (p. 21). An orthogonal 
parameterisation (p. 25) is not available for this shape. The radius of curvature in the origin is.  
 

=
bca
h

 

 
 

 
Figure 145. Hypar, b = 5, c = 6, h = 1, Maple script: > plot3d(h*x/b*y/c, x=0..b, y=0..c) 
 

Exercise: Derive that in the origin 0xx yyk k= = , 1
xyk

a
=  and 1 2k k= − . 

 
Challenge: Find the orthogonal parameterisation of a hypar. 
(Not in the principal curvature directions. See p. 128). 
 

bc

h
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Zeckendorf plaza 
Hypars (p. 102) are very suitable for reinforced concrete roofs (fig. 146). The formwork is not 
difficult. It can constist of steel struts, straight parallel timber beams and slightly twisted plywood 
plates (see plate twisting p. 120). Hypar shells can be very thin, for example 70 mm, which provides 
just enough cover on the reinforcing bars. 
 

 
Figure 146. Zeckendorf  Plaza, Denver, USA 
 
Zeckendorf  Plaza, Denver, USA [55, 56] 
Built for the firm Webb & Knapp which was owned by William Zeckendorf 
Architects: Ieoh Ming Pei, Henry Cobb 
Engineer: Anton Tedesko 
Build in 1958, demolished in 1996. 
Shell span 132' x 112', shell height 28', thickness 3'' 
It won an award from the American Institute of Architects. 
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Figure 147. A thin shell roof consisting of four hypars 
 
Exercise: Calculate the a/t ratio of Zeckendorf Plaza. 
Hypar membrane forces 
The membrane forces in a hypar roof (p. 102) are approximately 
 

1 1
2 20, 0, ,= = = − = −xx yy xy z yx zn n n a p n a p . 

 
This follows from shell membrane equation 1, 2 and 3 (p. 38). The x and y directions are along the 
edges. In the derivation is assumed that 0x yp p= =  and that the edge beams have little bending 

stiffness and do not carry xxn or yyn at the shell edges. 
 
Checking membrane reinforcement 
Suppose that somebody has designed reinforcement for a concrete shell. The bars in the x direction 
yield at a membrane force sxn [kN/m]. The bars in the y direction yield at a membrane force syn . In 
other directions there are no bars. Clearly, we need to check whether xx sxn n≤  and yy syn n≤ . How 
can we check xyn  and yxn ?  Equilibrium of a small shell part shows that 
 

( )( )xy yx sx xx sy yyn n n n n n≤ − −  
 
Perhaps you prefer to write the latter with an utilisation factor. For this, solve µ from 
 

( )( ) 1xy yx sx xx sy yyn n n n n n= µ − µ − µ ≤  
 
The result is 
 

21 1
2 4( ) ( ) 1+ + − + ≤yy yy xy yxxx xx

sx sy sx sy sx sy

n n n nn n
n n n n n n

 

 
Exercise: Derive that ( )( )xy yx sx xx sy yyn n n n n n≤ − − . 

 
Exercise: The equation ... 1≤  is similar to the equation of the first principal value (p. 98) of a tensor. 
Would utilisation be a tensor too? 
 
Designing membrane reinforcement 
Suppose that we want to design the least amount of reinforcement that can carry the load. We assume 
there is just one load combination, which belongs to the ultimate limit state (p. …). We assume that 
the reinforcing bars are in the local x and y directions. At some shell location, the bars in the x 

1 2

3 4 horizon
support

•
••

•
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direction yield at a membrane force sxn [kN/m]. The bars in the y direction yield at a membrane force 

syn . The amount of reinforcement is proportional to sxn + syn . This is to be minimised. The 
constraints are specified in the above note (see checking membrane reinforcement p. 104). There are 
four solutions, which are shown in table 12. The first row contains the conditions for a solution to be 
valid. The second row shows the membrane forces that the reinforcement needs to carry. It also shows 
the stress in the concrete cσ . 
 
Finite element computer programs can plot these bar membrane forces sxn , syn  as a contour plot over 
the shell surface. We need to rotate the reference system x–y–z of each finite element in the 
reinforcement directions. 
 
Exercise: The reinforcement in a hypar (p. 102) can be directed along the hypar edges or along the 
hypar diagonals. Which direction gives the smallest amount of reinforcement? 
 
 
Table 11. Membrane forces sxn and syn  for designing shell reinforcement 
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Timber grid shell design 
A timber grid shell consists of many laths that are bent into a curved shape and subsequently 
connected together (see Savill building p. 22). Suppose that a lath is in the local x direction. The 
largest normal stress due to bending is 1

2xx xxE t kσ = , where t is the lath thickness. The lath can also 

be twisted. The largest shear stress due to twisting is 1
2xy xyE t kσ = . These stresses occur in the same 

material cube and can be checked by 2 2( ) ( ) 1xyxx

t sf f
σσ

+ ≤ , where tf is the wood tensile strength 

and sf is the wood shear strength. The utilisation value can be plotted as a function of the direction of 
the x axis. This shows that for any grid shell shape it is best to point the laths in the principal 
curvature directions (p. 98). 
 
Consequently, for the laths not to break during construction, the architect needs to make sure that the 
principal curvatures (p. 98) of the grid shell surface are nowhere too large. 
 

2
2 tf k
Et

− ≤ , 1
2 tfk
Et

≤  
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The architect’s software – for example Rino – can display the principal curvatures with contour plots 
on the shell surface. 
 
Exercise: Derive the latter formulas yourself. 
 
 
Particle-spring method 
Determining the grid of a grid shell cannot be done by hand. It would be too much work. A suitable 
grid can be found by a computer algorithm called particle-spring method [58]. In this method, 
particles are connected by five types of spring (table 12). At the start of the computation the grid of 
particles and springs is flat. During the computation the grid is pushed onto an object. The result is a 
curved grid (fig. 148). The spring stiffnesses can be adjusted to improve the grid. 
 
 
 
 
Table 12. Types of spring in the particle-spring method 
spacing orthogonality in-plane 

curvature 
out-of-plane curvature twist 
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Figure 148. A computed grid using the particle-spring method [58] 
 
The particle-spring method can be used to represent continuous shells too. To this end, deform the 
grid in the desired shape. Use a small particle spacing and a large stiffness of the orthogonality 
springs to make the grid directions almost perpendicular (see orthogonal parameterisation p. 25). 
Redefine the spring deformations as zero and apply the spring stiffnesses of table 12. Finally, apply 
supports and loads. In the table, xα and yα are the particle spacings in the local x and y directions. 
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Exercise: Derive one of the spring stiffnesses in table 12. 
 
Spring back analysis 
The shape that the architect designed for a timber grid shell is probably not in equilibrium. This is 
explained with a thought experiment, in which we have many giants at our disposal. The giants push 
the laths of a grid shell into the shape that the architect designed.4  Subsequently, construction 
workers make the connections between the laths. The giants feel the forces that they exert on the laths. 
The connections did not change these forces because nothing moved. When the giants let go of the 
grid shell it springs to its equilibrium shape. Suppose that the giants do not let go and keep exerting 
forces to the lath connections to maintain the architect’s shape. These forces can be calculated from 
the curvatures of the laths. To remove the giants’ forces we apply opposite forces on all lath 
connections. We assemble all the latter forces in a load case called “spring back”. Wood creeps 
strongly, therefore, in time the forces will be reduced to about half the initial value. 
 
Timber grid shell analysis 
A timber grid shell can be analysed with a three dimensional frame program. The structure is idealised 
with many straight frame elements following the shape that the architect designed. The elements do 
not have an initial stress. (Clearly, in reality the bend laths have large initial stresses but most frame 
programs are not able to process this.) The first load case that is applied to the structure is spring back 
(p. 106) with a load factor of 0.5 to determine the equilibrium shape of the structure. The “0.5” 
accounts for relaxation. Subsequently, the other load cases are applied, such as self-weight, wind and 
snow. Probably, all analyses can be linear because only small displacements are obtained. (Large 
displacements would not be acceptable). When checking the stresses we need to manually add half the 
stress due to bending into the architect’s shape. 
 
Exercise: To compute the forces of the giants we consider a continuous beam over five pinned 
supports. Check the following matrix by computing the value of 3F  with a frame analysis program. 
 

 
 
Challenge: A beam continues over an infinite number of pinned supports.  

 
Derive the following equation. 

 
4 In reality, contractors use scaffolding instead of giants. 
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3
0 1 2 3 4... (36 3 48) (72 3 114) (252 3 432) (936 3 1620) (3492 3 6048) ...= + − − − + − − − + − −

Fd u u u u u
EI

The next factor can be obtained by multiplying the last factor by 3 2−  et cetera. 
The factors evaluate to 

3
2 1 0 1 2 3 4 5... 4.48 10.71 14.35 10.71 4.48 1.20 0.32 0.09 ...− −= + − + − + − + − +

Fd u u u u u u u u
EI
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Inextensional deformation 
Figure 149 shows a very thin plastic spherical cap. The cap is simply supported and loaded by 
a force. The person applying the force feels that the shell is quite stiff. We see bending 
deformation but we know that the shell middle surface is stretching too. Otherwise this thin 
shell would not be stiff. This deformation is called extensional deformation because the shell 
middle surface is stretching. The loading is carried mostly by membrane forces and only a 
little by bending moments. 
 
Figure 150 shows the same spherical cap but now free from its supports. The person applying 
the load feels that the shell is not stiff at all. This deformation is called inextensional 
deformation because it does not involve stretching or shrinking of the middle surface. The 
loading is carried mostly by bending and only a little by membrane forces. 
 

     
Figure 149. Extensional deformation              Figure 150. Inextensional deformation 
 
In general, suppose that a shell roof is loaded by snow. If it deforms inextensionally the 
displacements are very large and the bending stresses are very large. Clearly, thin shells need 
to be designed such that inextensional deformation does not occur for any applied force. 
 
However, inextensional deformation gives small stresses when a displacement is imposed, for 
example a foundation settlement. If the response to a foundation settlement would be 
extensional the stresses would be very large. Therefore, shells need to be designed such that 
inextensional deformations occur for imposed displacements. 
 
Viking ship Oseberg 
Viking ships (fig. 151) are known to be very flexible [59]. This has two causes. 
1) The planks of a Viking ship are joint by iron rivets (fig. 152). The planks form an open 
shell which can move inextensionally (p. 109). The motion is somewhat controlled by curved 
members (ribs and knees) and horizontal members (beams and thwarts) (fig. 153). 
2) The Vikings had no saws to cut timbers. (In those days, manufacturing thin steel plate was 
difficult.) They used axes for cutting timber. To make ship members they split the timber 
along the grain. Timber cut along the grain (by axe) is much stronger than timber cut through 
the grain (by saw). Therefore, each Viking ship member was strong, light and flexible. 
It is not clear whether the Vikings liked their ships to be very flexible. The flexibility was just 
a consequence of planks joint into an open shell and light timber cut along the grain. Note that 
steel ships cannot be flexible. They would suffer from fatigue. 
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Figure 151. Viking longship Oseberg, Norway,       Figure 152. Rivets next to an oar hole 
800 AD, 21.58 m long 5.10 m wide 
 
 

 
Figure 153. Parts of a Viking ship (words in English and old Norwegian) 
(www.vikingskip.com) 
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Liquid storage tanks 
In Rotterdam port there are many liquid storage tanks. The tanks are welded out of 10 mm 
thick steel plates. The bottom steel plate is supported by square concrete plates that are simply 
placed onto compacted sand. Some of these tanks have a roof that floats onto the liquid. This 
is to prevent build-up of explosive gases in half filled tanks. Unfortunately, many tank roofs 
get stuck against the tank walls after just a few years of operation. 
 
It appeared that some concrete plates settle more than at others. Therefore, the steel bottom 
plate curves and the tank wall deforms (fig. 154). Small settlements can cause surprisingly 
large wall deformations. This deformation is inextensional (p. 109). For the tank itself this is 
good because the steel stresses are small despite the large deformations. Unfortunately, as a 
consequence the floating roof gets stuck. Clearly, a floating tank roof needs be designed with 
a large clearance to the tank wall. 
 

 
Figure 154. Inextensional deformation of a storage tank without roof [60] 
 
Analysis of the liquid storage tank 
The inextensional deformation of a liquid storage tank can be analysed by hand. Someone 
found out that the deformation is described by [60] 
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where a is the tank radius and w is the vertical displacement of ′Q .This can be checked by 
substituting these equations in the shell membrane equations (p. 38). 
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where has been used that 0= =xx xyk k , 1
= −yyk

a
and 1x yα = α = . Apparently, all strains of 

the middle surface are zero, therefore, the described deformation is inextensional. 

The horizontal displacement at ′P (u = l, v = 0) is 4
=z

wlu
a

. 

 
Rijswijk shell roof 1 
In the city of Rijswijk (ZH) in the Netherlands a reinforced concrete shell roof was built for a 
factory. The shell consisted of several half cylinders that continued over three supports (fig. 
155). Due to the heavy materials stored in the factory the foundation started settling and some 
columns were pulled down more than others. In the lateral direction the shell followed the 
deformations beautifully in an inextensional way. However, in the axial direction the shell 
deformation was extensional (p. 109) and stiff. Apparently large membrane stresses occurred 
because large cracks were clearly visible in the shell near the settled columns. After a few 
years already, the building needed to be demolished due to excessive maintenance costs. The 
conclusion is that cylinder shell roofs should not span over more than two supports. 

 
Figure 155. Extensional deformation of a shell roof in the city of Rijswijk 
 
Spotting inextensional deformation 
Inextensional deformation and extensional deformation can occur together. For example, a 
cylinder that is loaded in the axial direction (fig. 156). This loading will compress the middle 
surface and cause extensional deformation. On the other hand, a lateral loading on this 
cylinder will cause mainly bending and the deformation will be inextensional. When the loads 
are applied together, the combined deformation will be extensional. 

 
Figure 156. Extensional and inextensional deformation of an open cylinder  
 
Vibration mode shapes 
One way of spotting inextensional deformation (p. 109) is to compute the natural frequencies 
(p. 156) of a shell structure. If inextensional deformation is possible this mode will have the 
smallest natural frequency. In most well designed shells the modes shapes are local 
deformations. Inextensional deformations, on the other hand, typically are deformations that 

 
1 Told by Henk van Koten in a lecture in May 2007. Henk van Koten (1929 – 20..) was a teacher at 
Delft University. 

axial cross-sectionlateral cross-section
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involve a large part of a shell. This approach does not work for spotting extensional 
deformation due to support settlements. 
Strain energy 
Another way of spotting inextensional deformation (p. 109) is observing the strain energy in a 
shell. The membrane strain energy in a small shell part is 
 

1 1 1
2 2 2= ε + γ + εsm xx xx xy xy yy yyE n n n . 

 
The bending strain energy is 
 

1 1 1 1 1
2 2 2 2 2sb xx xx xy xy yy yy x xz y yzE m m m v v= κ + ρ + κ + γ + γ . 

 
In this it is assumed that the material behaviour is elastic. The strains and curvatures are those 
of the middle surface. Note that strain energy does not have a direction and is always positive. 
A ratio α can be defined as 
 

−
α =

+
sm sb

sm sb

E E
E E

 

 
A contour plot of α over the shell shows where membrane action is dominant (0 < α < 1) and 
where bending action is dominant (–1 < α < 0). Dominant bending action is a sign of 
inextensional deformation. Unfortunately, most structural analysis programs cannot plot this 
quantity.  
 
Theorema egregium 
The shell compatibility equation (p. 57) reads 
 

2 22

2 2
∂ γ ∂ ε∂ ε

− + − = − κ + ρ − κ
∂ ∂∂ ∂

xy yyxx
yy xx xy xy xx yyk k k

x yy x
 

 
The left hand side represents membrane deformation. The right hand side represents bending 
deformation. Both sides are equal to the increase of the Gaussian curvature Gk (p. 23) during 
loading. This is proved in appendix 8. Studying the compatibility equation we see the 
following. 
 
If the deformation is inextensional ( 0xx xy yyε = γ = ε = ) then the Gaussian curvature does not 
change. 
 
This property was discovered by the mathematician Carl Gauß in 1827. Gauß called it 
theorema egregium, which is Latin for “remarkable theorem”. He formulated it as “If a 
curved surface is developed upon any other surface, the measure of curvature in each point 
remains unchanged.” (translated from Latin) It is true for small, large and very large 
deformations [61]. 
 
Exercise: How do we call “developed upon”? How do we call “measure of curvature”? 
 
Studying the compatibility equation we see that there are more situations in which the 
Gaussian curvature does not change due to the load, for example 1xx xy yyε = γ = ε =  
everywhere. So, inextensional deformation is a special case of no-change-in-Gaussian-
curvature (fig. 157). 
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Figure 157: Venn diagram of local shell behaviour 
 
Shells behaving like a plate 
 
If the Gaussian curvature does not change by a load perpendicular to the surface, then this 
load is carried in bending only. 
 
Proof: The increase of the Gaussian curvature can be written as (appendix 8) 
 

2 2 2

2 22z z z
z yy xy xx

u u uu k k k
x yx y

∂ ∂ ∂
Γ = − +

∂ ∂∂ ∂
. 

 
The shallow shell differential equation (p. 59) is 
 

3
2 2 2 2 2 2

212(1 )
∇ ∇ ∇ ∇ + ΓΓ =∇ ∇

− ν
z z z

E t u E t u p . 

 
When the Gaussian curvature does not change then 
 

0Γ =zu . 
 
If this condition is fulfilled over some shell area then the differential equation in this area 
reduces to 
 

3
2 2

212(1 )
∇ ∇ =

− ν
z z

E t u p  

 
which is the differential equation of plates loaded in bending. Though the shell is curved, the 
load zp is carried by bending moments and not by membrane forces. Q.E.D. 
 
Shell design 
Suppose we are designing a thin shell and part of its area has very large stresses (1). We 
increase the thickness and this reduces the stresses. However, we find that for acceptable 
stresses the thickness needs to be large (2). The large stresses seem to be caused by large 
bending moments and not by normal forces (3). Now we have observed three symptoms of 
inextensional deformation (p. 109) and we think that this might be the problem. We plot the 
increase of the Gaussian curvature for each load case. It appears that for one of the load cases 
the increase of the Gaussian curvature is almost zero in the problem area. Now we know for 
sure that our shell suffers from inextensional deformation. A solution can be to add a stiff 
beam to the shell edge. 
 
 

change in kG 

no change in kG 

inext. def. 
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Plotting Gaussian curvature 
Unfortunately, most finite element programs cannot make a contour plot of the Gaussian 
curvature or the increase of the Gaussian curvature. Programmers need to implement this, 
which is not an easy task. Only for high accuracy elements the Gaussian curvature can be 
computed from information available within an element (see shell finite elements p. 82). 
 
Kresge Auditorium 
Kresge Auditorium is a building at MIT campus in Cambridge (close to Boston, USA) (fig. 
158). It was completed in 1955. Its shape is spherical with three edge beams and three point 
supports. The reinforced concrete edge-beams prevent inextensional deformation (p. 109) of 
the reinforced concrete shell. The edge beams cause edge disturbances (p. 14) in the shell. 
The height is 15 m. The span between two supports is 48 m. The shell thickness is 90 mm. 
The architect is Eero Saarinen. The engineering firm is Ammann & Whitney. The contractor 
is the George A. Fuller Company. The money was donated by Sebastian Kresge 
($1.5 million). 
In the original design the curtain walls were horizontally supported by the edge beams. In the 
vertical direction the curtain walls were self-supporting with an expansion joint to the edge 
beam. However, after removal of the timber formwork much creep occurred in the concrete 
(more than 130 mm deflection). Therefore, the curtain walls were quickly redesigned to also 
vertically support the edge beams [62]. 
 
