Delft University of Technology

Faculty of Civil Engineering and Geosciences Structural Mechanics Section

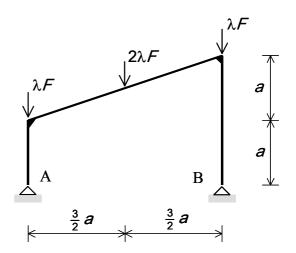
Exam CT4150 Plasticity Theory

Wednesday 11 June 2003, 9:00 - 12:00 hours

Problem 1

A frame consists of two columns and a roof beam which are rigidly connected (Figure 1). The frame is simply supported in point A and point B. The frame is loaded by three forces.

The columns and beam have the yield contour drawn in Figure 2. The following relation exists between the plastic moment M_p and the plastic normal force N_p .



$$N_{p} = \beta \frac{M_{p}}{a}$$

Figure 1. Simply supported frame

The influence of shear on the yield contour is neglected and buckling is not considered.

- **a** Assume $\beta \rightarrow \infty$. Determine the collapse load λF for every possible mechanism. Write the collapse loads as functions of M_p and a. Which mechanism is decisive? What is the corresponding collapse load? (1.5 points)
- **b** Assume $\beta \rightarrow \infty$. Draw the bending moment and normal force diagram for the whole structure at the moment of collapse (1 point).
- **c** Assume $\beta = 2$ for the columns and $\beta \rightarrow \infty$ for the roof beam. Choose one of the following problems (You need not do both) Use the decisive mechanism of problem **1a** (2.5 points).
 - Determine the largest <u>lower-bound</u> for λF .
 - Determine the smallest <u>upper-bound</u> for λF .

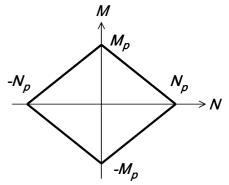


Figure 2. Yield contour

Write your <u>name</u> and <u>study number</u> at the top right-hand of your work.

Problem 2

A square plate with an opening is simply supported at the edges (Figure 3). The plate carries an equally distributed load λf [kN/m²]. The plate is homogeneous and isotropic. The yield moment is m_p [kNm/m].

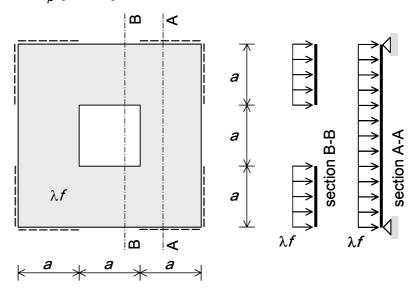


Figure 3. Simply supported square plate

a We consider the yield line pattern of Figure 4. Determine an <u>upper-bound</u> for λf expressed in m_p and *a* (1 point).

 $\frac{1}{2}a$ $\frac{1}{2}a$

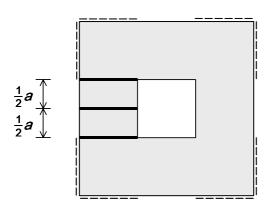


Figure 4. Yield line pattern of problem 2a

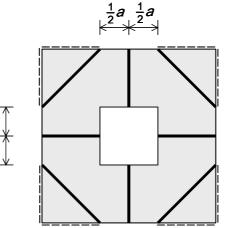
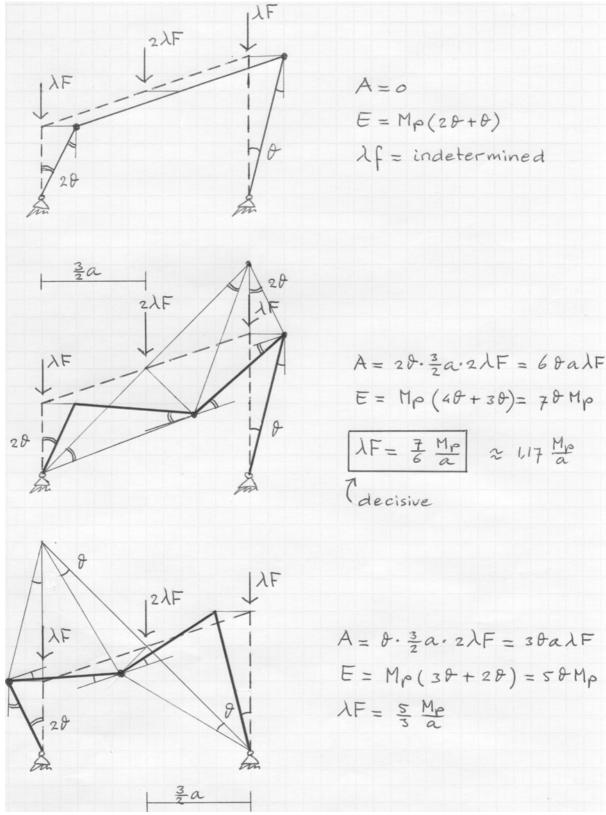


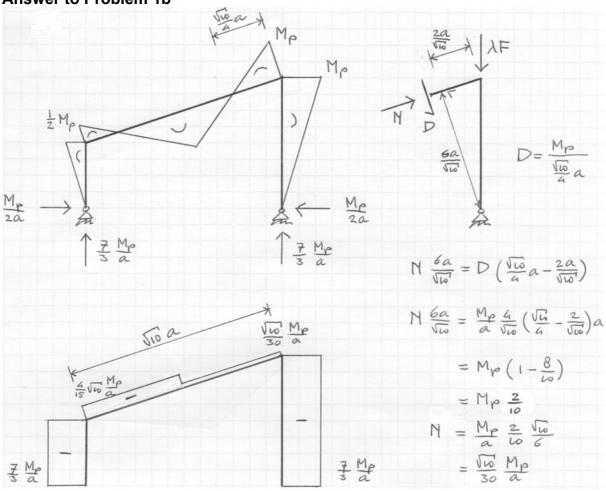
Figure 5. Yield line pattern of problem 2b

- **b** We consider the yield line pattern of Figure 5. Determine an <u>upper bound</u> for λf expressed in m_p and *a* (2 points).
- **c** Determine the largest <u>lower-bound</u> for λf using torsion free beams ($m_{xy} = 0$) in the *x* direction and *y* direction (2 points).

