Delft University of Technology

Faculty of Civil Engineering and Geosciences Structural Mechanics Section

Exam CIE4150 Plastic Analysis of Structures Thursday 21 January 2016, 13:30 – 16:30 hours Write your <u>name</u> and <u>study number</u> at the top of your work.

Also write whether you were a <u>member</u> of the elastic team, plastic team or no team.

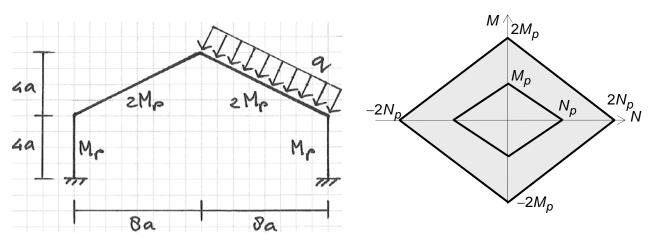


Figure 2. Yield contours

Problem 1

A frame consists of two columns and two beams (Fig.1) The columns have strength M_p and the beams have strength $2M_p$. The column, beams and foundation are rigidly connected. The structure is loaded by an evenly distributed load *q*. The relation of Figure 2 exists between the plastic moments and the plastic normal forces.

$$N_p = \beta \frac{M_p}{a}$$

The influence of shear on the yield contour is neglected. Buckling and second order effects are not considered.

- **a** Assume $\beta \rightarrow \infty$. Determine the collapse load *q* for all possible mechanisms. Write the collapse loads as functions of M_p and *a*. What is the decisive collapse load? (1.5 point)
- **b** Assume $\beta \rightarrow \infty$. Draw the bending moment diagram and normal force diagram for the structure at the moment of collapse. (1.5 points)
- **c** Assume β = 7. Choose one of the following problems (You need not do both).

- Determine the largest lower-bound for q.

- Determine the smallest <u>upper-bound</u> for *q*.

You only need to write down the equations and not solve the equations (1.5 points).

Problem 2

A reinforced concrete plate has simply supported edges (Fig. 3). It carries an evenly distributed load *p*. The plate is homogeneous and orthotropic.

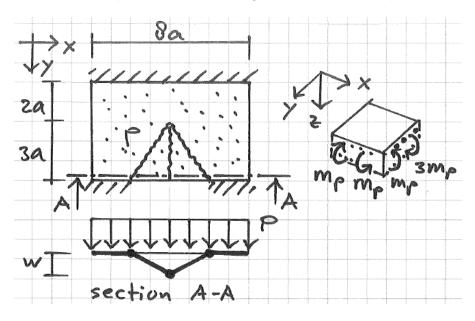


Figure 3. Plate dimensions and reinforcement

a Consider the yield line patterns of Figure 4. Which of these patterns give kinematically possible mechanisms? (1 point)

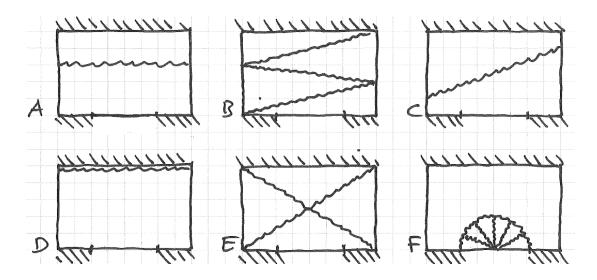


Figure 4. Yield line patterns of problem 2a

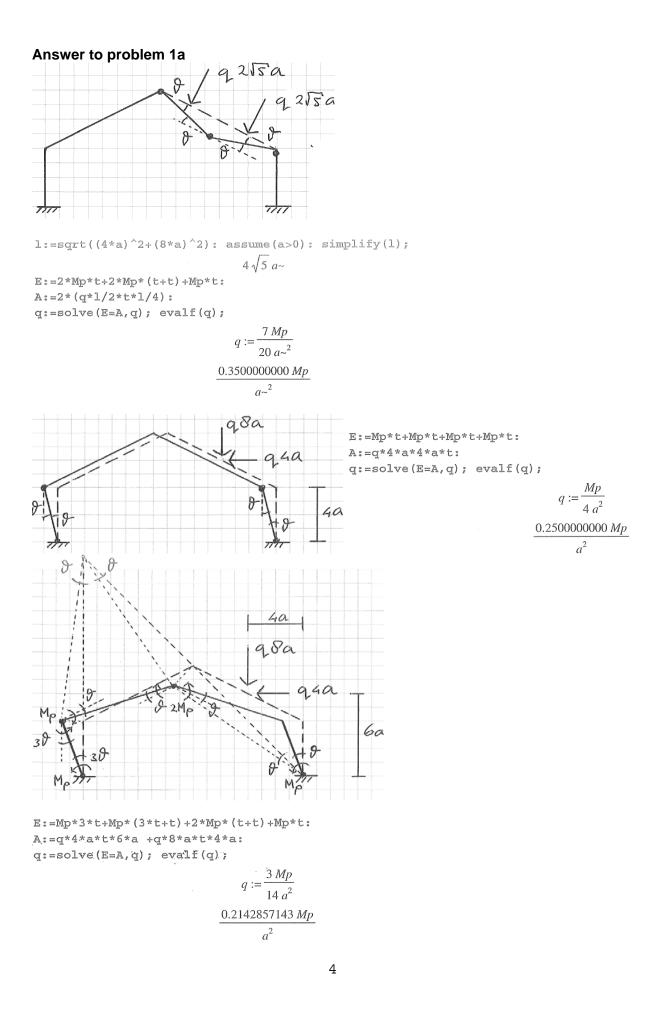
- **b** Consider the yield line pattern of Figure 3. Determine an <u>upper bound</u> for *p* expressed in m_p and *a* (1.5 point).
- **c** Determine the largest <u>lower-bound</u> for *p* using torsion free beams ($m_{xy} = 0$) (1.5 point).