The current roof cover dates from 1980. It consists of copper sheets. Earlier roof covers were 
made of plastic applied as a liquid (lasted 8 years) and soldered lead sheets (lasted 15 years). 
They cracked due to temperature deformation of the roof. (In the Boston climate half a roof 
can be covered in snow while the other half is heated by the sun.) The cracks and lack of 
ventilation made the concrete wet. Corrosion and freezing severely damaged the concrete. 
Extensive and costly repairs have taken place, including replacing large parts of the edge 
beams. If the building were not architecturally important, it would have been replaced a long 
time ago. Fortunately, the problems seem to be solved now [62]. 
 

 
Figure 158. Kresge Auditorium (MIT, Cambridge USA)  
 
Kresge auditorium has whispering galleries (p. 43). Nevertheless, the acoustic properties are 
quite good and it is often used as a concert hall. 
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Exercise: The radius of curvature of Kresge Auditorium can be calculated by 
2

1 1
2 6

la s
s

= + , 

where s is the sagitta and l is the distance between the supports. Derive this formula. 
 
Deitingen petrol station 
In Switzerland next to highway A1 is Deitingen petrol station (fig. 159). It has two reinforced 
concrete canopies that have been designed by Heinz Isler.2 They have been built by Willi 
Bösiger AG in 1968. Note that this shell does not have edge beams. It can deform 
inextensional but apparently this does not give problems. The span is 31.6 m. The smallest 
thickness is 90 mm. The radius of curvature is 52 m. The ratio a/t  = 580. 
 
The formwork of this shell consisted of steel scaffolding, curved glulam beams 
(approximately 180 x 50 mm spaced 800 mm) and wood floor boards. The formwork parts 
were reused on other projects. The concrete is watertight and a roof cover has not been 
applied. The surface is just painted [63, 64, 65]. 

   
Figure 159. Deitingen petrol station Figure 160. Model of a shell 

structure made by Heinz Isler [64] 
 
Gauß-Bonnet theorem 

A sphere has in every point a Gaussian curvature of 1 2 2
1 1 1( )( )Gk k k
a a a

= = − − = . 

It has a surface area of 24A a= π . 

The total Gaussian curvature of a sphere is 2
2

1 4 4G G
A

k dA k A a
a

= = π = π∫ . 

When this calculation is repeated for an ellipsoid, a tractricoid or a brick the results are also 
4π. The total Gaussian curvature of the surface of any object without holes is 4π. If the object 
has one hole then the total Gaussian curvature is 0. If the object has two holes the total 

 
2 Heinz Isler (1926–2009) was a Swiss engineer. He designed more than 1200 reinforced concrete shell 
structures. Most were built between 1955 and 1979. He did not use computers for structural analysis. 
Instead, he used plastic models and strain gauges to determine deflections, stresses and buckling loads 
(fig. 133) [64]. 
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Gaussian curvature is -4π. This is the Gauß-Bonnet theorem which was published by the 
mathematician Pierre Bonnet in 1848 [Wikipedia]. 
 
Table 13. Total Gaussian curvature of 10 objects 

 

4π 

      

0 

       
  

– 4π 

 
Exercise: Which are the two holes in a teapot? 
 
Exercise: The total Gaussian curvature of a brick is 4π. A brick has 6 faces, 8 edges and 8 
corners. Which part contributes most to the 4π ? 
 
Corollary 
Consider a point load perpendicular to the surface of a shell. Under the point load the 
Gaussian curvature has decreased (or increased). According to the Gauß-Bonnet theorem (p. 
116) the total Gaussian curvature does not change. So somewhere else the Gaussian curvature 
must have increased (or decreased). Apparently, shells carry load by moving around Gaussian 
curvature. 
 
Force on a sphere 
In 1946 Eric Reissner solved a simplified version of the Sanders-Koiter equations (p. 54) for a 
spherical cap loaded by a force perpendicular to the surface. The solution consists of Kelvin 
functions [67]. The deflection zu under the point load P is 
 

2
2

3 1
4z

Pau
Et

= − ν . 

 
The membrane forces under the point load are  
 

2
1 2

3 1
8

Pn n
t

= = − − ν . 

 
 
 

4 at

P

zu
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Force on a shell of positive Gaussian curvature 
In 1963, He Guang Qian (何广乾 pronounce ho kwang tsien) and Chen Fu (陈伏) derived the 
solution to a force perpendicular to a shell of any positive Gaussian curvature [68]. 3 
 

2
2

3 1
4z

G

Pu
Et k

= − ν . 

 
The formula is accurate when the deformation is extensional and the distance from the point 
load to the shell edges is large. The membrane forces under the point load are the same as for 
a force on a sphere (p. 117) 
 
Force on a cylinder 
In 1977, Chris Calladine studied circular cylindrical shells loaded by point loads (fig. 161) [69 
p. 305]. 4 He found a difference between long cylinders and short cylinders. 

long cylinder al at
t

>      
3

1 2
3 22 1z

P au
Et t

−  = − ν 
 

 

short cylinder aat l at
t

< <  with fixed ends  
5 1
4 221

4 2 1z
P a lu
Et t a

   = − ν   
   

 

    with diaphragm ends 
5 1
4 221

2 1z
P a lu
Et t a

   = − ν   
   

 

with free ends  
2

21
2 1z

P a au
Et t l

 = − ν 
 

 

 
where l is half the cylinder length. The membrane forces under a point load are 
 

2
1 2

30, 1
8

Pn n
t

= = − − ν .5 

 
The principal normal force directions are the principal curvature directions. 
 
The cylinder formulas are not accurate at the transition between long and short. The accurate 
deflection can be read from the graphs in figure 161b. These graphs were computed by 
representing the point loads as a summation of sine line loads (Fourier series p. 165). The 
formulas were derived as straight line curve fits of the graphs. 
 
Exercise: Which of the cylinder formulas describes inextensional deformation? 

 
3 He and Chen worked at Ministry of Building Construction in China. Their formula was confirmed by 
Russian, European and American scientists a few years after it was discovered. Unfortunately, by then 
the cultural revolution (1966–1975) had destroyed Chinese science. 
 
In 2012, Amir Semiari made finite element models of surfaces of varying curvature for his bachelor 
end project in Delft University [70]. He did not know of He and Chen’s solution. He also found that 
Reissner’s solution of a point load on a sphere can be adapted to shells of any positive Gaussian 
curvature by replacing the radius a by 1 Gk . 
 
4 C.R. Calladine (1935–…) was professor of structural mechanics at the University of Cambridge 
[Wikipedia]. 
 
5 The formulas are also valid for a negative load P. In that case, exchange 1n and 2n . 
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Figure 161. Two point loads on a circular cylindrical shell 
 
 

 
Figure 161b. Deflection at one of the point loads in figure 161 [69 p. 305]  
 
Force on a shell of negative Gaussian curvature 
In 2013, Nathalie Ramos studied anticlastic shells loaded by perpendicular forces. From many 
finite element results she derived the following formulas [73]. The deflection zu under the 
force P is 
 

2
20.92 1= − ν

−
z

G
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The membrane forces under the force are 
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− −G G

k kP Pn n
t tk k

. 

P

P

1
221l a

a t

−
 − ν 
 

3
221zu Et a

P t

−
 − ν 
 

   fixed ends
   diaphragm ends

free ends  

long



120 
 

 
Figure 162. Point load on a hypar shell 
 
Moments due to a force 
In 2016 formulas were developed for moments due to perpendicular forces on shells of any 
curvature [74]. 

1 2
2

2 2
1

0.0388(1 ) ln

0.0388(1 ) ln

tm P
k d

tm P
k d
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= + ν





 

where 
 

2 1 2 1 2

1 2 1 2 1

0.00725 0.199 0.0529 0.0298

0.00725 0.199 0.0529 0.0298

k k k k k

k k k k k

= + + +

= + + +





 

 
Symbol d represents the diameter of the circular area over which the load is distributed (fig. 
162). The moments 1m and 2m are the local peaks, which occur directly under the force. They 
are in the principal curvature directions; 1m is in the direction of 1k and 2m is in the direction 
of 2k . The formulas are also valid for P < 0, however, then 1m is not larger than 2m . This can 
be simply solved by exchanging the names 1m and 2m . 
 
Plate twisting 
A flat plate has zero Gaussian curvature. When the plate is twisted it has a negative Gaussian 
curvature. Since the Gaussian curvature has changed, membrane forces develop (see 
Theorema egregium p. 113). The phenomenon can be observed in a towel (fig. 163). Ask 
someone to hold two corners of the towel and hold the other two corners yourself. Stretch the 
towel firmly. Move slowly one of the corners out of plane. You will observe that the middle 
of the towel becomes floppy. If the towel were a plate, the middle would be compressed and 
the edges would be tensioned. 
 

 
 
 
 
 
 
 

Figure 163. Twisted towel. The edges are stretched and the middle is floppy. 

xy

z

d
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Due to compression in the middle a twisted plate can buckle. The shape changes from a hypar 
to a cylinder and the Gaussian curvature disappears. Buckling occurs at an out of plane corner 
displacement u = 16.8t . This has been discovered by Dries Staaks in his 2003 graduation 
project [75]. In the plate middle the membrane forces are 
 

21
1 2 107 Gn n E t b k= = , 

 
where b is the plate length and width [75b]. In the plate edge the membrane forces are 
 

21
1 226 0Gn E t b k n= − = .6 

 
Before buckling the Gaussian curvature is 2 4

Gk u b= − . The latter equation can be derived 
in the same way as hypar curvature (p. 102) The previous formulas are for square panels. 
Unfortunately, for rectangular panels no formula is available. Important applications are glass 
façades and glass roofs (fig. 165). 
 
 

 
 

Figure 165. Canopy of twisted glass panels at a bus stop in Delft, the Netherlands 
 
Exercise: A reinforced concrete hypar (a = 140 m) will be cast on a timber formwork. The 
formwork will consist of straight beams in parallel to the hypar edges and multiplex plates. 
The plates will be twisted. Clearly, we do not want them to buckle. The factory dimensions of 
the plates are 2440 x 1220 x 18 mm. Do the plates need to be cut to a smaller size? 
 
Gaussian curvature of boats 
Steel boats are made of plates that have zero Gaussian curvature both before assembling and 
after assembling (fig. 166). An edge where the plates are connected is called chime. 
 

 
6 These formulas are also valid for positive Gaussian curvatures. In that case, exchange n1 and n2.  
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Figure 166. Curved plates at the bow of a steel boat (zero Gaussian curvature) 

 
Prestressing tents 
Tents are made of fabric parts that are sewed together. The Gaussian curvature of the fabric is 
zero (It leaves the factory on a role). Therefore, in a traditional circus tent every fabric part 
has zero Gaussian curvature (fig. 167). However, architects like smooth shapes which do have 
Gaussian curvature (fig. 168). If we impose a Gaussian curvature to a fabric it wrinkles, 
unless it is prestressed. In the direction of the seams the required prestress is 
 

21
24xx Gn E t b k= − , 

 
where b is the fabric width. Perpendicular to the seams the required prestress is 
 

4
1

6144
G xx

yy
E t b k k

n
z

= , 

 
where z is accepted maximum distance from the theoretical smooth surface to the tent fabric 
[76]. 

 

 
Figure 167. Traditional circus tent (zero Gaussian curvature) 

 

chime 

keel 
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Figure 168. Canopy at the European patent office in Rijswijk, Netherlands (negative 
Gaussian curvature) architect Lewis X Associates, consultant Tentech, contractor Poly-Ned 

 
Figure 169. Four hypar shells 
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Figure 170. Moment trajectories in one of the hypar shells of figure 169 due to self-weight 
 
Umbilics 
An umbilic is a point in a tensor field where both principal values are the same. For example 

xxm = 40 kNm/m, yym = 40, xym = 0. Consequently, 1m = 40 and 2m = 40 and Mohr’s circle 
is just a point. Principal directions cannot be determined. The reason is that the principal 
directions are defined as the directions in which xym = 0. In an umbilic xym = 0 in any 
direction. Umbilics are also called umbilical points or isotropic points. 
 
Umbilics draw attention to themselves, however, they are harmless. It seems that shells are 
less likely to fail in umbilics then in other locations. 
 
Umbilical patterns 
The trajectories (p. 98) around an umbilic (p. 123) have a particular pattern. If the tensor field 
is linear in x and y around the umbilic then either a monstar or a star occurs (fig. 171). Both 
patterns have three trajectories that go through the umbilic. These trajectories are called 
ridges. The ridges of a monstar are always within a 90º angle. The ridges of a star are always 
not within a 90º angle. When any two ridges have an angle of exactly 90º then the third ridge 
does not occur and the usual orthogonal pattern occurs. 
 
When the three ridges of a monstar coincide a lemon occurs.7 When two ridges of a monstar 
coincide a pattern occurs that does not have a name. Let us call it a flame.8 Figure 172 shows 
the trajectory pattern as a function of the ridge angles (see appendix Umbilical patterns). 
 
More patterns are possible if the tensor field around an umbilic is nonlinear in x and y. Then 
the number of ridges is unlimited, for example the moment trajectories around a point load on 
a shell. These are not studied in these notes. 
 

 
           monstar      star               lemon           flame 
 

Figure 171. Trajectory patterns around an umbilic in case of a linear tensor field 
 

 
7 The name lemon is related to the fruit’s shape that can be recognised in the trajectory pattern. 
  The name monstar is derived from lemon-star. 
 
8 The theory of umbilics has been developed by mathematicians studying differential geometry [77]. 
They probably thought that the flame was not interesting and did not need mentioning. This has created 
confusion amongst engineers who observed trajectories in which two ridges crossed at angles different 
than 90º which they thought would not be possible. By giving it a name future confusion can be 
avoided. 
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Figure 172. Umbilical patterns as a function of the ridge angles 1φ  and 2φ  
Monkey saddle 
A monkey saddle (fig. 173) is a surface described by the function 
 

3 2

2
3

6
x x yz

a
−

=  

 
An orthogonal parameterisation (p. 25) is not available. The origin is a point of zero Gaussian 
curvature (p. 23) in an area of negative Gaussian curvature. The curvature trajectories (p. 98) 
show a star umbilic (p. 124). 
 

 
Figure 173. Curvature trajectories on a monkey saddle 
 
Exercise: People in Switzerland use the words Kammweg and Talweg. These words are useful 
in geometry too. Can you apply these to the monkey saddle? 
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Figure 174. Sydney opera house 
 
Architect: Jørn Utzon 
Engineering: Ove Arup and partners 
Contractor: Hornibrook Group Pty Ltd. 
The building was designed in 1955 and completed in 1973. 
The shell roofs are made of precast concrete panels supported by precast concrete ribs. 
Cladding: white tiles 
Costs:  $102 million 
 
Hypar edge moments 
The edges of hypar shells are supported by edge beams. The edge beams help the shell by 
carrying normal forces but they also cause edge disturbances (p. 14). Figure 175 shows hypar 
bending moments for a hinged edge and a fixed edge. The loading p is perpendicular to the 
surface and evenly distributed. The hinged edge represents a small edge beam with little 
torsion stiffness. The fixed edge represents a strong edge beam or an interior beam which will 
not twist because it is loaded symmetrically. The graphs were made by Henk Loof in 1961 
[78]. For example, in the graph we read that the largest moment at a non-twisting edge beam 
is 

4
3

20.511 ( )xx
pm at l

l
= − , 

where l is the length of the edge beam. The related shear force is (slope of the moment 
distribution) 
 

1.732x
p atv

l
= . 

 
 
 
 
 
 



127 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 175. Bending moments in the edge of hypar shell 
 
Unfortunately, the graphs are not accurate for all situations [79] and finite element analyses 
are necessary to check hypar designs. 
 
Berenplaat hypar roof 
In Spijkenisse, the Netherlands … Berenplaat water treatment facility,  
Filter house, 107 x 133 m, consists of twenty reinforced concrete shells. Each shell consists of 
4 hypars. 
Architect: Wim Quist 
Built from 1959 to 1964. 
Not open to the public. 
 

  
Figure 176. Berenplaat water treatment facility [Yoshito Isono] 
 
Paaskerk hypar roof 
The Paaskerk is a church in Amstelveen, the Netherlands. 
Its roof consists of one thin hypar shell. 
It was built in 1963. 
Architect: Johan van Asbeck 
Contractor: Woudenberg te Ameide 
Plan 21.50 x 21.50 m, a = 31 m 
Dutch national monument 
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Figure 177. Paaskerk 
 
Surprising flexibility 
Figure 178 shows a curved shell roof supported by brick walls. The twisting curvature xyk is 

zero. The Gaussian curvature Gk  is negative. The brick walls provide diaphragm boundary 
conditions (p. 69) to the shell. (In brick walls occur only normal forces and in plane shear 
forces. A significant abutment force from the shell to a wall would not be resisted; the wall 
would just crack and bend.) The shell length xl  and shell width yl  are special; they have the 
ratio 

yyx
y xx

kl
l k

= − . 

 
This particular shell and boundary conditions is surprisingly flexible; it suffers from 
inextensional deformation (p. 109) [80]. The deformation is described by  
 

sin cos , cos sin , cos cos .y yyx xx
x y z

x y x y x y

l kl k u v u v u vu u u
l l l l l l
π π π π π π

= = =
π π

 

 
The problem can be solved by a significant change to the shell length, width, curvatures or 
boundary conditions. However, if the length or the width is doubled, the inextensional 
deformation still occurs. The deformation simply repeats itself. 
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Figure 178. Curved shell roof supported by brick walls 
 
Exercise: Proof that the above deformation is inextensional indeed. Assume that the shell is 
shallow. So, u ≈ x, v ≈ y, xxk and yyk are constant. Note that for positive Gaussian curvatures 

this inextensional deformation is imaginary ( 1)− and therefore does not exist. 
 
Parameterisation of a paraboloid in the principal curvature directions 
A paraboloid can be described by the following orthogonal parameterisation (p. 25) in the 
principal curvature directions (p. 22). In figure 179, the parameters a = 1 m and b = -1 m, 
produce a hypar (p. 21), which looks like Enneper’s surface (p. 164). The curvilinear 
coordinates u and v (p. 31) have the dimension length. It is possible to change the 
parameterisation such that u and v have no dimension, however, this makes the equations of 

xxk , yyk , xα , yα  a bit more complicated. 
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Figure 179. Parameter lines on a paraboloid 
a = 1 m,  b = –1 m,  –1 m < u < 1 m,   –1 m < v < 1 m 
 

2 2

2 2

2 2

2 2

2
1

2 2

2
1

2 2

3 3

2 2 2 2 2 2

1 3(1 ...)
2 2

1 3(1 ...)
2 2

0

1 ...
2

1 ...
2

( ) ( )

xx

yy

xy

x

y

G

u vk
a a b

v uk
b b a

k

u A
a

v B
b

a bk
a u b v

= − − +

= − − +

=

α = + + +

α = + + +

=
+ +



135 
 

Sudden collapse 
Shells are very efficient in carrying load. However, this efficiency comes at a price. If a shell 
buckles, it collapses with a bang. There will be no warning and it will collapse faster than we 
can run. 
Truss, frame and plate structures do not have this problem. Usually, they slowly deform a lot 
before collapsing and therefore they give clear warnings to evacuate the area. 
Consequently, shells need to be extra safe. In other words, for shells we often use larger load 
factors and material factors than for most structures. In the eurocode this is organised in 
consequence classes. Often, the highest consequence class is appropriate. 
 
