Delft University of Technology

Faculty of Civil Engineering and Geosciences Structural Mechanics Section Write your <u>name</u> and <u>study number</u> at the top of your work.

Figure 1. Frame structure

Figure 2. Yield contours

Problem 1

A frame consists of five members (Fig.1). The columns have a strength M_p . The roof members have a strength $3M_p$. The members are rigidly connected. The supports are fixed. The structure is loaded by an evenly distributed line load *q* per horizontal width (snow load). The relation of Figure 2 exists between the plastic moments and the plastic normal forces.

$$N_{p} = \beta \frac{M_{p}}{a}$$

The influence of shear on the yield contour is neglected. Buckling and second order effects are not considered.

- **a** Assume $\beta \rightarrow \infty$. Determine the collapse load *q* for all possible mechanisms. Write the collapse loads as functions of M_p and *a*. What is the decisive collapse load? (1.5 point)
- **b** Assume $\beta \rightarrow \infty$. Draw the bending moment diagram and normal force diagram for the structure at the moment of collapse. (1.5 points)
- **c** Assume β = 7. Choose one of the following problems (You need not do both).

– Determine the largest lower-bound for *q*.

– Determine the smallest <u>upper-bound</u> for *q*.

You only need to write down the equations and not solve the equations (1.5 points).

Problem 2

A reinforced concrete plate has simply supported edges and free edges (Fig. 3). It carries an evenly distributed load p [kN/m²]. There is no other load on the plate. The plate is homogeneous and orthotropic.

Figure 3. Plate dimensions and reinforcement

a Consider the yield line patterns of Figure 4. Which of these patterns give kinematically possible mechanisms? (1 point)

Figure 4. Yield line patterns of problem 2a

b Consider the yield line pattern of Figure 5. Determine an <u>upper-bound</u> for *p* expressed in m_p and *a* (1.5 point).

Figure 5. Mechanism of Problem 2b

c Determine the largest <u>lower-bound</u> for *p* using torsion free beams ($m_{xy} = 0$). You need only to write down the equations and not solve the equations. (1.5 point)

Problem 3

- **a** How is it that lower-bounds are smaller than or equal to upper-bounds? Choose A, B, C or D. (0.5 point)
 - A Torsion is neglected.
 - B They include the elastic solution.
 - C There is a mathematical proof of this.
 - D They are intended to be a safe approximation of the exact plastic solution.
- **b** Suppose we do a upper-bound analysis and determine the decisive mechanism. We plot the moment distribution and observe that a moment somewhere is larger than the moment capacity. What do we conclude? Choose A, B, C or D. (0.5 point)
 - A The structure does not fulfil the design requirements.
 - B An even more decisive mechanism exists.
 - C We made a calculation error.
 - D No problem; this can happen in upper-bound analysis.
- **c** In general; how do we know we found the exact plastic collapse load? Choose A, B, C or D. (0.5 point)
 - A The upper-bound and lower-bound are the same.
 - B We have tried all possible mechanisms and picked the smallest.
 - C By comparing to a nonlinear finite element analysis.
 - D After checking by a fellow student or colleague.

Therefore, there exists a mechanism with an even smaller upper-bound.

Answer to problem 1c

Answer to problem 2a

E, F

3 or less correct	0.0 point
4 correct	0.3 point
5 correct	0.7 point
6 correct	1.0 point

Answer to problem 2b

> E1:= mp * 3*a * w/(5*a) + 3*mp * 6*a * w/(5/2*a): > E2:= 3*mp * 3*a * (w/(5*a)+w/(3*a)) + mp * a * (w/(5/2*a)-(4/3*w)/(6*a)): > E3:= mp * 6*a * w/(3*a) + 3*mp * 4*a * (4/3*w)/(6*a): > E:=E1+E2+E3;

$$E := \frac{157 mp w}{2}$$

> A:= p * (5*a*3*a)/2 * w/3 + p * (6*a*6*a)/2 * 2/3*w - p * (a*3*a)/2 * 14/9*w;

$$A := \frac{73 p a^2 w}{6}$$

> p:=solve(E=A,p); evalf(p);

$$p := \frac{314 mp}{219 a^2}$$
$$\frac{1.433789954 mp}{a^2}$$

Answer to problem 3 a C b B or C

- c A