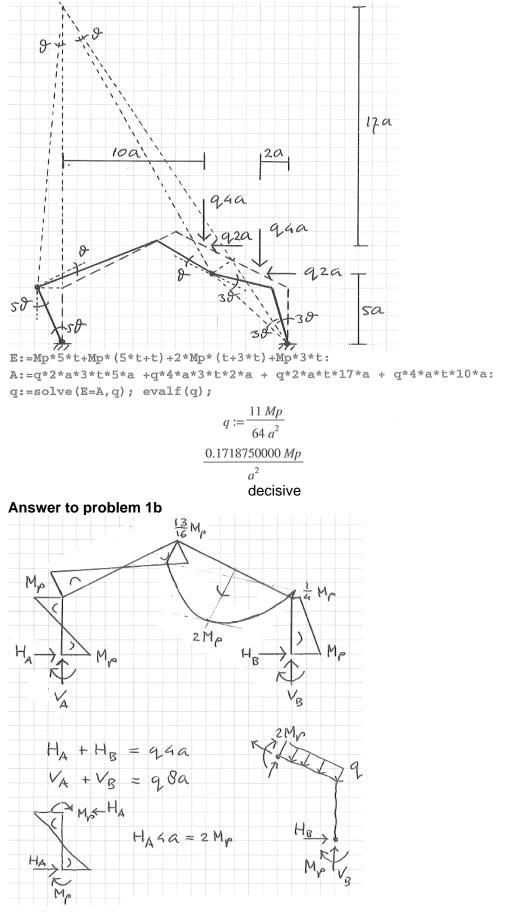
Problem 3

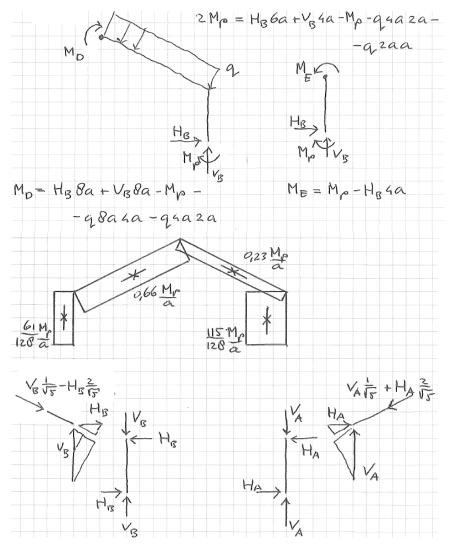
- **a** Consider a plate with orthotropic reinforcement m_p . On a free plate edge is a point load acting perpendicular to the plate. The collapse load is? Choose A, B, C or D (0.33 point).
 - A $2\pi m_p$
 - B $(2 + \pi) m_{p}$
 - C $4\pi m_p$
 - D 6 mp
- **b** Which of the following words does not belong in this list? Choose A, B, C or D (0.33 point).
 - A Yield contour
 - B Interaction diagram
 - C Moment-curvature diagram
 - D Limit state function
- **c** The Von Mises yield contour is suitable for which material? Choose from A, B, C and D (0.34 point).
 - A Reinforced concrete
 - B Plain concrete
 - C Coper
 - D Kevlar

d Bottom reinforcement in a plate needs to fulfil the condition $m_{xy}^2 \le (m_{px} - m_{xx})(m_{py} - m_{yy})$. It is practical to write this as a unity check (... \le 1). There are many ways to do this. However, there is an extra condition. For example, when the unity check value is 1.2 the strength should be 20% too small. Show that this leads to the following unity check (0.5 point).