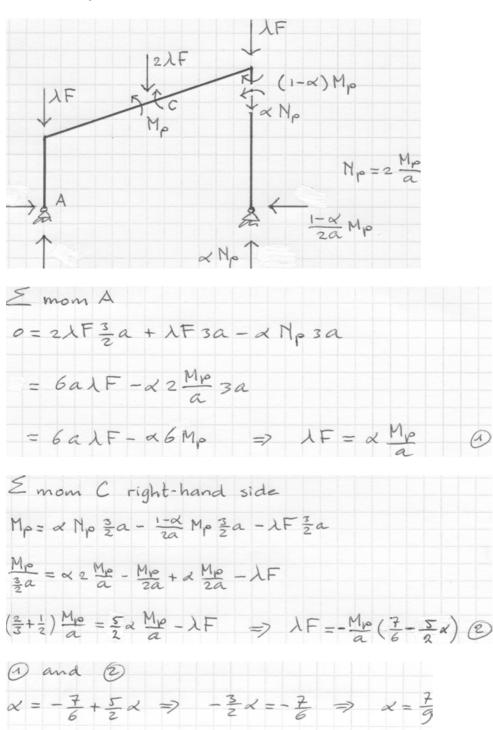
Answer to Problem 1a



Answer to Problem 1b

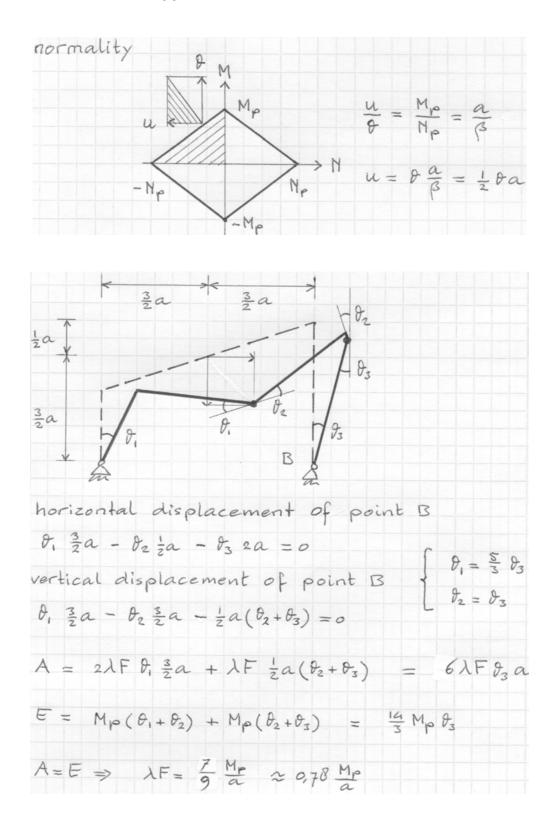


Answer to problem 1c Lower-bound

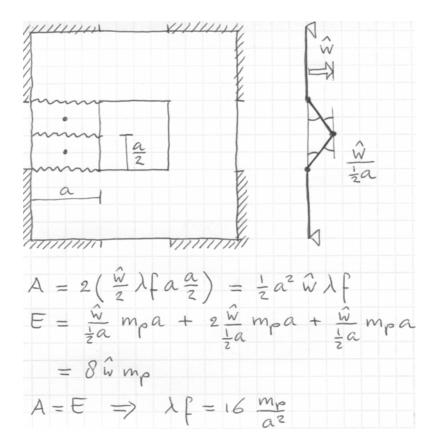


 $\lambda F = \frac{F}{2} \frac{M_P}{a}$

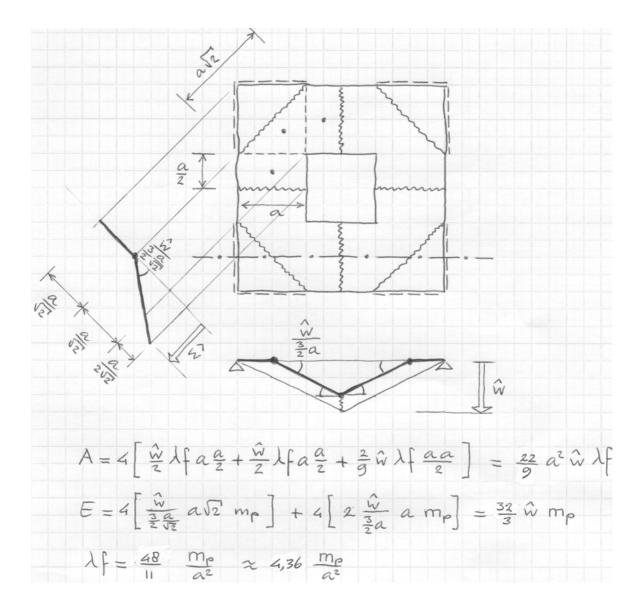
Answer to Problem 1c Upper-bound



Answer to Problem 2a



Answer to Problem 2b



Answer to Problem 2c