Tucker High School 
On September 14, 1970, the gymnasium of The Tucker High School in, Henrico County, 
Virginia, collapsed completely [81]. Some school children were injured but fortunately there 
was no loss of life. The structure was a four element hypar (p. 117) with a plan of 47.2 m by 
49.4 m (fig. 180). It had a sagitta (p. 1) of about 4.6 m, large inclined supporting ribs and 
centre ribs that were essentially concentric with the shell. The shell was 90 mm thick for the 

most part. Therefore, it had a ratio 47.2 / 2 49.4 / 2
4.6 0.090

a
t

×
=

×
 = 1400. 

The failure was due to progressive deflection. The lightweight concrete showed much creep. 
Three similar structures were subsequently demolished. One of these had a deflection of 460 
mm at the centre. Research showed that the collapse could have been simply prevented by 
cambering upward the centre point of the shell [81]. 
 

 
 
Figure 180. Newspaper photograph of the collapsed hypar shell [81] 
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Cylinder buckling shapes 
The buckling shape of an axially loaded cylinder starts as ring mode or a chessboard mode 
(fig. 181). Which one occurs depends on the shell thickness and its radius. When buckling 
progresses the ring mode can transform into the chessboard mode. However, these 
deformations are very small and rarely visible. When the material starts to deform plastically 
the ring mode develops into an elephant foot (fig. 182); the chessboard mode develops into a 
Yoshimura1 pattern (fig. 183), which are clearly visible. 
 

   
           Ring mode       Chessboard mode    
 
Figure 181. Buckling modes of axially compressed cylinders computed by the finite element 
method (The deformation is enlarged to make it visible.) 
 

  
 
Figure 182. Elephant foot buckling of a tank  Figure 183. Yoshimura buckling of an  
wall [82]      aluminium cylinder 
 
Exercise: The Yoshimura pattern can be obtained as an origami exercise. Take a sheet of 
paper and draw the lines of figure 184 on it. Fold all horizontal lines towards you and all 
diagonal lines away from you. When all folds are made, the sheet tends to curve. Curve the 
sheet further and close it with sticky tape. 

 
1 Yoshimura Yoshimaru (吉村 慶丸) (approximately 1920-1964) was a professor of applied mechanics 
at Tokyo University of Technology. Nine years after the Second World War, he was invited to the USA 
to work on shell structures. There, he wrote a report [83] which explained the buckling shape that was 
often observed in cylinder experiments. Unfortunately for many of us, his other publications are in 
Japanese. 
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Remarkable about the Yoshimura pattern is that it is inextensional (p. 109). Fortunately, large 
extensions are needed to transform a cylinder directly into a Yoshimura pattern [83]. You can 
try this too: Take a sheet of paper, curve it into a cylinder and close it with sticky tape. Then 
load the cylinder axially by books until it buckles. If the cylinder and the load are nearly 
perfect, then the cylinder deforms into a Yoshimura pattern. Clearly, reality is not perfect. 
Nevertheless, several Yoshimura buckles can be recognised in the overloaded cylinder. 
 

   
Sheet of paper          Yoshimura pattern                Buckled paper cylinder 
 
Figure 184. Origami exercise 
 
Buckling of a beam supported by springs 
Shells can be understood by studying a beam supported by uniformly distributed springs (fig. 
185). The bending stiffness of the beam is EI [Nm²]. The stiffness of the distributed springs is 
k [N/m²]. The beam is loaded by an axial force P [kN]. The differential equation that 
describes this beam is 
 

4 2

4 2 0d w d wEI P k w
dx dx

+ + = . 

 
 

 
 
Figure 185. Elastic beam supported by distributed springs 
 
The following buckling shape is proposed 
 

sin n xw b
l
π

= , 
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where n is the number of half waves of the buckled shape. Substitution of the buckling shape 
into the differential equation gives the following solution. 
 
> w:=b*sin(n*Pi*x/l): 
> eq:=EI*diff(w,x,x,x,x)+P*diff(w,x,x)+k*w=0: 
> Pcr:=expand(solve(eq,P)); 
 

2 2 2

2 2 2cr
n EI k lP

l n
π

= +
π

 

 
This solution is plotted in figure 186 in dimension less quantities. It shows that for long 
beams the red line is a good approximation. 
 

2crP k EI≈ . 
 
 

 
 
Figure 186. Buckling load as a function of the beam length 
 
 
Ring buckling of an axially compressed cylinder 
Consider a circular cylinder (fig. 187). 
 

10, , 0, 1, 0 , 0 2xx yy xy x yk k k u l v a
a

= = = α = α = ≤ ≤ ≤ ≤ π   

 
Somebody proposes the following deformation. 
 

( ) , 0, ( )x y zu w u du u u w u
a
ν

= = =∫ . 

 
This deformation is axial symmetric and depends on an unknown function w. Please note the 
difference between ν (Poisson’s ratio) and v (curvilinear coordinate). 
 
Substitution in the 21 Sanders-Koiter equations (p. 54) gives 
 

3 4 2

2 4 2 212(1 )
xx

E t d w E t d ww n
dx a dx

+ =
− ν

. 

 
This is the same differential equation as that of buckling of a beam supported by springs (p. 
137). Apparently we can make the following interpretations. 
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Using this analogy, the buckling load of a not short cylinder is calculated as 
 

2

2

12
3(1 )

cr
Etn k EI
a

−
= − =

− ν
 

2
0.6cr

Etn
a

≈ −  

 
and the buckling length is 
 

4
24

1.7
12(1 )

cr
EI atl a t
k

π
= π = ≈

− ν
. 

 

 
Figure 187. Cylinder coordinate system 
 
Exercise: What cylinder part can be represented by a beam and what part by uniformly 
distributed springs? 
 
Exercise: Calculate the buckling length of a cylinder made out of a sheet of paper. 
 
Exercise: In what shape does a very long cylinder buckle? 
 
Exercise: What is the difference between the buckling length and the influence length (p. 73)? 
 
 
Differential equation for shell buckling 
The differential equation for shell buckling is an extension of the shallow shell differential 
equation (p. 59) 
 

2 2 23
2 2 2 2 2 2

2 2 2( ( ) )
12(1 )

z z z
z z z xx xy yx yy

u u uE t u E t u p n n n n
x yx y

∂ ∂ ∂
∇ ∇ ∇ ∇ + ΓΓ = ∇ ∇ + + + +

∂ ∂− ν ∂ ∂
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It can be easily derived starting with Sanders-Koiter equation 21 (p. 54) by replacing xxk by 
2

2
z

xx
uk
x

∂
+

∂
 et cetera. This differential equation can be solved analytically for elementary 

shell shapes and elementary loading. The buckling loads thus obtained are called critical 
loads. There is a large body of literature on this. Scientists who made significant contributions 
are Rudolf Lorenz, Stephen Timoshenko, Richard Southwell, Richard von Mises, Wilhelm 
Flügge, Lloyd Donnell. An overview is given by Nicholas Hoff [84] 2. 
 
Buckling load factor 
A load factor λ is introduced in the differential equation for shell buckling (p. 139). 
 

2 2 23
2 2 2 2 2 2

2 2 2( ( ) )
12(1 )

z z z
z z z xx xy yx yy

u u uE t u E t u p n n n n
x yx y

∂ ∂ ∂
∇ ∇ ∇ ∇ + ΓΓ = ∇ ∇ + + + +

∂ ∂− ν ∂
λ

∂
λ λ λ

 
A chessboard buckling pattern is assumed. 
 

cos cosz
x y

x yu c
l l
π π

=  

 
The following assumptions simplify the mathematics.  

0xy yxn n+ = ... the buckles occur in the principal membrane force directions, 
0xyk = ………. the buckles occur in the principal curvature directions. 

 
The buckling pattern and the assumptions are substituted in the differential equation and the 
critical load factor is solved (appendix 10). 
 

 
2 Stephen Timoshenko (1878-1972) was born in Ukraine and became a professor at Kyiv Polytechnic 
Institute. In 1919, he fled for the Bolshevik revolution and ended up in the USA where he became a 
professor at the University of Michigan and later at Stanford University [Wikipedia]. 
 
Richard von Mises (1883-1953) was born in Ukraine. He studied at Vienna University of Technology. 
He was a pilot during the First World War and afterwards a professor of applied mathematics in 
Dresden and Berlin. He was Jewish and in 1933 he left nazi Germany to teach in Istanbul. Later he 
moved to Harvard University, USA [Wikipedia]. 
 
Rudolf Lorenz (approximately 1880-1945) was a civil engineer in Dortmund, Germany [84]. 
 
Richard Southwell (1888-1970) was a mathematician and engineer. He taught at the University of 
Cambridge, Oxford and Imperial College London [Wikipedia]. 
 
Lloyd Donnell (1895-1997) was an American engineer, professor at Illinois Institute of Technology 
and Stanford University [Wikipedia]. 
 
Wilhelm Flügge (1904-1990) was a German engineer. After the second world war he moved to the 
USA and became professor at Stanford University [German Wikipedia]. 
 
Nicholas Hoff (1906-1997) was born in Hungary. He studied aeronautical engineering at Stanford 
University before the war and eventually became a professor there. He was a student of Timoshenko 
[Wikipedia]. 
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Suppose that buckling is not restrained by edges, then the buckling lengths xl  and yl are such 
that the load factor is smallest. This was studied by plotting crλ  as function of xl  and yl for 
various values of xxn , yyn , xxk , yyk (appendix 10). The result is surprisingly simple. Three 
buckling modes can occur. 
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The third buckling mode is due to inextensional deformation. Sometimes these buckling load 
factors are negative, which shows that we need to reverse the load to cause buckling.  
 
Exercise: Are the formulas for cylinder ring buckling and cylinder chessboard buckling the 
same? 
 
Exercise: What is the buckling formula for a spherical shell loaded by a vacuum? 
 
Challenge: The numerical study seems to show that  

3 0crλ <   for  0xx xx yy yyn k n k+ >  (not dangerous) 

3crλ = ∞  for  0xx xx yy yyn k n k+ =  (not dangerous) 

3 0crλ >   for  0xx xx yy yyn k n k+ <  (dangerous). 
Prove or disprove this. 
 
Challenge: Derive the buckling formula for 0xy yxn n+ =  and 0xx yyk k= =  and 0xyk ≠ . 
 
Design check of buckling 
For design, the buckling load factors should not be in the interval 0 1cr< λ < . 
This can be explained as follows. Consider a free form shell structure. We specify loads, 
safety factors (p. …) and load combinations (p. …). We do a linear analysis to obtain the 
membrane forces. We do a linear buckling analysis to obtain the buckling load factors for 
each load combination. Suppose that a buckling load factor is 0.9. This means that when we 
apply this load combination slowly, the shell will buckle at 90% of the full load. Clearly, this 
will not do. We need to change the design.  
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Catelan’s surface 3 
The Catelan minimal surface is described by the following orthogonal parameterisation (p. 
25). 
 

( )
( )

1 1
2 2

21
4

21
4

cos 1 1

(2 1)sin 2 2

(2 1)cos 2 1

x au v u v

y a u v v

z a u v

= − < < − π < < π

= + +

= + −

 

 
 
 
 
  
 
 
 
 
 
 
 
 
Imperfection sensitivity 
Before 1930, airplanes consisted of frames covered with a fabric which was painted. 
However, engineers wanted to build airplanes from aluminium plates that were joined to form 
a cylindrical shape. Therefore, scientists started to do experiments on cylinders, for example 
Andrew Robertson 4. Figure 188 shows the ultimate loads of axially compressed aluminium 
cylinders. They are much smaller than the critical load. Robertson ends his paper on the 
subject with “Further comment as to the insufficiency of these formulae is unnecessary” [85]. 
 

  
 
Figure 188. Experimental ultimate loads of 172 axially loaded aluminium cylinders [86] 
 
 
This difference between theory and experiments is caused by invisible shape imperfections. 
At first sight, imperfection sensitivity is hard to believe because the experiments were 
performed very carefully. The aluminium cylinders had perfectly cut edges and were 

 
3 Eugène Catalan (1814 – 1894) was a Belgian mathematician and professor at the University of Liège 
[Wikipedia]. 
 
4 Andrew Robertson (1883 – 1977) was a professor of Mechanical Engineering at Bristol University 
[Wikipedia]. 
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beautifully polished. The cylinders were perfectly centred in the testing machines. The testing 
machines were modern and very accurate measuring instruments were used. Nonetheless, the 
ultimate loads were much smaller than the critical loads. Not only compressed cylinders but 
also bend cylinders and radially compressed domes are very sensitive to shape imperfections. 
 
Experiment  
What is the ultimate load of an axially loaded empty beer can? We model 
the can as an open cylinder. The wall thickness is 0.08 mm the radius is 
32.8 mm, Young’s modulus is 2.1 105 N/mm² and Poisson’s ratio is 0.35 
(stainless steel). The critical load (p. 139) is  
 

2 5 22.1 10 0.080.6 0.6 25.3
32.8cr

Etn
a

× ×
= − = − = − N/mm 

 
2 2 3.14 32.8 ( 25.3) 5200cr crF a n= π = × × × − = − N 

 
Therefore, it should be able to carry a mass of 520 kg pulled by earth’s gravity. Carefully 
stand on the can and it will – probably – carry your weight. Subsequently, use your thumbs to 
push a dimple in the can and push it out again. Doing so makes typical clicking sounds. 
Notice that the imperfections you made are hardly visible. Now, try standing on the can again. 
It will collapse abruptly. The explanation is imperfection sensitivity. 
 
Puzzle 
The large difference between the theoretical buckling load (critical load) and the experimental 
buckling load (ultimate load) puzzled scientists for approximately 10 years. Is the differential 
equation wrong? Are the solutions to the differential equation wrong? Are there more 
solutions that we have not found? Is there some mistake in the experimental set up? Has thin 
aluminium less stiffness than solid aluminium? 
 
The solution was discovered in 1940 by Theodore von Kármán and Qian Xuesen (钱 学 森 

pronounce tsien? sue? sen) [87].5 They calculated the load-displacement curve after buckling. 
Figure 189 shows the result of their calculation; xxn is the membrane force in a cylinder and w 
is the shortening of the cylinder. Note that load on a perfect cylinder can be increased until the 
critical load after which the strength will drop strongly. This behaviour is typical for shell 
structures and very different from other structures. Figure 189b shows that very small shape 
imperfections cause the ultimate load to be much smaller than the critical load. 
 

 
5 Von Kármán (1881-1963) and Qian (1911-2009) worked at Caltech (California Institute of 
Technology) as rocket scientists. They developed the knowledge that later showed necessary for the 
Apollo program (1961-1972), in which USA astronauts walked on the moon. Von Kármán was 
Hungarian and he immigrated to the USA in 1930. Qian was Chinese. He immigrated to the USA in 
1935 and back to China in 1955 in not friendly circumstances. The discovery of shell imperfection 
sensitivity was just a footnote in their lives. More on Von Kármán and on Qian can be found in 
Wikipedia (Qian’s name is often spelled as H.S. Tsien). 
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Figure 189. Buckling of cylinders for different shape imperfection amplitudes [87] 
 
Exceptions to imperfection sensitivity 
Some shells are not sensitive to imperfections. Radially loaded open cylinders are not because 
they buckle inextensionally (p. 109). Cylinders with torsion loading ( 0xyn ≠  or 0yxn ≠ ) are 
not sensitive to imperfections. A hypar roof (p. 102) is sensitive to imperfections if it buckles 
in mode 1 or 2 but not if it buckles in mode 3 (p. 140). 
 
Koiter’s law 6 
Equilibrium of a perfect system can be described by 
 

( )2
1 21cr c w c wλ = λ − − , 

 
Where λ is the load factor, crλ is the critical load factor, w is the amplitude of the deflection, 

1c and 2c are constants characterising the given structure. There are three types of post critical 
behaviour (fig. 190). Type I behaviour occurs when 1 0c = and 2 0c < . The structure is not 
sensitive to imperfections. Type II behaviour occurs when 1 0c = and 2 0c > . The structure is 
sensitive to imperfections. Koiter showed that the ultimate load factor is equal to 
 

( )
2

1 30 221 3ult cr w c
 
 λ = λ − ρ
 
 

, 

 
Where ρ is a coefficient depending on the imperfection shape and 0w is the imperfection 
amplitude. Type III behaviour occurs when 1 0c > . The structure is very sensitive to 
imperfections. The ultimate load factor is equal to 
 

( )
1
20 11 2ult cr w c

 
λ = λ − ρ  

 
. 

 
This is called Koiter’s half power law. 
 
Properly supported flat plates display type 1 behaviour; They buckle at small normal forces. 
After buckling the load can be increased substantially. Most thin shells display type III 
behaviour. 
 

 
6 Warner Koiter (1914-1997) was professor at Delft University of Technology at the faculties of 
Mechanical Engineering and Aerospace Engineering (1949-1979). He wrote his dissertation during the 
Second World War, while hiding from Arbeitseinsatz, and published it in 1945 just after the war [88]. 
The English translation appeared in 1967 [89]. It became famous because it quantifies the imperfection 
sensitivity of thin shells. 
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Figure 190. Three types of post buckling behaviour according to Koiter 
 
Knock down factor 
In shell design often the following procedure is used. First the critical load is computed by 
using the formula or a finite element program. Then this loading is reduced by a factor C that 
accounts for imperfection sensitivity. This factor is called “knock down factor”. The result 
needs to be larger than the design loading. Often it is determined experimentally. For 
example, for reinforced concrete sewer pipes loaded in bending the following knock down 
factor is used. 

1
161 0.73(1 )

a
tC e

−
= − − . 

 

The range in which it is valid is 0.5 5l
a

< <  and 100 3000a
t

< <  where l is the pipe length 

[90]. 
 
If little information is available the following knock down factor can be used. 
 

1
6

C =  

 
This is based on figure 188 in which all of the tests show an ultimate load more than 0.166 
times the critical load. 
 
Linear buckling analysis 
Finite element programs can compute critical load factors crλ and the associated normal 
modes. This is called a linear buckling analysis. A finite element model has as many critical 
load factors as the number of degrees of freedom. We can specify how many of the smallest 
critical load factors the software will compute. If the second smallest buckling load is very 
close (say within 2%) to the smallest buckling load we can expect the structure to be highly 
sensitive to imperfections. 
Often, the critical load factors need to be multiplied by the knockdown factor. The results 
need to be larger than 1. Consequently, if all critical load factors are larger than 6, the 
structure is safe for buckling.  
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Linear buckling analyses are performed on shell models without imperfections. We could add 
shape imperfections, however, this would not solve anything. The shape imperfections grow 
slowly during loading and this is not included in a linear buckling analyses. For imperfections 
to grow we need to perform a nonlinear finite element analysis (p. 146). 
 
