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Resumo 

 

CHEN, Reinaldo. Dimensionamento de estruturas de concreto armado baseado em campos 

de tensão tridimensionais. 2024. 241 p. Tese (Doutorado em Engenharia de Estruturas) – 

Escola Politécnica, Universidade de São Paulo, São Paulo, 2024. 

 

O dimensionamento de peças de concreto armado em relação ao Estado Limite Último 

geralmente é realizado por meio de análises de modelos estruturais compostos por elementos 

unidimensionais (barras), bidimensionais (cascas) ou tridimensionais (sólidos). Quando 

elementos sólidos são utilizados na análise estrutural, as solicitações na estrutura são fornecidas 

através de tensores de tensões com seis componentes (σx, σy, σz, τxy, τxz, τyz). Essa tese revisita o 

método de dimensionamento denominado Método do Campo de Tensões (MCT), que combina 

análise linear e dimensionamento limite ponto-a-ponto através de um mecanismo resistente já 

estabelecido na literatura. A análise linear determina as tensões solicitantes na estrutura, 

enquanto a análise limite calcula a armadura necessária para equilibrar as tensões solicitantes e 

verifica o concreto contra o esmagamento. A tese apresenta duas principais contribuições 

originais ao conhecimento: (1) deduz analiticamente e interpreta fisicamente as equações do 

mecanismo resistente em uma nova abordagem, organizando-as em quatro casos de acordo com 

as tensões internas mobilizadas no concreto; (2) aplica o MCT para o dimensionamento de 

peças estruturais reais, desde a fase inicial da análise estrutural até o detalhamento final das 

armaduras em arranjos construtivos. As soluções obtidas pelo MCT são avaliadas por análises 

não-lineares que confirmam a sua segurança em relação ao estado limite último, e mostram seu 

desempenho em serviço melhorado em comparação com soluções obtidas por métodos de 

dimensionamento alternativos. O MCT pode ser aplicado de modo efetivo e prático para o 

dimensionamento de uma ampla gama de estruturas, sendo mais adequado para aquelas com 

geometria e carregamentos complexos. 

 

Palavras-chave: Concreto armado. Elementos sólidos. Dimensionamento. Campos de tensão 

tridimensionais. Sólidos 3D. 

  



 

Abstract 

 

CHEN, Reinaldo. Design of reinforced concrete structures based on three-dimensional 

stress fields. 2024. 241 p. Tese (Doutorado em Engenharia de Estruturas) – Escola Politécnica, 

Universidade de São Paulo, São Paulo, 2024. 

 

The Ultimate Limit State design of reinforced concrete members usually derives from linear 

elastic analyses of models composed of linear (bars), surface (shell), and volume (three-

dimensional solid) elements. When solid elements are used in the structural analysis, the action 

effects are provided point-to-point within the structural model as a stress tensor with six stress 

components (σx, σy, σz, τxy, τxz, τyz). This dissertation revisits the design method denoted herein 

as the Stress Field Method (SFM), which combines linear analysis and point-to-point limit 

design through a resisting mechanism that is already established in the literature. Linear analysis 

determines the action effects throughout the structure, while limit design calculates the required 

reinforcement to equilibrate these effects and checks concrete against crushing. The dissertation 

presents two main original contributions to the knowledge: (1) it analytically deduces and 

physically interprets the design equations of the resisting mechanism in a new approach, 

organizing them into four well-delimited cases according to the internal stresses mobilized in 

the concrete; (2) it applies the SFM to the design of real structural members, from the very 

initial phase of structural analysis to the final detailing of the reinforcement into constructive 

arrangements. The SFM solutions are assessed by nonlinear analyses to confirm their safety in 

Ultimate Limit State, and to show their improved performance in serviceability states over 

solutions obtained from alternative design methods. The SFM can be effectively and practically 

applied to the design of a wide range of structures, being more suitable for those with complex 

geometries and loadings. 

 

Keywords: Reinforced concrete. Solid elements. Design. Three-dimensional stress field. 3D 

solids. 
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1 Introduction 

1.1 Design methods for reinforced concrete structures 

Reinforced concrete members are usually designed by methods combining linear elastic 

structural analysis and plastic design. While the structural analysis assuming linear elastic 

material behavior determines the action effects on the whole or parts of the structure, the plastic 

design allows for quantifying reinforcement and concrete requirements. 

