### **Delft University of Technology**

Faculty of Civil Engineering and Geosciences Structural Mechanics Section

## **Exam CIE4150 Plastic Analysis of Structures** Thursday 22 January 2019, 13:30 – 16:30 hours

Write your <u>name</u> and <u>study number</u> at the top of your work.

Also write whether you were a <u>member</u> of the elastic team, plastic team or no team.





Figure 2. Yield contours

### Problem 1

A frame consists of two columns, a beam and a cantilever (Fig.1). The elements have a strength  $M_p$  except for the cantilever, which has a strength  $3M_p$ . The elements are rigidly connected. The support consist of two hinges. The structure is loaded by two evenly distributed line loads q. The relation of Figure 2 exists between the plastic moments and the plastic normal forces.

$$N_p = \beta \frac{M_p}{a}$$

The influence of shear on the yield contour is neglected. Buckling and second order effects are not considered.

- **a** Assume  $\beta \rightarrow \infty$ . Determine the collapse load *q* for all possible mechanisms. Write the collapse loads as functions of  $M_p$  and *a*. What is the decisive collapse load? (1.5 point)
- **b** Assume  $\beta \rightarrow \infty$ . Draw the bending moment diagram and normal force diagram for the structure at the moment of collapse. (1.5 points)
- **c** Assume  $\beta$  = 12. Choose one of the following problems (You need not do both).

- Determine the largest lower-bound for q.

- Determine the smallest <u>upper-bound</u> for *q*.

You only need to write down the equations and not solve the equations (1.5 points).

# Problem 2

A reinforced concrete plate has simply supported edges and free edges (Fig. 3). It carries an evenly distributed load p [ kN/m<sup>2</sup>]. There is no other load on the plate. The plate is homogeneous and orthotropic.



Figure 3. Plate dimensions and reinforcement

**a** Consider the yield line patterns of Figure 4. Which of these patterns give kinematically possible mechanisms? (1 point)



Figure 4. Yield line patterns of problem 2a

**b** Consider the yield line pattern of Figure 5. Determine an <u>upper bound</u> for *p* expressed in  $m_p$  and *a* (1.5 point).



Figure 5. Mechanism of problem 2b

**c** Determine the largest <u>lower-bound</u> for *p* using torsion free beams ( $m_{xy} = 0$ ). You only need to write down the equations and not solve the equations. (1.5 point)

## Problem 3

- **a** A plate is supported in a 90° corner point. The support is a hinge. The support reaction is perpendicular to the plate. The plate strength is  $m_p$  in all directions. The collapse load is ... Choose A, B, C or D. (0.5 points)
  - A  $\pi m_p$
  - B 2*m*<sub>p</sub>
  - $C \leq 2m_p$
  - D 0 because it is a singularity



- **b** In limit analysis, how do we know whether the exact plastic strength has been found? Choose A, B, C or D. (0.5 points)
  - A When the lower- and upper-bound are the same. B When all possible mechanisms have been considered. C When it has been confirmed by finite element analysis. D When Prager's theorems can be proofed.
- **c** Which yield contour is most suitable for modelling metals? How do we know this is true? (0.5 points)



#### Answer to problem 1b



#### Answer to problem 1c





> solve({eq1,eq2,E=A},{t1,t2,q});



. . . .

Answer to problem 2a

A, B, D, F

| 3 | or less correct | .0 p  | oint  |
|---|-----------------|-------|-------|
| 4 | correct         | . 0.3 | point |
| 5 | correct         | 0.7   | point |
| 6 | correct         | . 1.0 | point |

## Answer to problem 2b

> E:=mp\*4\*a\*w/(5\*a) +2\*mp\*5\*a\*w/(4\*a) +mp\*4\*a\*w/(5\*a) +2\*mp\*5\*a\*w/(4\*a);

$$E := \frac{33}{5} mp w$$
  
> A:=4\* (p\*1/2\*5\*a\*4\*a\*w/3) -p\*2\*a\*4\*a\*w/5;  
$$A := \frac{176}{15} p a^2 w$$

> p:=solve(E=A,p);

$$p \coloneqq \frac{9}{16} \frac{mp}{a^2}$$

Answer to problem 2c



The latter answer has been computed with the following Maple script. (Not required for the exam.)

```
> eq1:=p*2*a-q*2*a+f*3*a=0:
> eq2:=p*2*a*a-q*2*a*3*a+f*3*a*11/2*a=0:
> eq3:=p*2*a-q*x1=0:
> eq4:=p*2*a*(x1+a)-q*x1*x1/2=2*mp:
> eq5:=p*8*a*4*a+q*4*a*6*a-R2*8*a=0:
> eq6:=R2-(q+p)*x2=0:
> eq7:=R2*x2-(q+p)*x2*x2/2=2*mp:
> eq8:=p*8*a*4*a-f*4*a*2*a-R3*8*a=0:
> eq9:=R3-p*x3=0:
> eq10:=R3*x3-p*x3*x3/2=2*mp:
> opl:=solve({eq1,eq2,eq3,eq5,eq6,eq7,eq8,eq9}, {p,q,f,x1,x2,x3,R2,R3});
      opl := \left\{ R2 = \frac{56}{47} \frac{mp}{a}, R3 = \frac{2912}{6627} \frac{mp}{a}, f = \frac{448}{6627} \frac{mp}{a^2}, p = \frac{280}{2209} \frac{mp}{a^2}, q = \frac{504}{2209} \frac{mp}{a^2}, xl = \frac{10}{9} a, x2 = \frac{47}{14} a, x3 = \frac{52}{15} a \right\}
> assign(opl);
> evalf(eq4);
                                                      0.3943463608 mp = 2. mp
> evalf(eq7);
                                                            2. mp = 2. mp
> evalf(eq10);
                                                      0.7616518284 mp = 2. mp
```

### Answer to problem 3

- **a** B
- **b** A
- c Von Mises, experiments