Ship design 
A steel ship consists of plates strengthened by stiffeners. A linear buckling analysis of the 
ship model produces critical load factors for each plate that buckles. However, flat plates 
buckle in Koiter’s mode I (p. 144) which does not cause failure. We are interested in buckling 
of big curved parts of the ship because these go in Koiter’s mode III which does cause failure. 
A computer cannot tell the difference between plate buckling and shell buckling. The only 
thing we can do is go through the load factors from small to large, look at each buckling mode 
and continue until we see buckling that involves more than one plate. This can take much 
time because a large ship consists of hundreds of plates and has many load combinations.  
 
Oil tanker 
In 2000 the oil company Shell had 150 oil tankers in its fleet. In 2019 just 15. The modern oil 
tankers are more than 300 m long which is much larger than the old ones. (Advantages of 
large tankers are less fuel cost and fewer collisions because there are fewer ships at sea.) A 
new oil tanker costs approximately 120 000 000 euro. 
 
Old single hull oil tankers had a single steel shell between the sea and the oil. The tankers 
were divided in oil tanks. These tanks were sometimes filled with sea water as ballast for 
levelling the ship. When the ballast water was pumped out the sea was polluted. Also in 
collisions the sea was polluted. Nowadays, double hull tankers are common. Double hull 
tankers have two steel shells between the oil and the sea (figure 139). They also have separate 
tanks for oil and for ballast water. A problem of the double hull tankers is that the ballast 
tanks corrode. Despite efforts to paint the ballast tanks, the double hull tankers do not last 
long. The average life time of oil tankers is 10 years. 
 
Figure 139. … [… p. ] 
 
An oil tanker is designed for 20 year. It has three structural limit states: yielding, fatigue and 
buckling. It has many load cases and about 20 load combinations (table 10). 
 
Current computer capacity is not sufficient to perform a finite element analyses of a tanker in 
all its details. Therefore, first a rough model is made of the tanker without details. 
Subsequently, submodels are made of tanker parts. The edges of a submodel are loaded by 
forces and moments that are automatically transferred from the rough model. This method is 
called submodelling. For buckling analysis the submodels are much larger than the area of 
interest because otherwise the free submodel edge would influence the buckling load. 
 
Table 14. Load cases of an oil tanker 
 
Nonlinear finite element analysis 
When a shell design is ready it is sensible to check its performance by nonlinear finite 
element analyses. In these analyses the loading is applied in small increments for which the 
displacements are computed. Figure 191 shows the results of finite element analyses of a 
simply supported shallow dome. 
 
The ultimate load is mainly affected by shape imperfections, support stiffness imperfections 
and yielding or cracking. When these are measured and included in the finite element model, 
then the predicted ultimate load has a deviation less than 10% of the experimental ultimate 
load [91]. 
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Clearly, before a shell has been build we cannot measure the imperfections. Instead these are 
estimated. For example, the amplitude of the geometric imperfections is estimated by the 
designer and the builder. Often, the analyst will assume that the shape of the geometric 
imperfections is the first buckling mode. He or she will add this imperfection to the finite 
element model. 
 
It seems logical that an imperfection shape equal to the buckling shape gives the smallest 
ultimate load. For columns this is true. However, for shells there exists no mathematical proof 
of this. Therefore, another imperfection shape might give an even smaller ultimate load [93]. 
Of course, the analyst can consider only a few imperfection shapes. 
 

 
 
Figure 191. Shell finite element analyses of a steel spherical dome [93] 
 
Mystery solved 
The critical and ultimate load of shell structures can be determined by both analytical and 
numerical analysis. However, these analyses are complicated and many engineers and 
scientists feel that we still do not understand imperfection sensitivity [94]. Here it is argued 
that shell buckling is not a mystery at all. 
 
In nonlinear finite element analyses we see that when a small load is applied the shell deforms 
in a buckling mode. The buckling mode increases the shape imperfections of the shell. The 
deformation is very small and invisible to the naked eye. Nonetheless, the deformation 
changes the curvature, in some locations the curvature has become larger and in other 
locations the curvature has become smaller. It also changes the membrane forces. Inwards 
buckles have extra compression and outward buckles have extra tension. When the load is 
increased the curvatures and membrane forces change further. At some location the Gaussian 
curvature becomes negative and the compression membrane force becomes large. At this 
location a local buckle starts. It has a larger length than the earlier buckling mode. This local 
buckle grows quickly, other buckles occur next to it and this spreads through the shell in a 
second. The shell collapses. 
 
In other words, the shell buckling formulas do not work because the real local curvature and 
the real local membrane force are very different than computed by a linear elastic analysis of 
a perfect structure. 
 
Measuring shape imperfections 
The accurate shape of a shell structure can be measured by a laser scanner. The result is a 
point cloud that can be visualised by a CAD program (fig. 192). There is a simple way to 
extract shape imperfections from a point cloud. Load the point cloud in software Rhinoceros 
and fit a NURBS (p. 9) through the cloud. Choose the distance of the control points equal to 
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the buckling length. This fit will not follow the shape imperfections because the control points 
are too far apart. The software can compute the distance between a point and the NURBS. 
The software does this for all points in the cloud and gives a histogram of these distances (fig. 
193). The largest distance is the imperfection amplitude d. 
 

 
 

Figure 192. Point cloud of a swimming pool in Heimberg, Switzerland. The laser scanner was 
positioned inside. All points that are not on the shell were removed later by hand, for example 
walls, light fittings, swimming children [95]. 
 
Bart Elferink and Peter Eigenraam (student and teacher at Delft University) scanned four 
reinforced concrete shell roofs that were built by the team of Heinz Isler around 1970. The 
result is 
 

0.3 0.41
108d A l=  

 
where d is the imperfection amplitude (5% characteristic value), A is the surface area of the 
shell and l is the imperfection length. The partial safety factor is 1.4 [95]. 
 

      

 
Figure 193. Shape imperfections in the shell roof of Heimberg swimming pool [95] 
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Stiffeners 
If a shell would buckle, it is technically better to use some of the shell material to design 
stiffeners (fig. 194). 
 
The argument that proves this statement is simple. By putting material in another position the 
cross-section area stays the same. Therefore, membrane stiffness does not change and the 
membrane forces do not change. The bending moments in thin shells are small anyway. 
Consequently, the stresses do not change and it does not affect the strength of the cross-
section (yielding or crushing). The material change does increase the moment of inertia, the 
bending stiffness and the buckling load. Q.E.D. 
 
Of course, “technically better” can be overruled by “expensive to build”, “difficult to clean”, 
“just ugly” et cetera. 
 

 
 
Figure 194. Cross-sections of two shell parts; left without stiffeners and right with stiffeners. 
Note that the cross-section areas are the same while the moments of inertia are different. 
 
Exercise: Have you noticed that small animals like spiders have an exoskeleton and large 
animals like elephants have a skeleton? At what size does the transition occur? You can study 
this by considering a drop of water enclosed by a spherical shell. The water is loaded by 
gravity and the shell is supported in a point. What is the largest membrane force in the shell? 
What thickness is required for strength? Subsequently, enlarge the diameter until the shell 
buckles. At this diameter the designer needs to consider stiffeners or replace the shell by a 
space truss. I look forward to hearing what diameter you found.7  
 
CNIT 
The world largest shell structure is in Paris (fig. 196). I was built in 1956 to 1958 as an 
exhibition centre for machines. It is called “centre des nouvelles industries et technologies” 
(CNIT). Nowadays, the shell covers shops, restaurants, offices, a convention centre, a hotel 
and a subway station (fig. 197). Despite its size the shell is easily overlooked due to the eye 
catching Grande Arche, which was built next to it in 1985 to 1989. To go there, take any 
public transportation to La Défense Grande Arche. 
 
Architects:  Robert Camelot, Jean de Mailly and Bernard Zehrfuss  
Engineers:  Nicolas Esquillan (shell) and Jean Prouvé (façade) 
Consultant:  Pier Luigi Nervi 
Contractors:  Balancy et Schuhl, Boussiron, Coignet 
Construction time: 2.5 years 
Structure:  Two layers of reinforced concrete, spaced 2 m, connected by  
   reinforced concrete walls 
Shell material:  6070 m3 of reinforced concrete 
 

 

7 An incomplete solution to this problem is 
3 2

2
12 ~ fa

g E
− ν

ρ
, where 2a is the transition diameter, 

symbol ~ is read as “is proportional to”, f  is the material strength, ν is Poisson’s ratio, ρ is the specific 
mass of water, g is the gravitational acceleration and E is Young’s modulus. 
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Figure 195. CNIT design by Esquillan [96] 
 
 

 
Figure 196. CNIT in 1960 [97] 
 



151 
 

 
Figure 197. CNIT interior in 2010 [98] 
 

 
Figure 198. CNIT scaffolding [99] 
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Figure 199. CNIT during construction, visible are the bottom shell and the prefab walls [100] 
 
Each corner of the shell is supported by a large reinforced concrete block that distributes the 
load over the lime stone underground. The three blocks are connected to each other by three 
prestressed tension rods [101]. 

 
Buckling, yielding or crushing? 
In steel columns there is interaction between buckling and yielding. This is mostly caused by 
rolling stresses and welding stresses. In this note, the theory is summarised and extended to 
shells. 
 
Relative slenderness is defined as 
 

β = p

ult

n
n

. 

 
where, pn is the yielding or crushing membrane force and ultn is the buckling membrane 
force without yielding or crushing. 
 
If  β >> 1 then buckling occurs before yielding or crushing. 
If  β << 1 then plastic failure or crushing occurs before buckling. 
If  β  ≈  1 then interaction occurs between buckling and yielding or crushing. 
 
The equation can be rewritten as 
 

2
1.67

0.6
−

β = =
−

f t f a
C E tEtC

a

 

Table 18 shows that a shell made of plastic is more likely to buckle than the same shell made 
of glass. 
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Table 18. Properties of materials … and β  for C = 1/6 and a / t = 30 
Material Young’s modulus E Compressive strength f E f  β 
Glass   70000 N/mm²   50 N/mm² 1400 0.5 
Concrete   35000    40   875 0.6 
Aluminium   70000 110   636 0.7 
Steel 210000 350   600 0.7 
Wood (Pine)   13000   40   325 1.0 
Plastic (Acrilic)     2300   70     33 3.0 
 
Exercise: What percentage of shells fails due to buckling and not due to yielding or crushing? 

Assume uniform distributions of the material properties 33 1400E
f

≤ ≤ , geometry 30 a
t

≤  

1000≤ and knock down factor 1 1
6

C≤ ≤ . (The exact answer is 102499 90(ln 2 ln3)
132599 100− + %.) 

 
Buckling curves for computational analysis 
Figure 200 shows buckling curves for steel columns based on hundreds of experiments [102]. 
The curves can be adopted for shell structures too, however, there is no experimental 
conformation. 
 
> Phi:=0.5*(1+alpha*(beta-0.2)+beta^2): 
> G:=1/(Phi+sqrt(Phi^2-beta^2)): 
> alpha:=0.13: f1:=simplify(G): # ao 
> alpha:=0.21: f2:=simplify(G): # a 
> alpha:=0.34: f3:=simplify(G): # b 
> alpha:=0.49: f4:=simplify(G): # c 
> alpha:=0.76: f5:=simplify(G): # d 
> plot({f1,f2,f3,f4,f5, 1/beta^2}, beta=0..3,0..1); 
 

 
 
Figure 200. Eurocode buckling curves for steel columns 
 
When a steel cross-section has residual stresses from rolling or welding and it is loaded in 
compression, then local yielding can occur. This reduces the bending stiffness, which reduces 
the buckling load. Residual stresses can be included in finite element models, however, this 
takes much modelling time and computation time. There is a much easier way to include 
residual stresses in a finite element analysis. Rewrite the eurocode buckling curves (fig. 200) 
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 (fig. 201) [103]. The derivation below has been performed by Maple. 
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> Phi:=0.5*(1+alpha*(beta-0.2)+beta^2): 
> G1:=1/beta^2: 
> G2:=1/(Phi+sqrt(Phi^2-beta^2)): # ECCS buckling curve 
> opl:=solve(G=G2,beta): beta:=opl[2]: 
> alpha:=0.13: f1:=simplify(G2/G1): # ao 
> alpha:=0.21: f2:=simplify(G2/G1): # a 
> alpha:=0.34: f3:=simplify(G2/G1): # b 
> alpha:=0.49: f4:=simplify(G2/G1): # c 
> alpha:=0.76: f5:=simplify(G2/G1): # d 
> plot({f1,f2,f3,f4,f5},G=0..1); 
 

 
 
Figure 201. Reduction factor of the initial bending stiffness as a function of the normal force 
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Hyperboloid 

A circular hyperboloid of one sheet is defined by 
2 2 2

2 2 1x y z
aba a

+ − = . 

An orthogonal parameterisation (p. 25) is 
 

2

2

1 cos

1 sin

2 2

x a u v

y a u v

z ab u

u
v

= +

= +

=

− < <
−π < < π

        

 
 
 
 
 
Gravity 
Suppose that gravity acts in the negative z direction. The self-weight ρ g t of the shell needs to 
be decomposed in the local coordinate system (p. 19). 
 

2 2 2( )x y z x y
z zp g t p g t p g t p p
x y

∂ ∂
= −ρ = −ρ = ± ρ − −

∂ ∂
 

 
Applied to a hyperboloid (p. 155) the result is 
 

2 2 2
2

0
(1 )1

1

x y z
g t g t up p p

ba u u u
ab u

−ρ −ρ
= = =

+ ++
+

 

 
 
Exercise: Solve xxn and yyn for a hyperboloid loaded by gravity. 
 
Ferrybridge 
Three reinforced concrete cooling towers collapsed in Ferrybridge, UK in 1965. Fortunately, 
nobody was injured. The cooling towers were part of a group of eight at a coal-fired power 
station (fig. 200). The base diameter of the towers was 88 m and the shell thickness was 127 
mm. The ratio a/t is 44000/127 = 350. They were 115 m high [105]. 
 
The towers had been completed in 1964. At November 1st 1965 it was storming. (The wind 
speed was 44 m/s at the top edge, which occurs once every 5 years in Ferrybridge.) Vortices 
occurred between the towers of the first row (fig. 201). These vortices loaded the towers of 
the second row. The vortex frequency was approximately the same as the natural frequency of 
the towers (0.6 Hz). An eyewitness said that some towers where moving like belly dancers. 
Within an hour three collapsed [106].1 

 
1 Despite the strong vibrations, the committee that investigated the collapse concluded that vortex 
induced vibration was not the real problem. The reason for this conclusion was that not only the second 
row of towers but all towers were seriously damaged at November 1st. The real problem was that an 
incorrect wind load had been used in design. The committee did not blame somebody for the collapse. 
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The construction costs of the original towers was £290 000 each. The collapsed towers were 
replaced and all towers were strengthened with extra thickness of reinforced concrete. 
Engineers found ways to operate the remaining towers during reconstruction. If the power 
station had been temporarily closed, it would have been very expensive for England. In 2016, 
the power station was permanently closed to reduce CO2 emission [Wikipedia]. 
 

  
 
Figure 200. Three collapsed cooling towers  Figure 201. Vortex loading on the towers 
at Ferrybridge, UK 
 
Modal analysis 
A normal mode is a deformation in which a shell can vibrate. The natural frequency nf is the 
number of times this deformation occurs in a second. The unit of frequency is Hertz (Hz). 
Often the radian frequency ω is used, which is measured in radians per second. The definition 
is 2 fω = π . A finite element program can compute the normal modes and natural frequencies 
of a shell structure. A finite element model has as many normal modes and natural 
frequencies as the number of degrees of freedom. For example, if a shell model has 5000 
nodes then it has 5000 x 6 = 30000 degrees of freedom. It also has 30000 normal modes and 
natural frequencies. A real shell has an infinite number of normal modes and natural 
frequencies. Natural frequencies are sorted from small to large. The smallest is called 
fundamental frequency. A finite element program does not need to compute all natural 
frequencies. The user can specify the number of the smallest natural frequencies that will be 
computed. 
 
Figure 202 shows six normal modes and natural radian frequencies of a simply supported 
shallow spherical shell [108]. Young’s modulus E is 2000 N/mm², Poisson’s ratio ν is 0.3, the 
length and width are 10 m, the thickness t is 100 mm, the radius a is 20 m and the specific 
mass ρ is 7850 kg/m³. 

 
The code was unclear, the code was interpreted wrongly and communications between the designers 
and the wind tunnel experts went wrong [105].  
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25.3 rad/s 26.2 rad/s 

26.2 rad/s 27.8 rad/s 

29.0 rad/s 29.1 rad/s 
 
Figure 202. Normal modes and natural frequencies of a shallow spherical shell 
 
Rigid body modes 
If a structural model is not properly supported then a linear finite element analysis (p. 82) 
gives an error message: singular stiffness matrix. This means that the computer is determining 
the displacements and it cannot decide how large they are. 
If a structural model is not properly supported then a modal analysis (p. 156) does not give an 
error message. Instead it also computes rigid body modes with natural frequencies nf = 0 Hz. 
A totally free structure has 6 independent rigid body modes; 3 translations in perpendicular 
directions and 3 rotations around perpendicular directions. Note that a modal analysis does 
not determine the magnitude of any normal mode. This is why it does not give an error 
message for unsupported structures. 
 
Equation of motion 
The shell differential equation for dynamic behaviour can be simply derived from the shell 
buckling differential equation (p. 139) by adding inertia forces to the load (d’Alembert’s 
principle 2). 
 

2 2 23
2 2 2 2 2 2

2 2 2( ( ) )
12(1 )

z z z
z z z xx x x yy zy y

u u uE t u E t u p n un n
x

tn
yx y

∂ ∂ ∂
∇ ∇ ∇ ∇ + ΓΓ = ∇ ∇ + + + +

∂ ∂
− ρ

− ν ∂ ∂


 
In this t is the shell thickness and zu is the second derivative of the perpendicular 
displacement to time. 

 
2 Jean d'Alembert (1717-1783) was a French gentlemen scientist. He was an orphan but inherited a 
fortune and did not work for a living [Wikipedia]. 
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Wave numbers 
The wave pattern of a normal mode has peaks and valleys. The number of peak-and-valleys in 
a cross-section is the wave number. For example in Figure 202 the top right normal mode has 
wave number 1 in one direction and wave number 1/2 in the other direction. 
 

In beams and plates a small wave number corresponds to a small natural frequency. However, 
in shells this is not always the case. For example Figure 203 shows the natural frequencies of 
a cylinder that is simply supported at both edges. This graph has been analytically derived by 
K. Forsberg and published in the book of Arthur Leissa in 1973 [109]. Every crossing point of 
a curved line with a vertical line represents a natural frequency. The slenderness ratio is a t  = 
500. m is the wave number in the axial direction and n is the wave number in the 
circumferential direction. In the graph l is the length and R is the radius of the cylinder. 
Suppose that the ratio l R = 2. A simple normal mode occurs for m = ½ and n = 2 (fig. 204). 
In the graph we read a corresponding normalised natural frequency of approximately 0.3 (fig. 
52, green circle). However, the smallest natural frequency is 0.05 which occurs for m = ½ and 
n = 8 (fig. 203, blue circle). This natural mode is shown in Figure 204 right hand side. In fact, 
in the graph we can count 19 more modes that have smaller frequencies than the simple mode 
(fig. 203, red circles). Many more exist between the graph lines and outside the area of the 
graph. 