 Structures may be idealized and modeled by the composition of linear elements (1D bars), 

surface elements (2D membranes, plates or shells) or volume elements (3D solids) for the 

structural analysis. For linear elements, action effects are given as six sectional force 

components (axial and shear forces Nx, Vx, Vy; bending and torsional moments Mx, My, Mxy); for 

surface elements, as eight sectional force components (axial and in-plane shear forces Nx, Ny, 

Nxy; bending and torsional moments Mx, My, Mxy; transverse shear Vx, Vy); for volume elements, 

as a stress tensor with six stress components (normal stresses σx, σy, σz; shear stresses τxy, τxz, 

τyz). 

 Design is then performed by subdividing the structure into individual structural members 

and connecting areas: the Bernoulli regions (B-regions), where sections remain approximately 

plane after loading, and the disturbed regions (D-regions), where the assumption that the 

sections remain plane after deformation is no longer valid. For B-regions of individual members 

such as beams, columns, piles, slabs and walls, design relies on well-established methods for 

analyzing sectional forces. For simple D-regions such as frame corners, slabs with openings, 

shear walls, corbels and regular pile caps, design is usually developed based on strut-and-tie 

models. 

 For complex D-regions, which include the whole or parts of structures with complex 

geometry and/or complex loadings such as multiple-pile caps, hydroelectric facilities including 

spillways, powerhouses and intake structures, and bridge anchor blocks, however, design is 

carried out with more difficulty. Design may be performed by the strut-and-tie method, 

nonlinear analysis methods, or a method based on three-dimensional elastic stress fields. Each 

design method is discussed as follows. 
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Design based on strut-and-tie models  

The strut-and-tie method (STM) idealizes the structure as an assembly of one-dimensional struts 

representing concrete in compression, and one-dimensional ties representing reinforcement in 

tension. It more commonly derives from the combination of elastic analysis (determining the 

applied forces) and plastic design (quantifying materials by assuming rigid-plastic material 

behavior). 

 Numerous references in the literature guide the application of the STM by practical 

recommendations and worked examples applying the method to the design of real members 

(SCHLAICH; SCHAFER, 1984; FIP, 1999; REINECK, 2002; REINECK; NOVAK, 2010; fib, 

2011, 2021). However, applying the STM to complex structures is not straightforward and may 

be restricted due to practical limitations: (i) multiple models can, theoretically, be developed 

for a single given loading, and the more complex the structure, the more difficult it is to develop 

strut-and-tie models. As noted by Schlaich, Schäfer and Jennewein (1987, p.95): “Doubts could 

arise, however, as to whether the correct model has been chosen out of several possible ones”; 

(ii) numerous models are required for the comprehensive design of a member since all relevant 

design situations and loading cases must be considered, and ST models are unique for each load 

case of the structure; (iii) it is mandatory to ensure the deformation capacity of the designed 

member, such that the idealized flow of forces in a proposed model can be in fact be attained; 

and (iv) it is also mandatory to check the strength of all nodes within the model. 

 In practice, those limitations are usually tackled by general practices: building models as 

the composition of existing simpler models; recurring to superposition of models; searching for 

models that minimize the strain energy; reducing the number of developed models by 

identifying envelope loadings for representative behaviors; providing a minimum amount of 

reinforcement to allow for the ductility of the structure so that plastic stress redistribution can 

effectively occur. Still, solutions may fail to represent the actual response of concrete 

(LOURENÇO et al., 2023, p. 3761). Application of the STM may incur an inaccurate design of 

the structural member: “if the orientation of the model varies significantly from the actual stress 

field, then the structure must undergo substantial deformation in order to develop the poorly 

assumed model” (REINECK; NOVAK, 2011, p. 1-4); also, if critical load scenarios cases are 

mistakenly disregarded, an unsafe solution will be achieved. 

Design based on nonlinear analysis 

Nonlinear finite element analysis (NLFEA) offers an advanced approach for designing 

reinforced concrete members, beyond the capabilities of the STM. It builds on numerical 
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models that satisfy equilibrium of forces, compatibility of displacements and nonlinear 

constitutive laws describing the material behavior, and implements an incremental and iterative 

procedure to analyze the structural behavior. 