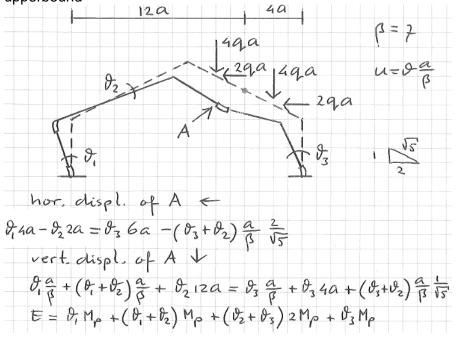
$$\frac{m_{xx}}{2m_{px}} + \frac{m_{yy}}{2m_{py}} + \sqrt{\left(\frac{m_{xx}}{2m_{px}} - \frac{m_{yy}}{2m_{py}}\right)^2 + \frac{m_{xy}^2}{m_{px}m_{py}}} \le 1$$

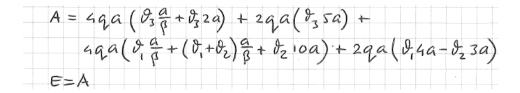




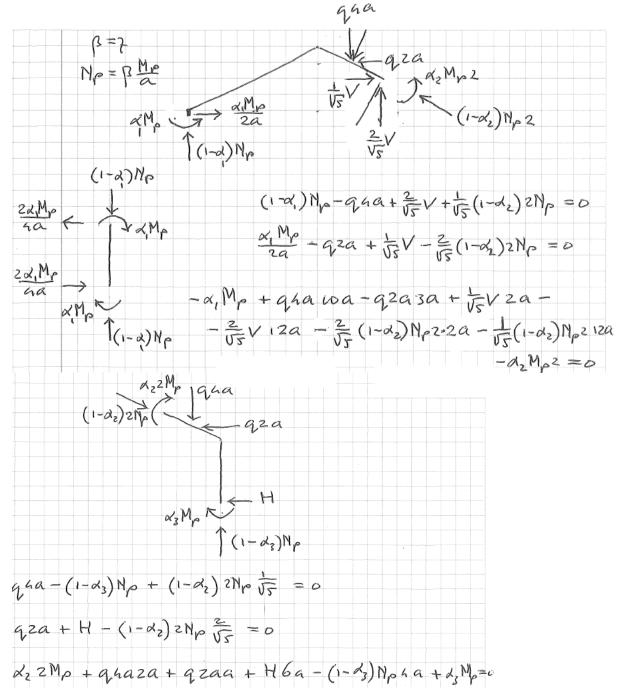


Answer to problem 1c upperbound





lowerbound



Answer to problem 2a

A, B, E, F

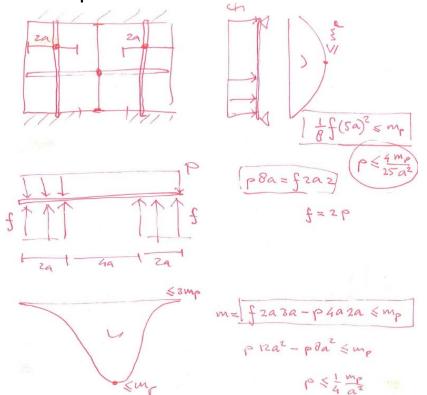
Answer to problem 2b

$$A = 2(\frac{1}{2}3a2ap\frac{w}{3}) = 2a^{2}pw$$

$$E = 2(3m_{p}3a\frac{w}{2a} + m_{p}2a\frac{w}{3a}) + m_{p}3a\frac{w}{2a}2 = \frac{40}{3}m_{p}w$$

$$A = E \Rightarrow p = \frac{20}{3}\frac{m_{p}}{a^{2}} = 6.67\frac{m_{p}}{a^{2}}$$

Answer to problem 2c



Answer to problem 3 В

C C

Answer to problem 3d

 $m_{xy}^2 \le (m_{px} - m_{xx})(m_{py} - m_{yy})$ $m_{xy}^2 = (u \, m_{\rho x} - m_{xx})(u \, m_{\rho y} - m_{yy})$ and $u \le 1$ Maple gives two solutions for *u*.

$$u_{1,2} = \frac{m_{xx}}{2m_{px}} + \frac{m_{yy}}{2m_{py}} \pm \sqrt{\left(\frac{m_{xx}}{2m_{px}} - \frac{m_{yy}}{2m_{py}}\right)^2 + \frac{m_{xy}^2}{m_{px}m_{py}}}$$

A torsion moment m_{xy} can only increase the value of u, therefore

$$u = \frac{m_{xx}}{2m_{px}} + \frac{m_{yy}}{2m_{py}} + \sqrt{\left(\frac{m_{xx}}{2m_{px}} - \frac{m_{yy}}{2m_{py}}\right)^2 + \frac{m_{xy}^2}{m_{px}m_{py}}} \quad \text{Q.E.D.}$$

 $m_{px} \ge 0$ $m_{py} \ge 0$