 
Figure 203. Dispersion curves of a cylinder with diaphragms at each end [109 p.62]  

2
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         m = ½, n = 2, Ω = 0.3   m = ½, n = 8, Ω = 0.05 
 
Figure 204. Normal modes of the cylinder 
 
Festoon 
Typical in vibration analysis and also in buckling analysis are graphs like figure 203. The 
envelope of these curves is shown as a thick line. It is called festoon. We have borrowed the 
word from decorators. 

        
 
Vibration experiments 
Suppose we shake a shell at some frequency and we observe the wave numbers. Such an 
experiment has been done with an aluminium cylinder that is clamped at one edge and free at 
the other. The wall thickness is 0.0255 in., the radius is 9.538 in. and the length is 24.63 in. 
Figure 205 shows the experimental and the analytical results. In this graph m is not the wave 
number but just a number assigned to the normal modes. An excellent agreement is found 
between experiment and theory. Other experiments also show an excellent agreement [109]. 
This confirms the correctness of the Sanders-Koiter equations (p. 54). 
 

 
Figure 205. Natural frequencies for a clamped-free aluminium cylinder [109 p.118] 
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Resonance 
A shell can be loaded by a harmonic force, for example a rotating machine or jumping people. 
If this loading has the same frequency as any of the shell natural frequencies, it will vibrate 
strongly in associated normal mode. Also other dynamic loading can excite a shell in a normal 
mode, for example storms and earthquakes. The dominant frequencies of storms vary up to 1 
Hz. The dominant frequencies of earthquakes vary up to 10 Hz (fig. 206). 
 
In other words, when you press the modal analysis (p. 156) button, the computer shows the 
natural frequencies of your structure. If these are larger than 10 Hz you do not have a 
resonance problem. 
 
 

 
Figure 206. Natural frequencies need to be larger than the dominant frequencies of the load 
[110] 
 
Inextensional deformation 
If the smallest natural frequency of a shell is very small than the deformation is probably 
inextensional. The corresponding wave number will be small too. This behaviour is opposite 
to described in the previous sections. It can be explained as that a shell that can move 
inextensionally is not really a shell but rather a thin curved plate (see shell behaving like a 
plate p. 114) 
 
Hemispheres 
Free vibration of a thin hemispherical shell was first studied by Lord Rayleigh 3 in 1881 [111, 
p 11]. He assumed inextensional deformation (p. 109) and derived the natural frequencies. 
The smallest natural frequency is 4 
 

20.2407
(1 )

=
ρ + νn

t Ef
a

, 

 
where ρ is the mass density for example in kg/m³. 
 

 
3 The real name of Lord Rayleigh was John Strutt (1842-1919). When his father died, he inherited a title and a 
7000 acres family estate. He left the management of the land to his younger brother and devoted his time to 
physics at Cambridge University. In 1904, he received a Nobel prize for discovering the gas argon [Wikipedia]. 
 
4 The coefficient 0.2407 in the formula has been obtained by finite element analysis. Rayleigh assumed an 
unknown factor in his derivation and did not obtain this coefficient. Remarkably, also other early scientists who 
studied hemispherical shells (Zwingli 1930, Naghdi 1962, Kalnins 1963) failed to obtain the right coefficient.  
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Resonance of a wine glass 
The frequencies that people can hear vary from 20 Hz to 20 000 Hz. The human voice can 
produce frequencies up to approximately 1000 Hz. This can be used to break a wine glass. For 
proof see 
 
http://www.youtube.com/watch?v=sH7XSX10QkM 
http://www.youtube.com/watch?v=dU0OqVDl7kc&feature=g-vrec 
 
Spheres 
Free vibration of a thin spherical shell was first studied by Horace Lamb in 1882 [112]. 5 A 
detailed study was also made by Wilfred Baker in 1961 [113]. 6 The smallest natural 
frequency is 

2 2

2
7 3 (7 3 ) 16(1 )1 10.12

2 2(1 )
n

E Ef
a a

+ ν − + ν − − ν
= ≈

π ρ ρ− ν
. 

 
It has been derived from the shell membrane equations (p. 38). Note that this natural 
frequency does not depend on the shell thickness. The equation is very accurate. For a/t = 20 
its error is 0.3% [114]. For a smaller thickness it is even more accurate. The equation is 
suitable for checking finite element software. 

 
Figure 207. Mode shape of a spherical shell [113] (symmetrical around the vertical axis) 
 
Exercise: Lamb ends his paper with a prediction. “I find that a thin glass globe 20 centimètres 
in diameter should, in its gravest mode, make about 5350 vibrations per second.”[112] Does 
this indeed follow from the formula? 
 
Exercise: Consider a hemisphere and a sphere of similar material, size and thickness. The 
sound of the sphere is much higher than the sound of the hemisphere. What causes this? 
 
Cylinders 
Circular cylinder shells can vibrate in beam modes and in shell modes. In a beam mode it 
bends up and down while the cross-section does not deform (n = 1). In a shell mode the centre 
line remains straight and the cross-section deforms (n = 2, 3, 4…). For long cylinders a beam 
mode gives the smallest natural frequency. For short cylinders a shell mode gives the smallest 
natural frequency. 
Table 25 shows the smallest natural frequencies of beam modes and of shell modes for 
several types of support. Figure 207 shows these natural frequencies as a function of the 
cylinder length. The table and the figure do not exactly match. In the table the shell 

 
5 Horace Lamb (1849–1934) was professor of mathematics in Cambridge, England [Wikipedia]. 
 
6 Wilfred Baker (1924–1991) was an explosions expert and accident investigator at Southwest Research Institute, 
San Antonio, Texas. He started the company BakerRisk [www.bakerrisk.com]. 
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frequencies are straight line approximations, while in the figure the festoons (p. 159) of the 
exact solutions are shown. 
Wilhelm Flügge was the first scientist to solve cylinder shell natural frequencies in 1943 [114 
p. 627]. The compact presentation of Figure 208 has been made by Chris Calladine in 1983 
[114 p. 651]. 
 
Table 14. Smallest natural frequencies of cylinder shells for various boundary conditions 
[9, p.651]  
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Figure 208. Smallest natural frequencies of cylinder shells for various boundary conditions 
[114] 7 
 
Exercise: Which curve in figure 208 is the festoon of figure 203? 
 
Membrane force 
A membrane force changes natural frequencies. Tension increases and compression decreases 
the natural frequencies. For example, consider a simply supported cylindrical shell (Table 25, 
f). It is loaded by an axial force F. The natural frequency is 
 

1= −n no
ult

Ff f
F

, 

 

where nof is the natural frequency without loading and ultF is the axial buckling load [115]. 
Note that when the cylinder almost buckles the natural frequency is almost zero. The normal 
mode does not change due to the axial load. The formula is not only valid for the fundamental 
frequency but also for higher natural frequencies provided that the buckling mode has the 
same shape as the normal mode (higher buckling modes). This property can be used for 
monitoring structural damage (see measuring vibrations p. 164) 
 
Shell vibration literature 
Between 1880 and 1980, scientists solved many shell problems. Robert Blevins collected the 
natural frequency formulas and published these in his book [115]. However, analytical 
solutions can only be derived for simple shapes, like spheres, cylinders, cones and curved 
panels. Fortunately, around 1980, computers became powerful tools. Between 1960 and 2000, 
scientists developed the finite element method (p. 82). Nowadays, it is a simple task to 
compute natural frequencies of shells of any shape, with any loading and any supports. 
 
Natural frequency of a square shell 
Consider a square shell with diaphragm boundary conditions (p. 69) at each edge (fig. 209). 
The shell has a small curvature (shallow), a uniform in plane edge load and a uniform surface 
load. Its smallest natural frequency is 
 

2 22 2
2 2

2 4 2 2 4
(1 )

( )
12(1 ) 4 4 71.7

xx yy xy
n m xy

n n nEt Ef k k
l t l Et

+ − νπ
= + + + −

− ν ρ π ρ ρ ρ
 

 
              bending stiffness               curvature                    membrane forces  
 
In this equation the contributions can be observed of bending stiffness, curvature and 

membrane forces. The equation was derived by substituting cos cos cos 2z
x yu ft
l l

π π
= π  in the 

equation of motion (p. 157) and it has been validated and extended by finite element 
analysis.8 
 

 
7 Note that the author of figure 208 must have been very smart. He writes 7 quantities fn, E, ν, ρ, a, t, l 
into just 2 dimensionless quantities and represents 10 equations in one graph for any Poisson ratio and 
any thickness. Others need over 100 graphs to display the same information. 
 
8 The contribution of km has been found by John Sewall in 1967 [116]. The term with nxx + nyy has 
been found by Edmond Szechenyi in 1971 [117]. The term with nxy has been found by Roland van 
Dijk in 2014 [118]. The contribution of kxy has been found analytically and confirmed numerically by 
Yordi Paasman in 2016 [119]. The Gaussian curvature kG has no significant influence, which was 
shown by Joep Sluijs in 2017 [120]. 
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Figure 209. Square shell with diaphragm boundary conditions 
 
Exercise: Check the natural frequency formula by applying it to figure 202. Can we also use 
the formula to calculate the natural frequency of mode 4? 
 
Exercise: What is the contribution of curvature to the natural frequency of Enneper’s surface 
(p. 164) with diaphragm boundary conditions? 
 
Challenge: For which size l is the formula for the smallest natural frequency of a square shell 
(p. 163) no longer accurate? 
 
Enneper’s surface 
Enneper’s 9 surface (fig. 210) is a minimal surface (p. 24) described by 
 

2 21
3

2 21
3

2 2

2 (1 )

2 (1 )

2 ( )

x au v u

y av u v

z a u v

= + −

= − + −

= −

 

 
 

 
  – 1

2 < u < 1
2     – 1

2  < v < 1
2    –2< u < 2    –2 < v < 2 

Figure 210. Enneper’s surface; a shallow part and a deep part 
 
Measuring vibrations 
Vibrations can be observed by changes in the strain at some point of a structure. A strain 
gauge is a small sensor for measuring strains. It is carefully glued onto the surface of a 
structure. There is a long thin wire in a strain gauge (fig. 211). When this wire is extended its 
electrical resistance changes. In a simple test setup the strain gauge is connected to a box 
which is connected to a laptop computer (fig. 212). 
 

 
9 Alfred Enneper (1830–1885) was professor of mathematics in Göttingen [Wikipedia]. 
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Figure 211. Strain gauge glued onto a bar Figure 212. Simple test set-up for measuring 

vibrations 
 
The box contains electronics which does two things. 1) It measures the electrical resistance of 
a strain gauge with a circuit called Wheatstone bridge. This produces a voltage that changes 
between approximately -2.5 and 2.5 Volts. 2) It translates the analog voltage into digital 
numbers (sequences of 0 and 5 Volts) and puts these on the USB cable. The digital numbers 
are read and stored by the software on the laptop computer. 
 
A strain gauge costs approximately €10. Unfortunately, they cannot be removed without 
breaking. The box and software cost approximately €200 (for example Mantracourt 
DSCUSB). 
 
Spectrum 
A measured signal can be approximated by adding a number of sine functions and cosine 
functions. An example is the block signal of figure 213. A very good approximation can been 
obtained when a large number of sine functions is used. This approximation is called a 
Fourier series.10  
Apparently the following frequencies are in the block signal: 1/(2π) with an amplitude of 
1.23, 3/(2π) with an amplitude of 0.30 and 5/(2π) with an amplitude of 0.10. A plot of this 
result is called the spectrum of the block signal (fig. 214). 
 
 
 

    
Figure 213. Fourier series approximations   Figure 214. Spectrum of a block  

      of a block signal           signal 
 
Fast Fourier transform 

 
10 Joseph Fourier (1768–1830) was a French physicist. He is also known for conjecturing the 
greenhouse effect of the Earth’s atmosphere [Wikipedia]. 
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A fast Fourier transform (FFT) is an algorithm for computing the spectrum (p. 165) of a 
signal. Figure 215 shows an example signal. (Micro strain as a function of the time step 
number, the time step is 0.01 s.) 
 

 
Figure 115. Measured signal 
 
The following Matlab code is used for plotting the spectrum shown in figure 216. In this 
example the peaks of the spectrum are natural frequencies. 
 
>> a = [16.0832 16.0825 16.0823 .. 15.6987]; 
>> Dt = 0.01 
>> y = a - mean(a) 
>> N = length(y) 
>> plot([0:N-1]/Dt/N, abs(fft(y))) 
>> axis([0 1 0 600]) 
 

 
Figure 216. Spectrum of the signal 
 
Sampling theorem 
When measuring vibrations (p. 164), in every time step the strain is recorded. If a vibration 
has a frequency f smaller than 1/time-step it will not be noticed. To be noticed and determined 
accurately the time step needs to be smaller than 1/(2f). This is called the sampling theorem 
[121]. 
 
Transient analysis 
A transient analysis is a dynamic finite element computation. The loading is specified starting 
at t = 0 and varies in time. The response is computed in many very small time steps. For large 
structures it takes several hours to compute the response to just one minute of loading. A 
storm lasts for approximately 6 hours, therefore, transient analysis is not suitable for 
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simulating the behaviour to this loading. An earthquake lasts for less than a minute, therefore, 
this loading can – and needs – to be analysed with a transient analysis. Note that the word 
“transient” means “lasting only a short time”. 
 
In a transient analysis it is important that the specified time step is sufficiently small. Halve 
the time step to see if it is (see mesh refinement p. 84 and apply this to time). It is also 
important to specify realistic damping ratio’s (p. 167) for the right modes. 
 
Damping ratio 
The amount of damping is expressed in a damping ratio ζ. (Refer to your dynamics text book 
for the definition of the damping ratio.) The damping ratio can be determined experimentally 
by exiting a structure in a normal mode, removing the load and observing how the vibrations 
decay (fig. 217). The logarithmic decrement δ is calculated with 
 

01 lnδ =
n

x
n x

, 

 
where 0x is an amplitude and nx is the amplitude n peaks later. 
 

 
Figure 217. Damping of a mass spring system 
 
The damping ratio is calculated with 
 

2

2 24

δ
ζ =

π + δ
. 

 
Some results are: 
Reinforced concrete structures under service loading ζ = 4%, 
Reinforced concrete structures under ultimate loading ζ = 5%, 
Welded steel structures ζ = 2%, 
Bolted steel structures ζ = 6%. 
 
Damping ratio distribution 
Different normal modes of a structure can have different damping ratios. In a transient 
analysis (p. 166) they need to be specified. In many programs Rayleigh damping can be 

ox

2x
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selected. In this method the damping matrix is a combination of the mass matrix and the 
stiffness matrix. Sometimes Rayleigh damping is referred to as proportional damping. An 
advantage of Rayleigh damping is that the transient analysis is faster than with other damping 
methods. The damping ratios need to be specified for two modes. The software interpolates 
the other ratios almost linearly (fig. 218). It is recommended to specify damping of the first 
normal mode and the highest occurring normal mode [122]. To find out which is the highest 
mode, increase the number of the second dampened mode until there is no change in 
important results. 
 

 
Figure 218. Damping ratio as a function of the frequency in case of Rayleigh damping [122] 
 
Acceptable vibrations 
People are disturbed by seeing vibrations and by feeling vibrations. Figure 219 shows .. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 219. … 
 
Shell acoustics 
The interior of a reinforced concrete shell roof is often smooth without the usual beams, bars, 
cables and columns that clutter the view. However, as a consequence, the reflection of sound 
can be unexpectedly strong. The architect needs to consider this and perhaps consult an 
acoustic expert. 
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Many shells have a funny acoustic property called whispering gallery. When you stand inside 
close to the shell and whisper something then on the other side of the shell somebody can hear 
it clearly. This is because sound waves are guided by the hard curved surface. The name has 
been derived from the famous whispering gallery in St. Paul’s Cathedral (p. 43). 
 
Sounds outside should not enter a building. For this mass is needed. A 70 mm thick reinforced 
concrete shell might not be sufficient. 
 
Design improvements 
If a design has vibration problems it needs to be improved. For frame structures it is often 
possible to change a design such that the loading frequency is in between two natural 
frequencies. However, for a shell structure this probably is not possible because the natural 
frequencies are very close to another (see fig. 202). Therefore, the smallest natural frequency 
of a shell needs to be larger than the loading frequency (fig. 206). 
 
Also it is possible to add dampers to solve vibration problems. (An example is the dampers 
used in cars.) Dampers are very effective but also expensive. A transient analysis (p. 166) can 
be performed to determine the effect of dampers. However, the damping ratio (p. 167) of the 
structure itself also has a large influence and it is difficult to estimate accurately. Therefore, it 
is difficult to determine whether dampers are really needed. A practical approach is to design 
damper positions but not include dampers in the structure. If later the structure starts to 
vibrate, dampers can still be placed. The designer needs to tell everybody that he or she is 
following this approach, otherwise later he or she might be blamed for making a bad design. 
 
Bausschinger effect 
 
 
 
 
Figure 221. … 
 
Fatigue 
The stress concentrations can be determined in linear elastic finite element analyses (p. 76) 
for all load combinations. In every material point the stress range is important. This is the 
largest stress minus the smallest stress. (The smallest stress often is a negative number.) 
According to Bausschingers’ effect (p. 168) if the stress range is smaller than two times the 
yield stress than yielding happens once and there is no yielding in subsequent load cycles. 
 
In most materials there are many imperfections between the crystals where stress 
concentrations occur. Also in welded joints there are imperfections with stress concentrations. 
Those stress ranges are not computed in finite element analyses and some are larger than two 
times the yield stress. In those imperfections local yielding will occur twice in every large 
load cycle. Of course this damages the material. Therefore, materials suffer from fatigue even 
when the calculated stresses are much smaller than the yield stress. 
 
Figure 222. … 
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Limit state function 
Consider a frame that carries a roof terrace. It is loaded by wind load W and live load L (fig. 
223). Plastic analysis shows that mechanisms occur at 
 

24 pM
W

l
= , 22(2 2) 4 2 pM

W L
l

+ − = , 22 8 pM
W L

l
+ =  

 
A limit state function describes collapse of this frame (fig. 224). We engineers have many 
synonyms for limit state function, such as yield contour, interaction diagram, utilisation, 
yield locus, response surface, strength hypothesis, unity check. Surely, this shows that the 
concept is important to us. 

Figure 223. Frame structure with load   Figure 224. Limit state function 
 
Limit state 
A limit state is described by the following information. 
- An event, for example deflection > 52 mm  or  collapse 
- A small probability 
- Load combinations for which the event shall not occur 
- A limit state function (p. 171). Equation or software that checks if the event occurs 
 
Approximation of the limit state function 
Suppose we design a frame that is loaded by wind W and live load L (Fig. 223). The load 
combinations are 
 
0.2 cW and 1.4 cL  …………… Hardly any wind and a large roof party 
1.6 cW and 0.3 cL  …………… Storming and some furniture left on the roof 
 
In this, cW and cL are the 5% characteristic values of the loads (or something similar). 
 
We estimate the column and beam dimensions (first design) and enter these into a frame 
analysis program. We use the moments to design better dimensions for the columns and beam 
(second design). We repeat the frame analysis. Now, the beam stresses are somewhat too 
large and the column stresses are much below yield. So, we choose a somewhat larger beam 
cross section and smaller column cross sections (final design). We repeat the frame analysis 
and all stresses are fine. 
 