 Full nonlinear analyses are acknowledged by normative codes for the design of new 

structures: EC2 (2004, Section 5.7) directly states that nonlinear methods of analysis may be 

used for both ultimate and serviceability verifications; MC2010 (2013, Section 3.1.2) associates 

it to the highest order level-of-approximation approach but only advises its use “for the final 

design of very complex structures or for the assessment of critical existing structures”. However, 

true nonlinear analyses are still rarely applied to the design of new structures due to four main 

reasons: (i) the complexity of the analyses, that require “high-level expertise, and intensive 

modelling and interpretation time” (fib, 2021, p. 76); (ii) they rely on the input of complex 

material parameters, which may significantly affect the results; (iii) they require specialized 

and expensive software, which is usually only affordable to few universities and design offices; 

(iv) they also require the definition of the reinforcement layout, which is unknown in the design 

phase, as an input parameter. All those aspects render nonlinear analyses as a tool for the 

assessment of existing structures or solutions (with a predetermined concrete geometry and 

reinforcement detailing), rather than for ULS design. 

Design based on three-dimensional elastic stress fields 

As an alternative to the aforementioned design approaches for complex D-regions, a method 

based on three-dimensional elastic stress fields and limit design stands out for its simplicity and 

efficiency; herein, it is denoted simply as the stress field method (SFM1). Linear analysis 

assumes constant uncracked concrete stiffness to determine the action effects over the structure 

and does not require information about reinforcement quantities and arrangements, which are 

not known at the beginning of the design process, as an input parameter; it can be performed 

by numerous types of finite element software analyzing structural models composed of solid 

elements. Limit design, in turn, proportionates concrete and reinforcement in the resistant 

mechanism equilibrating the applied stress tensors. The SFM brings the immediate advantage 

of neither requiring the elaboration of numerous models, as in the STM, nor the performance 

of complex nonlinear analyses. It is the object of this dissertation. 

 
1 The design method for reinforced concrete structures combining linear analysis and plastic design has not yet 

been given a formal name and abbreviation in the literature. Throughout the dissertation, it will be referred to 

simply as the stress field method (SFM). Distinction between the SFM object of this dissertation and the SFM 

associated with the STM shall be automatically implied. 
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1.2 Design method based on three-dimensional elastic stress fields 

The text presented in this sub-section is reproduced from Chen, Bittencourt and Della Bella 

(2023b). It presents the literature review for the SFM. 

 A concrete structure may be idealized from the composition of linear (bars), shell 

(membranes, plates, and shells), and solid elements. The utilization of finite solid elements may 

be justified when designing structural members with complex geometry and loadings such as 

those comprising industrial or hydraulic facilities (Figure 1), for which the application of 

unidimensional or bidimensional elements turns out to be insufficient to capture the load path 

within the structure. A linear analysis may be performed to determine the internal stress 

distribution throughout the three-dimensional structure for the ultimate limit state design, 

according to design codes (ACI 318, 2014; EC2, 2004; fib MC 2010, 2013; NBR-6118, 2023). 

The stress field obtained from the analysis consists of six stress components at each integration 

point of the solid elements comprising the structural model. Limiting state conditions are not 

directly expressed in terms of sectional forces, and the problem of dimensioning the required 

reinforcement and checking concrete in the presence of the applied stresses is then posed. 

 

  

(a) (b) 

Source: (a) Dianafea (2017); (b) Wikimedia Commons (2022). 

Figure 1 – Finite solid element models for: (a) clinker storage silo of the Ramliya Cement Plant; (b) a 
concrete hydroelectric structure. 

 A solution for the design would be to provide reinforcement to resist the major principal 

stress in the principal directions. However, in design practice it is impossible to provide 

reinforcement following the randomly oriented principal tensile stresses within the structure, 

even more if it is considered that a structural member is designed for multiple loading 

conditions. Alternatively, reinforcement could be arranged in three orthogonal directions to 

resist the major principal tensile stress in the three reinforcement directions. But this solution 

is also disregarded in design practice since uneconomical layouts would be assuredly attained, 



23 

especially when crack directions draw close to any of the reinforcement directions. In another 

attempt, designers utilizes the incomplete method of defining working sections, integrating the 

normal stress patterns over their surfaces and then calculating the reinforcement from the total 

sectional forces. For example, de Boer (2010) proposed the so-called “Theory on composing 

results to lower model type results” where one should proceed to the back-substitution of 

stresses from a solid model to reference elements: either by integration of stress components 

along the height of a structure to a bidimensional model at the level of a reference plane (Figure 

