Delft University of Technology

Faculty of Civil Engineering and Geosciences Structural Mechanics Section

Exam CIE4150 Plastic Analysis of Structures

Thursday 26 January 2017, 13:30 – 16:30 hours

2aMp 2a0 2Mp M_p Mp Μ, 40 -2N 1771 780 78, -2M_p 40 40

Write your <u>name</u> and <u>study number</u> at the top of your work.

Also write whether you were a <u>member</u> of the elastic team, plastic team or no team.

2N_p

Np

Problem 1

A frame consists of three columns and two beams (Fig.1) All elements have a strength M_p except for the middle column which has a strength $2M_p$. The columns, beams and foundation are rigidly connected. The structure is loaded by two point loads *F*. The relation of Figure 2 exists between the plastic moments and the plastic normal forces.

$$N_p = \beta \frac{M_p}{a}$$

Figure 1. Frame structure

The influence of shear on the yield contour is neglected. Buckling and second order effects are not considered.

- **a** Assume $\beta \rightarrow \infty$. Determine the collapse load *F* for all possible mechanisms. Write the collapse loads as functions of M_p and *a*. What is the decisive collapse load? (1.5 point)
- **b** Assume $\beta \rightarrow \infty$. Draw the bending moment diagram and normal force diagram for the structure at the moment of collapse. (1.5 points)
- **c** Assume β = 9. Choose one of the following problems (You need not do both).

– Determine the largest lower-bound for *F*.

Determine the smallest <u>upper-bound</u> for *F*.
You only need to write down the equations and not solve the equations (1.5 points).

Problem 2

A reinforced concrete plate has two simply supported edges (Fig. 3). It carries an evenly distributed line load q [kN/m]. There is no other load on the plate. The plate is homogeneous and orthotropic.

Figure 3. Plate dimensions and reinforcement

a Consider the yield line patterns of Figure 4. Which of these patterns give kinematically possible mechanisms? (1 point)

Figure 4. Yield line patterns of problem 2a

- **b** Consider the yield line pattern of Figure 3. Determine an <u>upper bound</u> for *q* expressed in m_p and *a* (1.5 point).
- **c** Determine the largest <u>lower-bound</u> for *q* using torsion free beams ($m_{XY} = 0$) (1.5 point).

Problem 3

- **a** A yield line in a steel plate has often a capacity larger than m_p . What causes this? Choose A, B, C or D (0.5 point).
 - A The deformation has to comply with the normality condition.
 - B m_p depends on the direction of the yield line.
 - C Poisson's ratio causes a moment in the other direction too.
 - D Yielding of steel is described by the Von Mises condition which depends on the moments in all directions and not only on the moment perpendicular to the yield line.
- **b** The evenly distributed load *p* at which a simply supported circular plate collapses is

$$p=24\frac{m_p}{a^2}.$$

Does this solution need top reinforcement? Explain your answer please (0.5 point).

c The following statement has been discussed in class:

Pre-stressing does not change the capacity of a ductile structure.

What is a good defence of this statement? Choose A, B, C or D (0.5 point).

- A There is a mathematical proof of this (Pragers 2nd theorem).
- B A plastic mechanism is statically determined. Statically determined structures cannot be prestressed.
- C In a plastic analysis, yielding of a prestressing tendon will remove the prestress.
- D It is not always true; for example, shear failure in prestressed concrete beams can be not ductile.

A:=F/sqrt(2) *2*t *6*a +F/sqrt(2) *2*t *2*a -F/sqrt(2) *2*t *4*a: F:=solve(E=A,F); evalf(F);

Answer to problem 1b

Answer to problem 1c upperbound

$$\{F = \frac{1.302218088 Mp}{a}, tl = 0.1350073394 t3, t2 = 0.8416144806 t3\}$$

lowerbound

Answer to problem 2a

A, D, F

Answer to problem 2b

E:=3*mp *5*a *w/(5*a) +mp *5*a *w/(5*a) +3*mp *5*a *w/(3*a) +mp *3*a *w/(5*a); $E := \frac{48 \ mp \ w}{5}$ A:=q*3*a *w*3/10 +q*16/5*a *w*3/5 +q*9/5*a *w*3/10; $A := \frac{84 \ q \ a \ w}{25}$ q:=solve(E=A,q); evalf(q); $q := \frac{20 \ mp}{7 \ a}$ $\frac{2.857142857 \ mp}{a}$

Answer to problem 2c

Answer to problem 3

А

No, all yield lines open at the bottom of the plate. C