Each of the three designs can be visualised by a limit state function (p. 171) Figure 225 shows 
how this may look like. The final design can carry each load combination and is not much 
stronger than it needs to be. We can safely approximate the final limit state function with the 
envelop of the load combinations (fig. 226). 
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          Figure 225. Three limit state functions       Figure 226. Approximation of the 

     limit state function of the final 
design 

 
> #     Z = a + b*W + c*L 
> eq1:= 1 = a + b*1.0*Wc + c*1.0*Lc: 
> eq2:= 0 = a + b*1.6*Wc + c*0.3*Lc: 
> eq3:= 0 = a + b*0.2*Wc + c*1.4*Lc: 
> solve({eq1,eq2,eq3},{a,b,c}); 

a = -6.81   b = 3.44/Wc   c = 4.38/Lc    
 
 
Monte Carlo analysis 
The atomic bomb was developed from 1941 to 1945, in Los Alamos, USA. The development 
continued with the hydrogen bomb. It was top secret and involved more than 130.000 people 
[Wikipedia]. One of the researchers was Stanisław Ulam.2 He worked on neutron diffusion 
and had an idea that he explained as follows. 
 
"... in 1946 ... I was convalescing from an illness and playing solitaires. The question was, 
what are the chances that ... solitaire laid out with 52 cards will come out successfully? After 
spending a lot of time trying to estimate them by pure combinatorial calculations, I wondered 
whether a more practical method than “abstract thinking” might not be to lay it out say one 
hundred times and simply observe and count the number of successful plays. This was already 
possible to envisage with the beginning of the new era of fast computers, and I immediately 
thought of problems of neutron diffusion ... I described the idea to John von Neumann, 3 and 
we began to plan actual calculations." [Wikipedia] 
 
They needed a code name for their work and chose Monte Carlo, which refers to the Monte 
Carlo Casino in Monaco, where Ulam’s uncle used to gamble with money borrowed from 
relatives [Wikipedia]. 
 
So, in a Monte Carlo structural analysis, a computer repeats the following experiment many 
times. Draw values of steel strength, concrete strength, self-weight, snow load, wind load, et 
cetera from their distributions and perform a finite element analysis. Do the unity checks. The 
failure probability is the number of failures over the number of experiments (fig. 228). 
 

 
2 Stanisław Marcin Ulam (1909–1984) was a Polish-American scientist in the fields of mathematics 
and nuclear physics [Wikipedia]. 
 
3 John von Neumann (1903–1957) was a Hungarian-American mathematician and computer scientist 
[Wikipedia]. 
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Figure 228. Monte Carlo analysis. Three of 200 analyses are outside the limit state function; 
the failure probability is 3/200. 
 
Turkstra’s rule 
Meteorologists measure wind. In their records they find the largest wind speed in 50 years at 
some location. This is represented by a probability distribution (fig. 231). They can also draw 
the distribution of the largest wind speed in any 10 year period and the distribution of the 
largest snow depth in any 50 year period. These distributions are called extreme value 
distributions for example the Gumbel distribution describes storms well. 4 
 
The meteorologist can also plot the joint probability distribution of wind speed and snow 
depth (fig. 229). These are distributions of the largest in one day. Wind and snow act in 
different directions, therefore, a joint distribution of the largest in 50 years does not exist. A 
Monte Carlo analysis of 1000 000 design lives needs 1000 000 × 50 years × 365 days = 18 
250 000 000 simulations. This takes too much time, even on a modern computer. 
 
We could assume that all loads reach their 50 year maximum at the same time. So, the largest 
storm in the design live occurs at the same time as the largest snow depth and at the same 
time as the largest floor load. Clearly, this is very unlikely and it leads to very expensive 
structures. In 1970, Carl Turkstra proposed a solution.5 Let’s consider all loads at their 
everyday value except for one that has its extreme value [123]. In this way we use the extreme 
value distributions and not the joint distribution. The method is reasonably accurate. 
 
 
 
 wind load distribution snow load distribution floor load distribution 
combination 1 extreme everyday everyday 
combination 2 everyday extreme everyday 
combination 3 everyday everyday extreme 
 
 
 

 
4 Emil Gumbel (1891–1966) was a German mathematician. He taught statistics in Heidelberg and Paris. 
He was active in politics and often spoke against the Nazi party. He and his family had to leave Europe 
in 1940. He became a professor at Columbia University, USA [Wikipedia]. 
 
5 Carl Turkstra (1936–2022) was a professor at the Polytechnic Institute of New York, Brooklyn. In 
1989, aged 52, he left academia to lead the family lumber business in Canada. His parents were Dutch 
immigrants who settled in Hamilton, Canada in 1927. 
[online obituary: https://www.legacy.com/ca/obituaries/thespec/name/carl-turkstra-
obituary?id=40027708] 
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Figure 229. Joint distribution of  W and L Figure 230. Turkstra’s approximation  
(Only everyday distributions are possible)          (Extreme value distributions describe the 
      measurements well) 
Drawing a number 
In a Monte Carlo analysis, the software draws numbers out of probability distributions. How 
do we program this? It is best explained with an example. The Gumbel cumulative 
distribution function is (fig. 231)  

exp( exp( ))u xF −
= −

α
  where  u = µ – 0.5772 α  and  α = σ √6 / π . 

The inverse is 

( )6 0.5772 ln( ln( )x F= µ − σ + −
π

. 

We draw a random number between 0 and 1, assign this to F and calculate x. The Python code 
is 
 
x=mean-stdev*0.7797*(0.5772+math.log(-math.log(random.random())) 
 
 

 
Figure 231. Cumulative distribution function (CDF) of the Gumbel distribution (µ = 1, σ = 
0.5)  
 

u xe
F e

−
−

α=
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Exercise: Plot the probability density function (PDF) of the Gumbel distribution. 
 
Software 
It is not difficult to write a program that computes failure probabilities. A simple Python 
program can be downloaded from  
 
phoogenboom.nl\b17_Monte_Carlo.py 
 
The program uses the Monte Carlo method, Turkstra’s rule and the envelope of the load 
combinations. The program does 1000 000 simulations, which takes a few seconds. 
 
The program has a remarkable property. Each material and each load can be represented by 
two ratios. 
     bias = representative value / mean 
     coefficient of variation = standard deviation / mean 
 
If we change the input numbers, but these ratios stay the same, the failure probability stays the 
same. Note that these ratios have no unit.  
 
Exercise: Does failure probability depend on the units of the input values? 
 
Challenging exercise: We need 2000 failures for computing the failure probability with less 
than 5% error. Sometimes this rule is not true and the error is larger than 5%. How often does 
this happen? (Poisson distribution.) 
 
Human error 
Engineers make mistakes. Of course we have procedures to catch our mistakes on time. 
Nonetheless, most structural failures are due to human error [125]. Often we find out during 
construction. We cannot statistically predict the magnitude of these errors. Therefore, they are 
not included in the calculation of failure probabilities. If you now think that calculating 
structural failure probabilities is just an academic exercise, you are right. However, is there a 
better way to make our structures safe? 
 
Annual failure probability 
The software produces the failure probability in the design live, for example 50 years. For a 
design live of 49 years, we need to adjust the extreme value distributions (p 175). The annual 
failure probability in year 50 can be obtained by subtracting the 49 year failure probability 
from the 50 year failure probability. The annual failure probability varies from year to year. 
The annual failure probability is highest in the first year of a structure’s live, unless fatigue is 
important [126]. An approximation of the annual failure probability is 
 

fd
fa

P
P

n
≈  

where 
faP …. annual failure probability 

fdP ..... probability of failure in the design live 
 n ........ design live in years 
 
This formula is accurate for structures with much variable load compared to self-weight. 
 
Failure probability per year is checked with a personal safety requirement (p. 177). Failure 
probability per design live is compared to an economic safety target (p. 178). 
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Changing the period of a Gumbel distribution 
The period of the Gumbel distribution can be changed. For example, we have the distribution 
for the largest in 50 year and we need the distribution for the largest in 100 year. The standard 

deviation σ stays the same. The mean µ becomes 
100
50ln

6
π

µ +
σ

. 

 
Suppose that the largest in 1 year has a normal distribution. It can be shown that the largest in 
50 years approximately has a Gumbel distribution. The same occurs for the log normal 
distribution and many other distributions. 
 
Weakest link 
The Weibull distribution is used for the strength of chains. If the chain length changes, it 
remains a Weibull distribution. For example, we have the distribution of the strength of a 2 m 
chain and we need the distribution of 50 m. Both, standard deviation σ and mean µ are 

multiplied by ( )2
50

k
, where k is solved from 

2
2

2(1 2 ) (1 ) (1 ) 0σ
Γ + − + Γ + =

µ
k k . An 

approximate solution is 0.83k σ
≈

µ
. 

Personal safety 
Consider a citizen of a civilised country. This person can die due to an accident, a health 
problem, murder et cetera. Figure 232 shows the probability of dying in one year as a function 
of age. A few of these deaths are due to structural collapse. 
 
 

 
 
 
 
 
Figure 232. Probability of dying of a Flemish (Belgian) citizen in 2017 [127]. The data 
behind the curves shows that in 2017 the number of 70 year old men in Flanders was 142 852 
of which 3187 died. Another example is that in 2017 the number of 5 year old girls in 
Flanders was 
180 130 of which 14 died; 11 due to sickness. 
 
A father and his 5 year old daughter go to an amusement park in Paris. This father would not 
enter the park, if it would increase her probability of dying. Fortunately, the park structures 
are designed for a collapse probability of 1/1000 000 a year. This negligible because 1/1000 
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000 + 77/1000 000 = 78/1000 000 (see fig. 232). We engineers say: “Keep her safe and do not 
worry about structural collapse.” 
 
Calculating with probabilities 
Consider two events A and B. Event A occurs with a probability 0.1. Event B occurs with a 
probability 0.2. A and B are independent. This means that occurring of A has no influence on 
the probability that B occurs and the other way around. 
The probability that A or B occurs is 0.1 + 0.2 = 0.3. 
The probability that A and B occur is 0.1 × 0.2 = 0.02. 
 
Henk 
On a typical day, Henk is at home (13 hours), at school (6 hours), in the shopping mall (2 
hours) or outdoors (3 hours). His home has a modern load bearing structure with a failure 
probability of 10/1000 000 per year. The dominant load in Henk’s city is storm. Henk and his 
housemates would recognise serious storm damage and go to the neighbours’ house right 
away. Henk’s school has a beautiful large shell roof with a failure probability of 200/1000 
000 in its design live of 50 years or 4/1000 000 per year. If this roof would buckle, very few 
of the present students or teachers would survive. Henk’s mall has a steel frame structure with 
an annual failure probability 10/1000 000. If a column would fail, the other columns still 
carry the floors and roof. Perhaps 3 of the about 200 shoppers would die by falling parts. 
 
The probability of Henk dying in a structural collapse this year is 
 
 
 

fP = 13/24 × 10/1000 000 × 0 + 6/24 × 4/1000 000 × 1 + 2/24 × 10/1000 000 × 3/200 
      = 0                                      + 1/1000 000                   + 0.013/1000 000 
      = 1.013/1000 000 
 
which is acceptable (see personal safety p. 176). This example shows that large shell roofs 
really need to have small failure probabilities for the ultimate limit state. 
 
Exercise: Change Henk’s calculation into your situation. Include a beautiful shell structure 
that you want to build. Is the conclusion the same? 
 
Exercise: In the Netherland are about 10 000 000 buildings, 10 000 bridges and 17 000 000 
people. Clearly, any significant collapse is reported in the news and you have read about it. 
How many of these buildings and bridges collapsed last year? How many people died in those 
accidents? Is the probability of dying in a structural collapse less than 1/1000 000? 
 
Economic safety 
Let us look at a structure as a business investment only. We can do so shamelessly because 
personal safety is covered above (see personal safety p. 177). The expected cost eC  of a 
building is 
 

e l s n f fC C C C P C= + + +  
 
where 

lC ....... Cost of the land 

sC ....... Cost of the load bearing structure, often just 10% of the building costs 

nC ...... Cost of all non-structural parts of the building, like windows, interior walls, 
bathrooms 

Henk is in the mall  the mall collapses  Henk dies.and and
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fP ...... Probability of structural failure in the design live 

fC ..... Failure cost, for example, value of the building (depreciated), destroyed machines, 
lost production, loss of experienced employees, liability payments 

 
To bring fP  down, we need to increase sC  (fig. 234). Consequently, there is an optimal fP  

for which eC  is smallest. 
 

 
Figure 234. Expected cost of a building 
 
This calculation has been performed for many buildings in developed countries. Table 13 
shows the results for 12 situations. 
 

1) A new building. It is being designed and will be build. 
2) An existing building. The structure is deteriorated and the load is increased. The structure 

needs to be checked. Actual dimensions and material properties can be measured which 
reduces uncertainty. Repair and strengthening is expensive. 
 

1) Wind is the dominant load. Stability walls that resist storms are large and expensive. 
2) Wind load is not dominant. 

 
1) Consequence class 1 (CC1) House, agricultural building, green house, storage building. 
2) Consequence class 2 (CC2) Office, 5 storey house, hotel, apartment, shop, school, hospital, 

industry building. 
3) Consequence class 3 (CC3) High rise, building with 16 or more storeys, hospital with 4 or 

more storeys, grandstand, exhibition hall, concert hall, large public buildings [129]. 
 
 
 
Table 13. Optimal failure probabilities (ULS) in the design live of structures based on costs 
only [130] 
consequence class new building existing building 
eurocode EN 1990 no wind wind no wind wind 
CC1 480

1 000 000  11000
1 000 000  2600

1 000 000  36000
1 000 000  

CC2 72
1 000 000  2600

1 000 000  480
1 000 000  11000

1 000 000  

CC3 8
1 000 000  480

1 000 000  72
1 000 000  480

1 000 000  
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Note that economic safety is a target, while personal safety (p. 177) is a requirement that must 
be fulfilled regardless of the target. 
 
Exercise: If you were to die now, society would loose the tax that you will pay in your live. 
Calculate how much this is. This really large number is used to represent you or any other 
person in the optimisation of structural failure probability. 
 
Exercise: Economic safety (design live) can be governing over personal safety (annual). For 
which situations in table 13 is this so for a frame structure? And which for a shell roof? 
 
Challenge: 1) Design a thin steel dome roof for a building in Amsterdam. 2) Calculate its 
construction costs. 3) Calculate its failure probability. 4) Change the thickness and continue at 
step 2. 5) Plot expected cost as a function of failure probability. 6) Read the optimal failure 
probability? 
 
Table 14: Statistics for the city of Amsterdam […] 
 distribution µ σ/µ 
Concrete compressive strength, C35 normal … N/mm2 …  
Steel tensile strength, … normal … N/mm2 …  
Office floor load,  1 day largest gamma 0.50 kN/m2 0.4 + A/(10 m2) 
                              1 year largest    
                            50 year largest Gumbel 1.50 kN/m2 0.4 
Wind load             1 hour largest Weibull 0.10 kN/m2 1.0 
                              1 year largest  …  … 
                            50 year largest Gumbel 1.00 kN/m2 0.25 
 
Safety index β 
Often, we use the safety index β to express failure probability. This is a number between 2 
and 5. It can be computed by 
 

2
1( )

2
β =

π f
W

P
 

 
Where W() is the Lambert function and fP  is the failure probability. Examples are 
 
 

fP  
10 000

1000 000
 1000

1000 000
 100

1000 000
 10

1000 000
 1

1000 000
 0.1

1000 000
 0.01

1000 000
 

β 2.34 3.09  3.73 4.26  4.76 5.20 5.62 
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Appendix. Optimal arch 
 
An arch with a sagitta of about 40% of the span needs the least material. This appendix 
presents the proof. 
 
For an evenly distributed load q [N/m] the arch has a parabolic shape (fig. 1). 
 

1 2 1 2x xy s
l l

  = + −  
  

,        (1) 

  
where l is the span and s is the sagitta. 
 

 
Figure 1. Parabolic arch 

 
The volume of the arch is 
 

1
2

1
2

l

x l

Vol t wdz
=−

= ∫ ,         (2) 

 
where t = t (x) is the thickness, w is the width and dz is a small distance along the arch. The 
thickness t is related to the axial force N = N(x). 
 
t w f N= ,          (3) 
 
where f is the compressive strength of the material. The axial force N in the arch has a vertical 
component V and a horizontal component H (fig 2.). 
 
N dz
V dy

=           (4) 

 
This is valid for x < 0. The vertical components V need to be in equilibrium with the loading q 
(fig. 2). 
 
V x q= −           (5) 
 
This is valid for x < 0. 
 

s

l

t

x

y

q
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Figure 2. Section forces 

 
Substitution of equations 3 to 5 in equation 2 gives 
 

1
2

0 2
2

x l

xq dzVol dx
f dxdy

=−

−
= ∫         (6) 

 

Using the Pythagorean theorem 2 2 2dz dx dy= + we obtain 
 

2 1dz dy
dydxdy dx
dx

= + .         (7) 

 
Substitution of equations 1 and 7 in equation 6 and evaluation of the integral gives 
 

2 216 3
24
s lVol ql

f s
+

= .         (8) 

 
For the minimum volume it holds 
 

0dVol
ds

= ,          (9) 

 
from which s can be solved. 
 

3 0.4
4

s l l= ≈                  (10) 

 
Q.E.D. 
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Appendix. Optimal dome 
 
A dome with a sagitta of about 30% of the span needs the least material. This appendix 
presents the proof. 
 
The shape is assumed to be a spherical cap (fig. 3). 
 

2 2= − −y a x . 
 

 
Figure 3. Dome dimensions and coordinate system  
 
The radius of curvature is 
 

2

2 8
= +

s la
s

. 

 
The dome surface area is 
 

1 1
2 22

2 2 2 2 2

0 0 0

2 1 ( ) 2 4
π

ϕ= = =

 = + ϕ = π + = π − − 
 ∫ ∫ ∫

l l

x x

dyA dx dy x d x dx a a a l
dx

.  (1) 

 
We assume the thickness t to be constant. The vertical support reaction is 
 

ρ
=

πv
A g tn

l
, 

 
Where ρ is the specific mass, g is the gravitational acceleration. The horizontal support 
reaction is  
 

1
2

2 2

2 1
4=

 
 = = ρ −
 − 

h v
x l

dx an n a g t
dy a l

. 

 
The meridional stress in the dome foot is 
 

2
2 2 2 2

2
1 2 (2 4 )ρ

σ = + = − −v h
a gn n a a l

t l
.      (2) 

l

s
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The hoop stress in the dome foot is smaller than the meridional stress. The stress in the dome 
top is  
 

1
20

lim
↓

σ = ρ
l

a g  

 
We assume that the dome is fixed at the support. The thickness for which the dome almost 
buckles is 1 (see buckling p. 140) 
 

2
2

1 3(1 )
3(1 )

cr
E t at C
a EC

σ
σ = ⇒ = − ν

− ν
,     (3) 

 
where 1/C is the knockdown factor for including imperfections. The material volume V of the 
dome is found by substituting (1), (2) and (3) in 
 

=V A t , 
 
which can be evaluated to 
 

42
2 2 2

2
22 4 3(1 )a gV a a l C

El
πρ = − − − ν 

 
. 