2a), or by integration of stresses along both height and width of an elected cross-section to a 

unidimensional model at the level of a reference line (Figure 2b). Dolgikh and Podvysotskii 

(2011) proposed, independently, the “Method of equivalent shells”, which consisted basically 

in the same procedure as the one proposed by de Boer, and applied it to the design of a concrete 

spillway (Figure 3). The method of composing results in reference elements, however, has 

restricted application to members with uniform geometry and loadings, so that a sectional 

design may effectively be performed. It cannot be applied in discontinuity regions such as joints 

of frames or zones of application of concentrated loads. As pointed out by Lisichkin (2001, 

p.116), the results obtained by integration methods are “not rigorous since they did not 

incorporate either the tangential stresses or the effects of the resistance in the reinforcement to 

shearing in other directions.” 

 

  

(a) (b) 

Source: de Boer (2010). 

Figure 2 – Composition of results from solid elements: (a) in a quadrangular reference plane or (b) in a 
reference line. 

reference plane 

composition 

base element 
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(a) (b) 

Source: Dolgikh and Podvysotskii (2011). 

Figure 3 – Finite element model for a concrete spillway: (a) with solid elements; (b) with equivalent 
shell elements. 

 The solution for the ULS then relied on the definition of a resistant mechanism 

equilibrating the applied stress tensors. Smirnov (1983), addressed, for the first time, equations 

for the reinforcement design in concrete solid elements from three-dimensional stress tensors, 

focusing on the application in hydroelectric structures. Kamezama et al. (1994) proposed 

additional formulas for the computation of the required reinforcement, but they were still 

limited to stress combinations yielding reinforcement in three directions. Marti, Mojsilović and 

Foster (2002) and Foster, Marti and Mojsilović (2003) published two thorough detailed works 

on the subject, clearly identifying biaxial and uniaxial compression design cases, and 

graphically representing the solutions with the aid of Mohr circles. Their formulation was later 

reproduced in the fib Bulletin 45 (2008), which was a practical guide to finite element modelling 

of reinforced concrete structures. In this publication, however, no new information about the 

subject was brought. Hoogenboom and de Boer (2008, 2010) categorized the solution into three 

subgroups, namely “corner”, “edge” and “interior solution”, according to the requirement of 

reinforcement in one, two or three orthogonal directions, respectively. They also implemented 

this solution in a numerical algorithm searching for the solution that minimized the total 

required steel. Su et al. (2010) presented a genetic algorithm to examine all possible solutions 

and to find, among them, the one that provided the optimal reinforcement. Zalesov and Rubin 

(1994) and Lisichkin (2001) treated the theme with a different approach, where reinforcement 

incorporated shearing resistance. Since the solution was not analytical, but rather based upon 

coefficients determined experimentally, the derived equations are not presented in this work. 

Finally, Nielsen and Hoang (2011) presented the complete formulation in the third edition of 

the book Limit Analysis and Concrete Plasticity – former editions, dated 1984 and 1999, still 

did not address this theme. The authors brought out the physical interpretation of the applied 
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shear stresses and elegantly deduced analytically the complete set of design formulas. The 

application of these design formulas, however, relied on three additional variables (the Euler 

angles) and axes transformations, which brought some complexity for the equations. 

1.3 Research questions and original contribution to knowledge 

Throughout my 24 years of experience as a reinforced concrete structural engineer, a question 

has been recurrent: Why are finite solid elements, even though readily available in most finite 

element software, rarely used in design practice? 

 Early investigation developed for the research proposal confirmed the existence of a 

design method for solid elements at a point level, the SFM. The original question, could then 

be rewritten with more theoretical rigor to constitute the main research question of the 

dissertation: Why is the existing design method based on three-dimensional linear stress fields 

for reinforced structures rarely used in design practice? Other accompanying questions were: 

Are there design tools for applying the method? And how good is the solution brought by this 

method in terms of material efficiency and structural performance? 

 Four main gaps in the knowledge were clearly identified. Two of them regarded the 

formulation of the resisting mechanisms: (i) the difficulty in handling design equations, mainly 

when dealing with positive, negative, or absolute values of the shear stress components, and (ii) 

the difficulty in physically interpreting the design cases. The two other gaps concerned the 

application of the method: (iii) the lack of research applying the method to the design of 

complex real structural members, and (iv) the absence of guidelines orienting reinforcement 

detailing. 

