Delft University of Technology

Faculty of Civil Engineering and Geosciences Structural Mechanics Section

Exam CIE4150 Plastic Analysis of Structures Thursday 25 January 2018, 13:30 – 16:30 hours

Write your <u>name</u> and <u>study number</u> at the top of your work.

Also write whether you were a <u>member</u> of the elastic team, plastic team or no team.

Problem 1

A frame consists of two columns and two beams (Fig.1) The right two elements have a strength $2M_p$, the left two elements have a strength M_p . All elements are rigidly connected except for the beams which are connected together by a hinge. The structure is loaded by an evenly distributed line load q (snow). The relation of Figure 2 exists between the plastic moments and the plastic normal forces.

$$N_p = \beta \frac{M_p}{a}$$

The influence of shear on the yield contour is neglected. Buckling and second order effects are not considered.

- **a** Assume $\beta \rightarrow \infty$. Determine the collapse load *q* for all possible mechanisms. Write the collapse loads as functions of M_p and *a*. What is the decisive collapse load? (1.5 point)
- **b** Assume $\beta \rightarrow \infty$. Draw the bending moment diagram and normal force diagram for the structure at the moment of collapse. (1.5 points)
- c Assume β = 10. Choose one of the following problems (You need not do both).
 Determine the largest lower-bound for *q*.
 Determine the smallest upper-bound for *q*.
 You only need to write down the equations and not solve the equations (1.5 points).

Problem 2

A reinforced concrete plate has three simply supported edges and three free edges (Fig. 3). It carries an evenly distributed load p [kN/m²]. There is no other load on the plate. The plate is homogeneous and orthotropic.

Figure 3. Plate dimensions and reinforcement

a Consider the yield line patterns of Figure 4. Which of these patterns give kinematically possible mechanisms? (1 point)

Figure 4. Yield line patterns of problem 2a

b Consider the yield line pattern of Figure 5. Determine an <u>upper bound</u> for *p* expressed in m_p and *a* (1.5 point).

c Determine the largest <u>lower-bound</u> for *p* using torsion free beams ($m_{xy} = 0$). You only need to write down the equations and not solve the equations. (1.5 point)

Figure 5. Mechanism of problem 2b

Problem 3

a A square plate is simply supported on two adjacent edges. The plate length and width are *a*. The plate strength is m_p in all directions. The load is perpendicular to the plate and evenly distributed. The collapse load is ... Choose A, B, C or D. (0.5 points)

A
$$6\frac{m_p}{a^2}$$

B $5.55\frac{m_p}{a^2}$
C $5.50\frac{m_p}{a^2}$
D $\leq 5.50\frac{m_p}{a^2}$

- **b** Shear force has little influence on the moment capacity of steel I sections. In which figure of the lecture book is this convincingly shown? (0.5 points)
- **c** A frame structure can have a symmetrical geometry and symmetrical loading. However, the collapse mechanism can be asymmetrical. Give an example of this. (0.5 points)

Answer to Problem 1b

Answer to Problem 2a C, D, F

Answer to Problem 2c

Answer to Problem 3a

Answer to Problem 3b Fig. 8.8

Answer to Problem 3c Exam August 2005