 
This can be rewritten in dimensionless quantities 
 

2
2 4

2 44 2
2 4 1

2 3(1 )

VE a a a
l l lg l C

 
 = − −
 πρ − ν  

, where 1 1
2 8= +

a s l
l l s

. 

 

Figure 30 shows the dimensionless material volume as a function of s
l

. 

 
Figure 4. Material volume V as a function of sagitta s 

 

The roots of dV
ds

are 3
2

= −s l , 3
6

− l , 3
6

l , 3
2

l . 

 
1 Thin domes almost always buckle before yielding or crushing. It can be shown that for yielding or 
crushing to occur due to self-weight the span l needs to exceed 1 km. 
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l
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Therefore, the minimum material volume occurs at 3 0.3
6

= ≈
s
l

.   Q.E.D. 

 

The optimal s
l

value does not depend on the material E, ν, ρ, it does not depend on the span l, 

it does not depend on the imperfections C and it does not depend on the gravity g (earth or 
moon). 
 

The thickness at minimum volume is 
2

22
9 3(1 ) g lt C

E
ρ

= − ν . 

Since 2 23(1 ) 6 3(1 0.27 ) 10C − ν ≈ − = , 

the thickness is approximately 
2

20
9

g lt
E

ρ
= . 

The thickness can be written as 
3 2

2
2 3 23(1 ) 2 4 1

2
Et a a aC

lg l l l

 
 − ν = − −
 ρ  

. 

 

Figure 31 shows the dimensionless thickness as function of s
l

. For s
l

values larger than 0.3 

the thickness does not change much. 
 

 
Figure 5. Thickness t as a function of the sagitta s 

 
In this derivation it is assumed that the thickness is everywhere the same. However, the stress 
in the top is 25% smaller than in the foot of the dome. Therefore, the top can be 25% thinner. 
A varying thickness would give a somewhat different optimum sagitta. 
 
The horizontal support reaction of the optimal dome is evaluated to 1

3= ρhn l g t . 
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Appendix. Curvature tensor 
This appendix proves that curvature is a tensor. Consider a point on a shell middle surface. In 
this point are a local coordinate system x, y, z and a rotated local coordinate system r, s, z. A 
point (x, y) can be expressed in (r, s) by  
 

cos sin
sin cos

x r s
y r s

= ϕ − ϕ
= ϕ + ϕ

 

 
The shell middle surface can be described by (see page 20) 
 

2 21 1
2 2xx xy yyz k x k xy k y= + +  

 
Only second order terms are included because higher order terms are much smaller close to 
the origin of the local coordinate system. Substitution of the former into the latter gives 
 

2 21 1
2 2( cos sin ) ( cos sin )( sin cos ) ( sin cos )xx xy yyz k r s k r s r s k r s= ϕ − ϕ + ϕ − ϕ ϕ + ϕ + ϕ + ϕ  

 
The definition of curvature is (see page 20) 
 

2 2 2

2 2, ,rr ss rs
z z zk k k

r sr s
∂ ∂ ∂

= = =
∂ ∂∂ ∂

 

 
Substitution of the former into the latter gives 
 

2 2

2 2

2 2

cos sin 2sin cos

sin cos 2sin cos

( )sin cos (cos sin )

rr xx yy xy

ss xx yy xy

rs yy xx xy

k k k k

k k k k

k k k k

= ϕ + ϕ + ϕ ϕ

= ϕ + ϕ − ϕ ϕ

= − ϕ ϕ + ϕ − ϕ

 

 
A quantity that can be transformed to another coordinate system by these equations is by 
definition a tensor (dimensions 2, rank 2). Q.E.D. 
 
The transformation equations can be rewritten as 
 

1 1
2 2
1 1
2 2

1
2

( ) ( )cos 2 sin 2

( ) ( )cos 2 sin 2

( )sin 2 cos 2

rr xx yy xx yy xy

ss xx yy xx yy xy

rs xx yy xy

k k k k k k

k k k k k k

k k k k

= + + − ϕ + ϕ

= + − − ϕ − ϕ

= − − ϕ + ϕ

 

 
and as 
 

cos sin cos sin
sin cos sin cos

 ϕ ϕ ϕ − ϕ     
=       − ϕ ϕ ϕ ϕ       

xx xyrr rs

rs ss xy yy

k kk k
k k k k

 

 
and as 
 

, ,

, ,ij mn mi nj
m x y n x y

k k t t i r s j r s
= =

= = =∑ ∑  

 

The equations can be plotted by Mohr’s circle. 
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Appendix. Membrane force tensor 
This appendix shows that shell membrane forces can be transformed to another coordinate 
system in almost the same way as regular tensors. Consider a local coordinate system x, y, z 
and a rotated local coordinate system r, s, z. Consider two small triangular shell parts. 
 
                                                   
 
 
 
 
 
 
 
 
 
 
The equilibrium equations of these parts are 
 

1cos 1sin cos sin

1cos 1sin sin cos

1sin 1cos cos sin

1sin 1cos sin cos

rr rs xx yx

rs rr yy xy

sr ss yy xy

ss sr xx yx

n n n n

n n n n

n n n n

n n n n

ϕ − ϕ = ϕ + ϕ

ϕ + ϕ = ϕ + ϕ

ϕ + ϕ = ϕ − ϕ

ϕ − ϕ = ϕ − ϕ

 

 
This can be written as 
 

2 2

2 2

2 2

2 2

cos sin ( )sin cos

sin cos ( )sin cos

( )sin cos cos sin

( )sin cos cos sin

rr xx yy xy yx
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n n n n n

n n n n n

n n n n n

n n n n n

= ϕ + ϕ + + ϕ ϕ

= ϕ + ϕ − + ϕ ϕ

= − ϕ ϕ + ϕ − ϕ

= − ϕ ϕ + ϕ − ϕ

 

 
and as 
 

1 1 1
2 2 2
1 1 1
2 2 2
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( ) ( )cos 2 ( )sin 2

( ) ( )cos 2 ( )sin 2
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and as 
 

cos sin cos sin
sin cos sin cos

xx xyrr rs

sr ss yx yy

n nn n
n n n n

 ϕ ϕ ϕ − ϕ     
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and as 
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Appendix. Asymmetric tensors 
This appendix gives the properties of the membrane force tensor. 
 
Invariants 
 

xx yyn n+ (trace) 

xx yy xy yxn n n n−  (determinant) 

xy yxn n−  
 
Principal values (no shear stress, eigenvalues) 
 

2
1 ( )

2 2
xx yy xx yy

xy yx
n n n n

n n n
+ −

= + +  1arctan xx

yx

n n
n
−

ϕ =  2arctan xx

yx

n n
n
−

ϕ =  

2
2 ( )

2 2
xx yy xx yy

xy yx
n n n n

n n n
+ −

= − +  1arctan yy

xy

n n
n

−
ϕ =  2arctan yy

xy

n n
n

−
ϕ =  

 
Largest and smallest normal force 
 

2 2( ) ( )
2 2 2

xx yy xx yy xy yxn n n n n n+ − +
+ +  1 1

2 2arctan xy yx

xx yy

n n
n n

+
ϕ = + π

−
 

2 2( ) ( )
2 2 2

xx yy xx yy xy yxn n n n n n+ − +
− +  1

2 arctan xy yx

xx yy

n n
n n

+
ϕ =
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Largest and smallest shear force 
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2 2 2

xy yx xx yy xy yxn n n n n n− − +
− + +  1

2 arctan xx yy

xy yx

n n
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−
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+ +  

 
Mohr’s circle 
….. 
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Appendix. Compatibility equation 
 
In this appendix the shell compatibility equation (p. 57) is checked. 
 
> ux:=  c1 +   c2*u +   c3*v +   c4*u^2 +   c5*u*v +   c6*v^2 +   c7*u^3 +   c8*u^2*v +   c9*u*v^2 + 
c10*v^3: 
> uy:=c11 + c12*u + c13*v + c14*u^2 + c15*u*v + c16*v^2 + c17*u^3 + c18*u^2*v + c19*u*v^2 + 
c20*v^3: 
> uz:=c21 + c22*u + c23*v + c24*u^2 + c25*u*v + c26*v^2 + c27*u^3 + c28*u^2*v + c29*u*v^2 + 
c30*v^3: 
> epsilonxx:=diff(ux,u)/alphax-kxx*uz+kx*uy: 
> epsilonyy:=diff(uy,v)/alphay-kyy*uz+ky*ux: 
> gammaxy:=diff(ux,v)/alphay+diff(uy,u)/alphax-2*kxy*uz-kx*ux-ky*uy: 
> phix:=-diff(uz,u)/alphax-kxx*ux-kxy*uy: 
> phiy:=-diff(uz,v)/alphay-kyy*uy-kxy*ux: 
> phiz:=1/2*(-diff(ux,v)/alphay+diff(uy,u)/alphax-kx*ux+ky*uy): 
> kappaxx:=diff(phix,u)/alphax-kxy*phiz+kx*phiy: 
> kappayy:=diff(phiy,v)/alphay+kxy*phiz+ky*phix: 
> rhoxy:=diff(phix,v)/alphay+diff(phiy,u)/alphax+(kxx-kyy)*phiz-kx*phix-ky*phiy: 
> l:=-diff(epsilonxx,v,v)/alphay^2 + diff(gammaxy,u,v)/alphax/alphay - diff(epsilonyy,u,u)/alphax^2: 
> r:=-kyy*kappaxx + kxy*rhoxy - kxx*kappayy: 
> u:=0: v:=0: kx:=0: ky:=0: kxx:=kxy^2/kyy: 
> simplify(l-r); 

0 
 
Q.E.D. 
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Appendix. Cylinder equation 
 
In this appendix the shell cylinder equation (p. 73) is derived. 
 
> ux:=-nu/a*int(w(u),u): uy:=0: uz:=w(u): 
> pz:=0: 
> kxx:=0: kyy:=-1/a: kxy:=0: alphax:=1: alphay:=1: 
> ky:=diff(alphay,u)/alphay/alphax: kx:=diff(alphax,v)/alphax/alphay: 
> epsilonxx:=diff(ux,u)/alphax-kxx*uz+kx*uy: 
> epsilonyy:=diff(uy,v)/alphay-kyy*uz+ky*ux: 
> gammaxy:=diff(ux,v)/alphay+diff(uy,xs)/alphax-2*kxy*uz-kx*ux-ky*uy: 
> phix:=-diff(uz,u)/alphax-kxx*ux-kxy*uy: 
> phiy:=-diff(uz,v)/alphay-kyy*uy-kxy*ux: 
> phiz:=1/2*(-diff(ux,v)/alphay+diff(uy,u)/alphax-kx*ux+ky*uy): 
> kappaxx:=diff(phix,u)/alphax-kxy*phiz+kx*phiy: 
> kappayy:=diff(phiy,v)/alphay+kxy*phiz+ky*phix: 
> rhoxy:=diff(phix,v)/alphay+diff(phiy,u)/alphax+(kxx-kyy)*phiz-kx*phix-ky*phiy: 
> nxx:=E*h/(1-nu^2)*(epsilonxx+nu*epsilonyy): 
> nyy:=E*h/(1-nu^2)*(epsilonyy+nu*epsilonxx): 
> nxym:=E*h/(2*(1+nu))*gammaxy: 
> mxx:=E*h^3/(12*(1-nu^2))*(kappaxx+nu*kappayy): 
> myy:=E*h^3/(12*(1-nu^2))*(kappayy+nu*kappaxx): 
> mxy:=E*h^3/(24*(1+nu))*rhoxy: 
> vx:=diff(mxx,u)/alphax+diff(mxy,v)/alphay+ky*(mxx-myy)+2*kx*mxy: 
> vy:=diff(myy,v)/alphay+diff(mxy,u)/alphax+kx*(myy-mxx)+2*ky*mxy: 
> nz:=(kxy*(mxx-myy)-(kxx-kyy)*mxy)/2: 
> nxy:=nxym-nz: 
> nyx:=nxym+nz: 
> px:=-(diff(nxx,u)/alphax+diff(nyx,v)/alphay+ky*(nxx-nyy)+kx*(nxy+nyx)-kxx*vx-kxy*vy): 
> py:=-(diff(nyy,v)/alphay+diff(nxy,u)/alphax+kx*(nyy-nxx)+ky*(nxy+nyx)-kyy*vy-kxy*vx): 
> pz:=-(kxx*nxx+kxy*(nxy+nyx)+kyy*nyy+diff(vx,u)/alphax+diff(vy,v)/alphay+ky*vx+kx*vy): 
> simplify(px); 
                               0 
> simplify(py); 
                               0 
> collect(simplify(pz),w(u)); 
 

3 4

2 2 4( ) ( )
12(1 )

Eh Eh dw u w u
a du

 
 +
 − ν  
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Appendix. Section forces and moments in thick shells 
In thin shells the membrane forces, the moments and the shear forces are defined in the same 
way as in plates (see definition of membrane forces … p. 13). For thick shells (p. 13) the 
definitions are somewhat different because of the curvature (p. 19). 
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Exercise: Show that the above definitions comply with Sanders-Koiter equation 18. 
(Terms with for example yy xyk k can be neglected because they are small.) 
 
Derivation 
The equations in the principal directions are simple 
(see figure); for example 

1
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1
2

(1 )

t

rr rr ss

t

n k z dz

−

= σ −∫       

Here it is shown that the kernel 
 

(1 )rr ssk zσ −  
 
in the principal directions r, s becomes 
 

(1 )xx yy xy xyk z k zσ − + σ  
 
in the general directions x, y. 
 
dnrr:=(dnxx+dnyy)/2+(dnxx-dnyy)/2*cos(2*f)+dnxym*sin(2*f): 
dnss:=(dnxx+dnyy)/2-(dnxx-dnyy)/2*cos(2*f)-dnxym*sin(2*f): 
dnrsm:=            -(dnxx-dnyy)/2*sin(2*f)+dnxym*cos(2*f): 
srr:=(sxx+syy)/2+(sxx-syy)/2*cos(2*f)+sxy*sin(2*f): 
sss:=(sxx+syy)/2-(sxx-syy)/2*cos(2*f)-sxy*sin(2*f): 
srs:=           -(sxx-syy)/2*sin(2*f)+sxy*cos(2*f): 

1
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ssds k
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−

= σ −∫



 
202 

krr:=(kxx+kyy)/2+(kxx-kyy)/2*cos(2*f)+kxy*sin(2*f): 
kss:=(kxx+kyy)/2-(kxx-kyy)/2*cos(2*f)-kxy*sin(2*f): 
krs:=           -(kxx-kyy)/2*sin(2*f)+kxy*cos(2*f): 
dqr:= dqx*cos(f)+dqy*sin(f): 
dqs:=-dqx*sin(f)+dqy*cos(f): 
srz:= sxz*cos(f)+syz*sin(f): 
ssz:=-sxz*sin(f)+syz*cos(f): 
 
eq0:=krs=0: 

f:=solve(eq0,f);    

eq1:=dnrr=srr*(1-kss*z): 
eq2:=dnss=sss*(1-krr*z): 
dnrs:=srs*(1-kss*z): 
dnsr:=srs*(1-krr*z): 
eq3:=dnrsm=(dnrs+dnsr)/2: 
opl:=solve({eq1,eq2,eq3},{dnxx,dnxym,dnyy}): assign(opl): 
dnxx:=collect(dnxx,sxx);  
dnyy:=collect(dnyy,syy);  
dnxym:=collect(dnxym,sxy); 

 
dnxy:=sxy*(1-kyy*z)+kxy*syy*z;  
dnyx:=sxy*(1-kxx*z)+kxy*sxx*z;  
simplify(dnxym-(dnxy+dnyx)/2): 0 
 
eq4:=dqr=srz*(1-kss*z): 
eq5:=dqs=ssz*(1-krr*z): 
opl:=solve({eq4,eq5},{dqx,dqy}); assign(opl): 
dqx:=collect(dqx,sxz);  
dqy:=collect(dqy,syz);  
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Appendix. Stresses in thick shells 
 
surface 

1
2=z t  
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Derivation 
sxx:=(sxxt+sxxb)/2+(sxxt-sxxb)*z/t: # Bernoulli’s hypothesis 
syy:=(syyt+syyb)/2+(syyt-syyb)*z/t: 
szz:= 0: 
syz:=-4*syzm/t^2*(z-t/2)*(z+t/2):  
sxz:=-4*sxzm/t^2*(z-t/2)*(z+t/2): 
sxy:=(sxyt+sxyb)/2+(sxyt-sxyb)*z/t: 
# Definitions of membrane forces, moments and shear forces 
eq1:=nxx=int(sxx*(1-kyy*z)+sxy*kxy*z,z=-t/2..t/2): 
eq2:=nyy=int(syy*(1-kxx*z)+sxy*kxy*z,z=-t/2..t/2): 
nxy:=int(sxy*(1-kyy*z)+syy*kxy*z,z=-t/2..t/2): 
nyx:=int(sxy*(1-kxx*z)+sxx*kxy*z,z=-t/2..t/2): 
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eq3:=nxym=(nxy+nyx)/2: 
eq4:=mxx=int((sxx*(1-kyy*z)+sxy*kxy*z)*z,z=-t/2..t/2): 
eq5:=myy=int((syy*(1-kxx*z)+sxy*kxy*z)*z,z=-t/2..t/2): 
mxy:=int((sxy*(1-kyy*z)+syy*kxy*z)*z,z=-t/2..t/2): 
myx:=int((sxy*(1-kxx*z)+sxx*kxy*z)*z,z=-t/2..t/2): 
eq6:=mxym =(mxy+myx)/2: 

qx:=int(sxz*(1-kyy*z)+syz*kxy*z,z=-t/2..t/2);   

qy:=int(syz*(1-kxx*z)+sxz*kxy*z,z=-t/2..t/2); 
  

 
opl:=solve({eq1,eq2,eq3,eq4,eq5,eq6},{sxxb,sxxt,sxyb,sxyt,syyb,syyt})
: assign(opl): 
sxxt:=mtaylor(sxxt,{kxx,kxy,kyy},2);

  

syyt:=mtaylor(syyt,{kxx,kxy,kyy},2);
  

sxyt:=mtaylor(sxyt,{kxx,kxy,kyy},2); 

 

sxxm:=mtaylor((sxxt+sxxb)/2,{kxx,kxy,kyy},2);
  

syym:=mtaylor((syyt+syyb)/2,{kxx,kxy,kyy},2);
  

sxym:=mtaylor((sxyt+sxyb)/2,{kxx,kxy,kyy},2);
  

sxxb:=mtaylor(sxxb,{kxx,kxy,kyy},2);
  

syyb:=mtaylor(syyb,{kxx,kxy,kyy},2);
  

sxyb:=mtaylor(sxyb,{kxx,kxy,kyy},2);
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Appendix. Increase of the Gaussian curvature 
The quantity − κ + ρ − κyy xx xy xy xx yyk k k  is approximately equal to the increase of the shell 
Gaussian curvature Gk during loading. 
 
Proof 
In the local coordinate system the shell surface can be approximated by (p. 21) 
 

2 21 1
2 2= + +xx xy yyz k x k xy k y . 