 This dissertation’s original contribution to knowledge is to further extend the design 

method combining linear analysis and limit design for reinforced concrete structures. First, by 

deducing and interpreting the design equations of the resisting mechanisms in a novel and 

simpler approach, at a point level. Second, by applying them to the design of real structural 

members, from the initial stage of determining the applied stresses to the last stage of 

reinforcement detailing. The design method, albeit better suited for the design of 3D 

discontinuity regions or complex structures, is applicable to all reinforced concrete structures. 

Its disclosure by the new approach is believed to have the potential to simplify the way complex 

structures are designed and to open new ways of arranging reinforcement. 



26 

1.4 Scope 

This work presents a ULS design method for reinforced concrete structural members, from the 

very initial stage of determining the internal applied stresses to the final stage of reinforcement 

detailing. It encompasses a theoretical part, in which the formulation of the resisting 

mechanisms for the applied stresses at a point is presented in a new approach, and an application 

part, whereby the formulation is applied to the design and reinforcement detailing of five 

structural members. Key aspects of the detailing process are covered, which may orient the 

detailing of any other structural element. 

 The design method is based on a stress-based approach for designing finite solid elements 

(3D) discretizing continuum structural volumes, rather than on force-based approaches for 

designing bar elements (1D) and surface elements (2D). Throughout the design process, three 

simple tools were required: a commercial finite element software to perform linear analyses, a 

developed application for the automatic point-to-point design, and an opensource software for 

postprocessing results throughout the structural members. 

 The dissertation then presents the assessment of the achieved solution by nonlinear 

numerical simulations to confirm the ultimate state safety of the design and to evaluate the 

structural performance in both serviceability and design conditions. Complementarily, it 

compares achieved and traditional alternative design solutions. The choice for numerical 

nonlinear analyses over laboratory tests or tests of existing structures is justified by their 

reduced implementation cost, and their capability to simulate large structures and structures 

with complex geometry and loadings. 

 This work does not aim at new developments on nonlinear analyses: no new numerical 

methods, numerical solution strategies, formulation of types of solid elements and material 

models are proposed. Instead, existing ones are implemented for the specific purpose of 

assessing the dissertation design method. 

 The dissertation addresses the SLS design in the context of three-dimensional stress fields. 

The existing formulation is presented, along with guidance for its implementation; it will be 

implemented into the automatic design framework in future works. 

 At the closure of the dissertation, formulation, application, and assessment of the design 

method are critically reviewed, confirming its strength, importance, and wide range of 

applicability. 



27 

1.5 Organization of chapters 

This dissertation reviews, further extends, applies, and critically evaluates the method 

combining linear analysis and limit design (SFM) for designing reinforced concrete structures. 

It is organized as follows. Chapter 2 presents the theoretical basis for applying limit analysis to 

the design of reinforced concrete structures. It identifies the design method object of this 

dissertation as a lower-bound solution of the theory of plasticity and discusses failure conditions 

for the resisting materials. 

Chapter 3 presents the resisting mechanism for the ULS design for applied stresses at a 

point in an original approach. The design equations are deduced analytically and organized 

according to the stresses developed in concrete. Chapter 4, in turn, provides the background for 

SLS verification when working with stress-based approaches. 

Chapter 5 applies the SFM to the ULS design of five structural members. For each of 

them, concrete is checked against crushing while reinforcement is computed and detailed in 

constructive arrangement. Chapter 6 assesses by fully nonlinear analyses the solution obtained 

for the five structural members, whereby information about the load-carrying capacity and 

structural performance is obtained. 

Finally, Chapter 7 summarizes the main aspects of the design method including 

implementation, strengths, and weaknesses. It also presents guidelines for applying the SFM to 

design practice and brings suggestions for improvement of normative code sections dealing 

with 3D solids. 
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2 Limit analysis for three-dimensional stress fields 

Ensuring the safety of structures hinges on accurately defining the load-carrying capacity of 

their individual elements. Limit analysis is a fundamental tool in this direction, providing 

information about the strength of rigid-plastic materials. This chapter presents the background 

and assumptions that identify the SFM as a lower bound solution of limit analysis for designing 

reinforced concrete structures. 

