
Delft University of Technology

Faculty of Civil Engineering and Geosciences Structural Mechanics Section Write your <u>name</u> and <u>study number</u> at the top of your work.

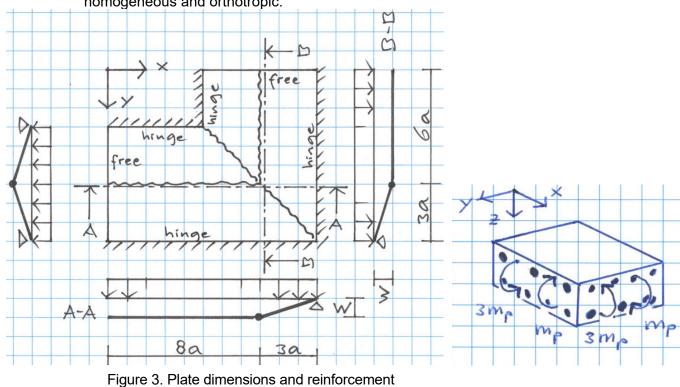
Problem 1

A frame consists of five members (Fig.1). All members have a strength M_p . The members are rigidly connected. The supports are fixed. The structure is loaded by an evenly distributed line load q. The relation of Figure 2 exists between the plastic moments and the plastic normal forces.

$$N_p = \beta \frac{M_p}{a}$$

The influence of shear on the yield contour is neglected. Buckling and second order effects are not considered.

- **a** Assume $\beta \rightarrow \infty$. Determine the collapse load *q* for all possible mechanisms. Write the collapse loads as functions of M_p and *a*. What is the decisive collapse load? (1.5 point)
- **b** Assume $\beta \rightarrow \infty$. Draw the bending moment diagram and normal force diagram for the structure at the moment of collapse. (1.5 points)
- **c** Assume β = 5. Choose one of the following problems (You need not do both).


– Determine the largest <u>lower-bound</u> for *q*.

– Determine the smallest <u>upper-bound</u> for *q*.

You only need to write down the equations and not solve the equations (1.5 points).

Problem 2

A reinforced concrete plate has simply supported edges and free edges (Fig. 3). It carries an evenly distributed load p [kN/m²]. There is no other load on the plate. The plate is homogeneous and orthotropic.

a Consider the yield line patterns of Figure 4. Which of these patterns give kinematically possible mechanisms? (1 point)

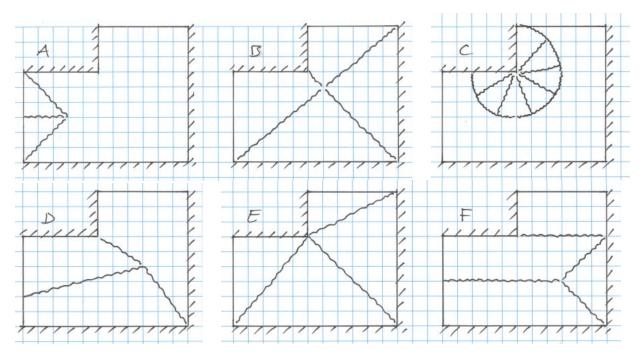


Figure 4. Yield line patterns of problem 2a

- **b** Consider the yield line pattern of Figure 3. Determine an <u>upper-bound</u> for *p* expressed in m_p and *a* (1.5 point).
- **c** Determine the largest <u>lower-bound</u> for *p* using torsion free beams ($m_{xy} = 0$). You need only to write down the equations and not solve the equations. (1.5 point)

Problem 3

- A statically indeterminate ductile structure is partially heated by direct solar radiation. Do we include temperature as a load case for the ultimate limit state? Choose A, B, C or D. (0.5 point)
 - A No; expansions joints absorb the temperature strains.
 - B No; temperature strains do not change the collapse load.
 - C Yes; a temperature gradient may increase the moments.
 - D Yes; the increased temperature reduces the compressive strength.
- **b** A frame structure is statically indeterminate to the 5th degree. It has 13 locations of possible plastic hinges. An upperbound analysis is performed. How many mechanisms can occur? Choose A, B, C or D. (0.5 point)
 - A 6
 - B 13
 - C 17
 - D 1716
- **c** The lowerbound requirements are ... Choose A, B, C or D. (0.5 point)
 - A ductility, equilibrium, M < Mp
 - B equilibrium, M < Mp, normality
 - C M < Mp, normality, ductility
 - D normality, ductility, equilibrium

Answer to problem 1a

Answer to problem 1b

Answer to problem 1c

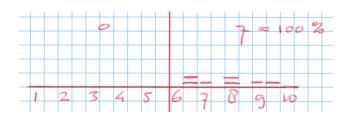
Upper-bound

Lower-bound

Answer to problem 2a

A, F

3 or less correct	.0.0 point
4 correct	0.3 point
5 correct	0.7 point
6 correct	.1.0 point


Answer to problem 2b

Answer to problem 2c

Answer to problem 3

a B b D

c A

