Delft University of Technology

Faculty of Civil Engineering and Geosciences Structural Mechanics Section

Exam CT4150 Plasticity Theory

Thursday 18 January 2007, 9:00 - 12:00 hours

Problem 1

A frame consists of members with a strength $5M_p$ and a column with a strength M_p (Fig. 1). The frame has pin connections with the foundation. The frame is loaded by four forces. The following relation exists between the plastic moment M_p and the plastic normal force N_p (Fig. 2).

$$N_p = \beta \frac{M_p}{a}$$

The influence of shear on the yield contour is neglected. Buckling and second order effects are not considered.

- **a** Assume $\beta \rightarrow \infty$. Determine the collapse load *F* for each possible mechanism. Write the collapse loads as functions of M_p and *a*. What is the decisive collapse load? (1.5 points)
- **b** Assume $\beta \rightarrow \infty$. Draw the bending moment diagram of the structure at the moment of collapse. (1 point)
- **c** Assume $\beta = 43\sqrt{2}$. Choose one of the following problems (You need not do both).
 - Determine the largest lower-bound for F.
 - Determine the smallest upper-bound for F.

For the upper-bound you only need to write down the equations and not to solve them. Use the decisive mechanism of problem **1a**. (2 points)

а

Figure 2. Yield contours of the frame members

Figure 3. Normal force diagram of the frame

Write your <u>name</u> and <u>study number</u> at the top right-hand of your work.

Problem 2

A plate is fixed at eight edges and free at four edges (Figure 3). The plate carries an evenly distributed load q [kN/m²]. The plate is homogeneous.

Section A-A

Figure 4. Plate with fixed and free edges

a We consider the yield line patterns of Figure 5. Which of these patterns give kinematically possible mechanisms. (1 point)

Figure 5. Yield line patterns of problem 2a

b We consider the yield line pattern of Figure 6. Determine an <u>upper bound</u> for *q* expressed in m_p and *a*. (1.5 points)

c Determine the largest <u>lower-bound</u> for *q* using torsion free beams ($m_{xy} = 0$) in the *x* direction and *y* direction. (1.5 points)

Problem 3

a Consider a small plate part with only a torsion moment $m_{xy} > 0$ (Fig. 7). The reinforcement is in the directions *x* and *y*. What is the direction of a positive yield line when $m_{px} > m_{py}$? Choose A, B or C. (0.5 points)

b No homogenous isotropic plate can carry a point load larger than $F = 4 \pi m_p$. Explain this. (1 point)

Answer to Problem 1a 18 January 2007

Answer to Problem 1b

Answer to problem 1c Lower-bound

Answer to Problem 1c Upper-bound

Answer to Problem 2a

Kinematically possible are patterns A, B, D and F. The figure below shows the altitude lines of the deformed mechanisms.

Answer to Problem 2b

Answer to Problem 2c

Answer to Problem 3a

A: The yield line will try crossing mainly weaker reinforcing bars (Lecture book p. 64)

Answer to Problem 3b

 $4\pi m_p$ is the collapse load of a circular plate fixed on the edge. This circular yield line pattern (Lecture book Fig. 10.2) is possible in any plate for a point load somewhere on its interior. If the point load acts on an edge the upper-bound is smaller (Lecture book Fig. 10.4). Therefore, $4\pi m_p$ is a general upper-bound.