 The theory, theorems, and methods of limit analysis, which are credited to Gvozdev 

(1960), Drucker, Greenberg and Prager (1952), and Sayir and Ziegler (1969), are initially 

presented in Section 2.1. Failure conditions, essential for the application of limit analysis, are 

reviewed in Section 2.2, starting from a general theory that is extended sequentially to Coulomb 

materials, modified Coulomb materials, concrete and reinforced concrete. 

 The introduction of the modified Coulomb failure criterion for concrete is credited to 

Chen and Drucker (1969). The application of limit analysis to reinforced concrete, in turn, is 

attributed to M.P. Nielsen (1978) and B. Thürlimann (1978). It was reviewed and further 

developed by researchers including Marti (1977, 1980), Kaufmann (1998), Meyboom (2002), 

Monotti (2004), Larsen (2010) and Braestrup (1994, 2021). 

2.1 Plasticity and limit analysis 

The theory of plasticity is concerned with the strength and deformation of rigid-plastic materials. 

A rigid plastic material is idealized as one that remains undeformed until a yield stress is 

reached, after which deformations can occur without accompanying stress increase. An infinity 

of strains is therefore compatible with σy. The plastic strain rate, έ, also referred to as the 

incremental plastic strain, can be determined for a rigid-plastic structure but specific strain 

values cannot be calculated. The strength and deformation of a rigid-plastic structure can be 

described by its yield conditions and the associated flow rule, respectively. The yield conditions 

describe the stress states at which plastic flow commences, while the flow rule describes the 

ratios between the plastic rates of the corresponding collapse mechanism (MEYBOOM, 2002). 

 A body of rigid-plastic material is subjected to a loading that can be carried only by 

stresses at the yield point; the body is then said to be subjected to collapse by yielding. The 

corresponding load is called the collapse load of the body, and the theory of collapse by yielding 
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is termed limit analysis (NIELSEN, 1984). In the context of this chapter, the term yield can be 

equally used as rupture or failure when characterizing a load, a surface, a condition, or a 

criterion. 

2.1.1 Extremum principles for rigid-plastic materials 

The theorems of limit analysis derive from the application of two principles, the principle of 

virtual work and the principle of maximum energy dissipation, for rigid-plastic bodies. They 

can be enunciated as follows: 

 Lower bound theorem: any load corresponding to a statically admissible state of stress 

distribution within the yield surface is smaller than the ultimate load, that is, it will not be 

able to cause collapse of the body. 

 Upper bound theorem: any load resulting from considering a kinematically admissible state 

of deformation and setting the work done by the external forces equal to the internal energy 

dissipation is greater than the ultimate load. 

 Uniqueness theorem: any load for which a complete solution, that is, a statically admissible 

state of stress everywhere at or below yield and a compatible, kinematically admissible 

state of deformation can be found, is equal to the ultimate load. 

A stress distribution is considered statically admissible if it satisfies both equilibrium and static 

boundary conditions. A state of deformation is considered kinematically admissible if it 

satisfies kinematic relations and kinematic boundary conditions. 

2.1.2 Limit analysis and design methods 

The solution of load-carrying capacity problems in plastic theory can then be divided into two 

methods, as summarized by Kaufmann (1998, p.35). 

 The static method of theory of plasticity is based on the lower bound theorem. Starting 

from statically admissible states of stress, one attempts to maximize the associated ultimate 

load. This method is suitable for design and provides safe solutions for the actual ultimate load. 

The kinematic method of theory of plasticity is based on the upper bound theorem. Starting 

from kinematically admissible states of deformation or failures mechanisms, one attempts to 

minimize the associated ultimate load. This method yields unsafe or upper bound solutions for 

the actual ultimate load. 
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2.2 Yield conditions 

2.2.1 Failure (yield) criteria 

A general theory for failure was proposed by Mohr in 1882, who assumed that failure occurs 

when the stresses in a section satisfy the condition f (σ,τ) = 0, where f (σ,τ) is a characteristic 

function of the material, and where σ and τ are the normal stress and the shear stress, 

respectively, in the section. Many suggestions have been made for the shape of the Mohr failure 

envelope, including those proposed by Cowan (1953), Johansen (1958) and Paul (1961). In any 

case, rupture criteria appear as hypotheses whose application to various materials need to be 

evaluated from experimental data. 

 Different failure criteria that do not rely on the absolute values of stresses have been 

proposed. Some were based on energy considerations or distortion energy. However, the criteria 

based on the stresses are of particular interest for later application to structural concrete. 