 
A displacement can be approximated as 
 

2 21 1 1
2 2 2z zo x y xx xy yyu u x y x xy y= + ϕ + ϕ − κ − ρ − κ . 

 
The deformed shape is 
 

2 21 1 1
2 2 2( ) ( ) ( )+ = + ϕ + ϕ + − κ + − ρ + − κz zo x y xx xx xy xy yy yyz u u x y k x k xy k y . 

 
The curvatures after deformation are 
 

2
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z
xx xx

z u
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x
, 

2
1
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( )∂ +
= − ρ

∂ ∂
z

xy xy
z u

k
x y

, 

2

2
( )∂ +

= − κ
∂

z
yy yy

z u
k

y
. 

 
Before deformation the Gaussian curvature of the middle surface is 
 

2= −G xx yy xyk k k k . 
 
After deformation the Gaussian curvature is 
 

21
2( )( ) ( )= − κ − κ − − ρGd xx xx yy yy xy xyk k k k . 

 
The increase in Gaussian curvature is 
 

21
4− = − κ + ρ − κ + κ κ − ρGd G yy xx xy xy xx yy xx yy xyk k k k k . 

 
The last two terms are very small compared to the other terms and can be neglected for shells 
with significant curvatures. They cannot be neglected for flat plates. 
 
Q.E.D. 
 
The increase of the Gaussian curvature can also be written as 
 

1 1 1
2 4 2( ) ( ) ( )− = − − κ κ + − ρ ρ − − κ κGd G yy yy xx xy xy xy xx xx yyk k k k k . 
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Appendix. Umbilical patterns 
 
Identifying umbilical patterns 
It is often difficult to recognise the umbilical pattern from the finite element principal 
directions, especially when several umbilics occur close to each other. Fortunately, they can 
be recognised computationally too. 
 
Six gradients ia can be computed from the tensor finite element results around an umbilic. 
 

1 2

3 4

5 6

xx xx

yy yy

xy xy

m ma a
x y

m m
a a

x y
m m

a a
x y

∂ ∂
= =

∂ ∂
∂ ∂

= =
∂ ∂

∂ ∂
= =

∂ ∂

 

 
The directions of the ridges are the roots of 
 

3 2
6 2 4 5 1 3 6 5

3 2
2 4 1 3 6 2 4 5 1 3

tan ( ) tan ( ) tan
( ) tan ( 4 ) tan ( 4 ) tan ( )

a a a a a a a af
a a a a a a a a a a

ϕ + − + ϕ + − − ϕ −
=

− ϕ + − − ϕ − − + ϕ − −
. 

 
For example, Figure 146 shows f  for 1a = 1, 2a = 2, 3a = 3, 4a = 4, 5a = 5, 6a = 6 N/mm². 
The roots can be computed using the Newton-Raphson algorithm. When the directions of the 
ridges are known the umbilical pattern can be identified using Figure 172. 
 
Exercise: What umbilical pattern follows from the following? 
 
 

 
Figure ... Function  f  of  ϕ, the three roots are angles of ridges with the x axis 
 
Table 14. Values of 1a to 6a  for the patterns of figure 171 
 1a  2a  3a  4a  5a  6a  
Monstar 2 0 0 0 0 3 
Star 0 2 0 0 1 0 
Lemon 2 0 0 0 0 1 
Flame 1 -1 0 0 0 1 
Orthogonal 0 1 0 0 0 0 
 
 
 

1φ 2φ
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Simplified umbilical patterns 
For the curvature tensor there is a substantial simplification; 5 2≡a a  and 6 3≡a a . This 
follows from applying the curvature definitions (p. 20) to 
 

2 2 3 2 2 3
1 2 3 4 5 6 7z c x c x y c y c x c x y c x y c y= + + + + + + . 

 
For the membrane force tensor of plates loaded in plane there is a simplification too; 

5 4≡ −a a  and 6 1≡ −a a  provided that there is edge load only therefore xp and yp are zero. 
This follows from Sanders-Koiter equation 4 and 5 (p. 54). 
 
Invariants of tensor gradients 
The gradients ia defined in the previous section depend on the direction of the local x axis and 
y axis. It is useful to have quantities that do not depend on the coordinate system. The 
following quantities have this property. They are called invariants. They are valid for all 
points of a shell, not only for umbilics (p. 123). 
 

1 1 3 6 2 4 5
2 2

2 1 3 5 2 4 6
2 2

3 1 3 2 4
2 2

4 3 6 2 5
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a a a a a a

a a a a a a

a a a a

a a a a

 

2 2 2
5 1 3 5 2 4 6 1 4 2 3 5 6

2 2 2
6 2 6 1 1 5 2 2 1 5 6 1 1 3 6 2 2 4 5

4( )( ) ( 2 )

4( 3 )( 3 ) ( 9 )

a a a a a a a a a a a a

t a t t a t t t a a t a a a t a a a

δ = − − − + −

δ = − + − + = − − = − +
 

 
An infinite number of invariants exists. After all, the above six invariants can be added, 
multiplied et cetera in an infinite number of ways. This does not mean that all invariants can 
be constructed from the above invariants. Probably, invariants exist that cannot but a 
mathematical proof of this does not exist as yet.2 
 
Interpretation of the invariants of tensor gradients 
Invariants (p. 114) do not depend on the direction of the x and y axis. Physical reality does 
neither. So, invariants are good candidates to describe physical reality. The following 
interpretations of invariants have been found. 
Invariant 1δ gives information on the umbilical pattern. Where 1 0δ >  monstars occur, where 

1 0δ < stars occur, where 1 0δ = orthogonal patterns or nonlinear patterns occur. Where 
invariant 6δ = 0 lemons or flames occur. More applications of invariants are likely to be 
found. 
 
 
 
 

 
2 Invariants are not easy to find. Invariant δ1, δ5 and δ6 have been derived by A. Thorndike et al. in 
1978 [A.S. Thorndike, C.R. Cooley, J.F. Hye, The structure and evolution of flow fields and other 
vector fields, Journal of Physics A: Mathematical and General, Vol. 11, No. 8, pp. 1455-1490, 1978]. 
Invariant δ2, δ3 and δ4 have been discovered by Wouter van Stralen in 2013 
 
[W.J. van Straalen, Invarianten van tensoren, De onafhankelijkheid van assenstelsels rondom umbilics, 
Bacheloreindwerk, Delft University of Technology, 2013 (in Dutch) 
online: http://homepage.tudelft.nl/p3r3s/BSc_projects/eindrapport_van_stralen.pdf ]. 
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Invariant proof 
> restart: 
> x:=r*cos(f)-s*sin(f): 
> y:=r*sin(f)+s*cos(f): 
> nxx:=p1+a1*x+a2*y: 
> nyy:=p2+a3*x+a4*y: 
> nxy:=p3+a5*x+a6*y: 
> nrr:=1/2*(nxx+nyy)+1/2*(nxx-nyy)*cos(2*f)+nxy*sin(2*f): 
> nss:=1/2*(nxx+nyy)-1/2*(nxx-nyy)*cos(2*f)-nxy*sin(2*f): 
> nrs:=             -1/2*(nxx-nyy)*sin(2*f)+nxy*cos(2*f): 
> b1:=diff(nrr,r): 
> b2:=diff(nrr,s): 
> b3:=diff(nss,r): 
> b4:=diff(nss,s): 
> b5:=diff(nrs,r): 
> b6:=diff(nrs,s): 
> simplify((b1-b3)*b6-(b2-b4)*b5); 

 −  −  + a1 a6 a2 a5 a3 a6 a4 a5  
 
Ridge angles as function of constants 1a to 6a  

1 2

3 4

5 6

= + +

= + +

= +

xx

yy

xy

n p a x a y
n p a x a y

n a x a y

         (1) 

 
cos
sin

= ϕ
= ϕ

x r
y r           (2) 

 
1 1
2 2
1 1
2 2

1
2

( ) ( )cos 2 sin 2

( ) ( )cos 2 sin 2

( )sin 2 cos 2

= + + − ϕ + ϕ

= + − − ϕ − ϕ

= − − ϕ + ϕ

rr xx yy xx yy xy

ss xx yy xx yy xy

rs xx yy xy

n n n n n n

n n n n n n

n n n n

     (3) 

 
The principal directions γ in the r-s coordinate system is 
 

2tan 2γ =
−
rs

rr ss

n
n n

         (4) 

 
For a ridge 
 
γ = 0 or γ = 1

2 π .          (5) 
 
Substitution of Eqs (1), (2), (3) and (5) in (4) gives 
 

3 2
6 2 4 5 1 3 6 5

3 2
2 4 1 3 6 2 4 5

tan ( ) tan ( ) tan0
( ) tan ( 4 ) tan ( 4 ) tan ( 1 3)

ϕ + − + ϕ + − − ϕ −
=
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a a a a a a a a
a a a a a a a a a a

  (6) 

 
The denominator is important because when any two ridges have an angle of π/2 the third 
ridge is cancelled out of this fraction. Therefore, there can be one, two or three roots. 
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The roots can be computed using, for example, the Newton-Raphson algorithm. 
The derivative of Eq. (4) is 
 

2 2 2
1 2 3

3 2 2
2 4 1 3 6 2 4 5

( tan tan )(1 tan )tan 2
(( ) tan ( 4 ) tan ( 4 ) tan ( 1 3))

t t td
d a a a a a a a a a a

ϕ + ϕ + + ϕ
γ =

ϕ − ϕ + − − ϕ − − + ϕ − −
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Constants 1a to 6a as function of the ridge angles 
To obtain the patters of fig. 171 we choose a Cartesian coordinate system in an umbilic and 
assume a linear variation in the second order tensor, for example the normal forces. 
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Cylinder coordinates are introduced. 
 

cos
sin

= ϕ
= ϕ

x r
y r           (2) 

 
The principal direction γ is defined by 
 

2
tan 2γ =

−
xy

xx yy

n
n n

.         (3) 

 
For the ridges holds 
 
γ = ϕ            (4) 
 
Substitution of Eqs (1), (2) and (4) in (3) gives a third degree polynomial in tan ϕ . 
 

3 2
6 2 4 5 1 3 6 5tan ( ) tan ( ) tan 0ϕ + − + ϕ + − − ϕ − =a a a a a a a a     (5) 

 
Suppose the roots of this polynomial are 1b , 2b  and 3b . Then it can be written as 
 

1 2 3( tan )( tan )( tan ) 0− ϕ − ϕ − ϕ =b b b .       (6) 
 
This can be evaluated as 
 

3 2
1 2 3 1 2 2 3 3 1 1 2 3tan ( ) tan ( ) tan 0ϕ − + + ϕ + + + ϕ − =b b b b b b b b b b b b .   (7) 

 
Comparing Eq. (5) to (7) we observe, 
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2 4 5
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1 2 2 3 3 1
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a b b b
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        (8) 

 
The roots are the angles of the ridges (fig. 171) 
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Substitution of Eqs (9) in (8) and evaluation gives 
 

1 3

2 4

5

6

( )
( )

a a ccc ssc css scs C
a a sss ccs csc scc C
a sss C
a ccc C

− = + + +

− = − + + +
=

=

       (10) 

 
where C is an unknown factor and 
 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

sin sin sin
cos sin sin
sin cos sin
sin sin cos
cos cos sin
cos sin cos
sin cos cos
cos cos cos

= ϕ ϕ ϕ

= ϕ ϕ ϕ

= ϕ ϕ ϕ

= ϕ ϕ ϕ

= ϕ ϕ ϕ

= ϕ ϕ ϕ

= ϕ ϕ ϕ

= ϕ ϕ ϕ

sss
css
scs
ssc
ccs
csc
scc
ccc

        (11) 

 
Invariants as a function of the ridge angles 

2
1 2 1 3 1 3 2

2 2 2
3 1 2 1 3 6 2 4 5

4 2 2 2
6 2 1 3 1 3 2

cos( ) cos( ) cos( )

4( ) ( 2 ) ( 2 )

3 sin ( ) sin ( ) sin ( )

δ = ϕ − ϕ ϕ − ϕ ϕ − ϕ

δ − δ + δ = − − + − + =

δ = ± ϕ − ϕ ϕ − ϕ ϕ − ϕ

C

a a a a a a C

C

    (12) 
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Appendix. Buckling equations 
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Appendix. 3D reinforcement 
 
Designing 
In a small cube of concrete the following reinforcement ratios can be applied [143, P.C.J. 
Hoogenboom, Reinforced Solid, Wikipedia, …]. 
 

, ,xx xy xz yy xy yz zz xz yz
x y z

y y yf f f

σ + σ + σ σ + σ + σ σ + σ + σ
ρ = ρ = ρ =  

where yf is the rebar yield strength. If a ratio is negative, no reinforcement is needed. 
Sometimes a bit less reinforcement is sufficient too, especially in case of multiple stress states 
due to multiple load combinations  It is convenient to just try less reinforcement and apply the 
check below. 
 
If the bars are placed in the principal directions than the required reinforcement ratios are 
 

31 2
1 2 3, ,

y y yf f f
σσ σ

ρ = ρ = ρ =  

 
For fibre reinforced concrete the reinforcement ratio is 
 

14 σ
ρ =

yf
. 

 
Challenge: Derive the factor 4 considering that most fibres are not in the tensile direction and 
do not have full development length. 
 
Checking reinforcement 
Suppose somebody designed reinforcement and we need to check it. For this, the eigenvalues 
of the following matrix need to be smaller than or equal to zero [143]. 
 

xx x y xy xz

xy yy y y yz

xz yz zz z y

f

f

f

 σ − ρ σ σ
 

σ σ − ρ σ 
 

σ σ σ − ρ  

 

 
Where σxx , σyy  … et cetera are the computed linear elastic stresses ρx , ρy , ρz  are the 
reinforcement ratios and yf is the steel yield stress. 
 
This rule can be easily explained. Concrete shrinks while curing, the bars do not, so small 
cracks are everywhere. The concrete between the bars cannot carry tension. The concrete 
principal stresses need to be negative. The principals stresses are the eigenvalues of the 
concrete stress tensor. In the ultimate limit state, the concrete stress tensor consists of the 
computed linear elastic stresses minus the stresses carried by the reinforcement when 
yielding. 
 
Crushing of the concrete needs to be checked too. This is explained in the following note. 
 
Checking concrete stresses 
Crushing failure of concrete can be checked with the Mohr-Coulomb criterion 
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3 1 1σ σ

+ ≤
c tf f

 

 
where 3σ and 1σ  are the smallest (most negative) and largest principal stresses of the concrete 
stress tensor (see Checking 3D reinforcement, p. 181), cf  is the concrete compressive 
strength (negative value), tf  is the concrete tensile strength. The latter is not zero because 
between the shrinkage cracks there are chunks of concrete that are not cracked. These chunks 
form the compression diagonals. 
 
The Mohr-Coulomb value can be interpreted as following; 

- when it is for example 0.87 than 87% of the capacity of the material has been used; 
- when it is for example 1.23 than the material is overloaded by 23%. In fact, if this 

were the real material it would already have been crushed; 
- when it is for example -1.30 the material is prestressed which makes it stronger for 

additional load. 
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Appendix. Tensors 
 
Tensor properties 
The sum of two tensors is a tensor. 

T T T
1 2 1 2( )+ = +RT R RT R R T T R Q.E.D. 

 
The product of two tensors is a tensor.  

T T -1 T T T
1 2 1 2 1 2 1 2= = =RT R RT R RT R RT R RT IT R RT T R  Q.E.D. 

 
The inverse of a tensor is a tensor. 

1 T 1 1 1 1 1 T 1( ) ( ) ( ) ( )− − − − − − −= = = =TRT R RT R R RT R RT RTR  Q.E.D. 
 
For example, an eccentricity tensor e can be defined. 
 

xx xy xx xy xx xy

yx yy yx yy xy yy

e e n n m m

e e n n m m
     

=     
          

 

 
We know that this eccentricity tensor is a tensor because of the above properties. 
 
Challenge: Suppose that we designed a shell, performed a finite element analysis and want to 
improve the shape such that the eccentricity is in the middle third. Which rule can be derived 
for this? Will successive shape improvements converge? 
 
Tensor invariants 
A 2×2 tensor has two quantities that do not change when the coordinate system rotates around 
the z axis. Using the moment tensor as an example, these quantities are 
 

+xx yym m   trace 
2−xx yy xym m m   determinant 

 
These quantities are called the invariants. Clearly, the invariants can be added, multiplied et 
cetera, to produce more quantities that do not change when the coordinate system rotates 
around the z axis. For example, 
 

2 2 22+ +xx xy yym m m  
 
Also the principal values 1m  and 2m can be expressed in the invariants. 
 
Exercise: Derive that 2 2 22+ +xx xy yym m m does not depend on the direction of the coordinate 
system by combining the invariants. 
 

Exercise: Show that 2
1 m m Gk k k k= + − and 2

2 m m Gk k k k= − − . 
 
Exercise: Derive the following equations. 2 2 2 2 2 2

1 2 2 4 2+ = + + = −xx xy yy m Gk k k k k k k  
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Exercise: Derive that 2 2 23xx xx yy yy xyσ − σ σ + σ + σ does not change when the coordinate 
system rotates around the z axis. 
 
Reinforcement is a tensor too 
The reinforcement that designers choose for concrete shells looks like trajectories. This is 
because the bars are most efficient when they cross perpendicularly. It would be optimal if the 
bars follow the stress trajectories in the shell surface. This means four layers of bars; two 
close to the inner surface and two close to the outer surface. However, usually this is not 
possible because different load combinations give different stress trajectories. Nevertheless, 
two layers of practical reinforcement can be described by a second order tensor field. The bar 
cross-section areas are the principal values 1a and 2a in for example mm²/m or kg/m². The 
reinforcement tensor is 
 

xx xy

xy yy

a a

a a
 
 
  

. 

 
The amount of reinforcement of a small shell part with length 1l and width 2l is 1 2 1 2 1 2a l l a l l+ . 
Per shell area this is 1 2a a+ , which is equal to xx yya a+ . A computer can determine the 
reinforcement tensor field as an optimisation problem (three dofs per node.) The objective is 
to minimise the total amount of reinforcement. The constraints are strength, crack width and 
development length. 
 
Invariants of two tensors 
When two 2×2 tensors are added or multiplied et cetera, the resulting tensor has the four 
invariants of the individual tensors and two extra invariants. Using curvature and moment as 
an example, the extra invariants are 
 

2+ +xx xx xy xy yy yyk m k m k m  
( ) ( )− − −xy xx yy xy xx yyk m m m k k  

 
More independent invariants of two 2×2 tensors have not been found [144, J. van Hulst, 
Invarianten van gecombineerde tensoren, Uitknikken van schaalconstructies, 
bacheloreindproject, Technische Universiteit Delft, Faculteit Civiele Techniek en 
Geowetenschappen, juni 2018 (In Dutch with English summary), online: 
https://phoogenboom.nl/BSc_projects/eindrapport_van_hulst.pdf]. 
 
Exercise: The invariants of two tensors both occur in the Sanders-Koiter equations. Can you 
spot them? 
 
Exercise:  Derive that 2− +xx yy xy xy yy xxk m k m k m  does not change when the coordinate 
system rotates around the z axis. 
 
Exercise: Derive that 1 1 1

2 2 2κ + ρ + κxx xx xy xy yy yym m m does not change when the coordinate 
system rotates around the z axis. 
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