2.2.2 Failure (yield) criteria for Coulomb and modified Coulomb materials 

Coulomb advanced the frictional hypothesis, by which sliding failure occurs in a section where 

|τ| exceeds the sliding resistance. The condition for sliding failure is expressed by: 

0c     (2.1) 

where c is the cohesion, μ is the frictional coefficient, and σ is the normal stress perpendicular 

to the sliding plane, counted negative as a compressive stress. A material that satisfies the 

sliding failure condition is termed a Coulomb material. 

 For a large group of materials, reasonable failure conditions are attained by combining 

Coulomb’s frictional hypothesis for sliding failure with a bound for the maximum tensile stress 

in the case of separation failure, known as separation strength fA. This combination results in 

the modified Coulomb failure criterion: 

0

0A

c

f

 



   


 
 (2.2) 

A separation failure occurs when the largest principal stress component, σ1, reaches the 

separation strength. A material complying with the above criterion is called a modified Coulomb 

material, and the failure criterion is depicted in the σ-τ coordinate system in Figure 4a. When 

examining the applied stress field at a point, defined by the principal stresses σ1, σ2, and σ3, and 

represented by the Mohr’s circles in Figure 4b, failure will not occur if the circle with diameter 
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(σ1 - σ3) lies within the boundary lines. Alternatively, the sliding criterion in Equation (2.2) can 

be transformed into relationships between the principal stresses σ1 and σ3. From Figure 4c, by 

projection on one of the lines corresponding to sliding failure: 

   1 3 1 31 2 cos 1 2 sinc          (2.3) 

Introducing μ = tg φ and  2
21k     , where φ is called the angle of friction, the 

conditions for sliding failure can be written: 
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k c k
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

 

 (2.4) 

 

 
(a) (b) (c) 

Source: (a, b) Nielsen (1984); (c) adapted from Nielsen (1984). 

Figure 4 – (a) Failure criterion for a modified Coulomb material; (b) Mohr´s circles of principal stresses 
within the yield lines; (c) Mohr’s circle at sliding failure. 

2.2.3 Failure (yield) conditions for concrete 

Strengths tests of plain concrete are well documented in the literature. To name a few, the 

reports by Kupfer et al. (1969) on biaxial stresses, and those by Gerstle et al. (1978) on triaxial 

stresses can be listed. The experimental data indicated the essential features of a failure surface 

of concrete materials, based on which a variety of failure criteria have been proposed. These 

models are classified based on the number of material constants appearing in the expression, 

ranging from one-parameter to five-parameter models. 

 Low strength concrete can be considered a modified Coulomb material, described by a 

two-parameter model: parameter k has the value of about 4 corresponding to an angle of friction 

of φ = 37º, and a friction coefficient of μ = 0.75 (Nielsen, 1984). The modified Coulomb failure 
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criteria for concrete are then defined in the form of a sliding surface and a separation surface, 

respectively, as: 

1 3

1

4 c

ct

f

f

 



 



 (2.5) 

where fc is the concrete compressive strength, and fct is the concrete tensile strength. The failure 

criterion is represented in Figure 5, with dashed lines representing the plane stress field in both 

σ-τ coordinate system (Figure 5a) and principal stress coordinate system (Figure 5b), forming 

a hexagon in the latter case. 

 The criterion adopted for concrete under uniaxial or biaxial compression in this study is 

the modified Coulomb criterion with a zero-tension cutoff. The tensile concrete strength is 

conservatively neglected due to its small values compared to the compressive strength, and due 

to the brittle nature of concrete behavior in tension, which is very distant from the rigid-plastic 

idealization. The modified criterion is represented graphically in Figure 5, using continuous 

lines. In the principal stress coordinate system, the hexagon is approximated by a square in the 

third quadrant since the tensile strength is assumed to be zero (Figure 5b). Concrete is 

considered to be an isotropic material; the modified Coulomb criterion is thus equally valid in 

all directions. 

 

 
(a) (b) 

Source: adapted from Nielsen (1984). 

Figure 5 – Modified Coulomb failure critetion for plain concrete: (a) in the σ, τ - coordinate system; (b) 
in the principal stress space.  
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 The Ottosen four-parameter model, particularly, is the failure criterion for concrete under 

multiaxial states of stress indicated in both Model Code 90 (CEB-FIP, 1993) and Model Code 

2010 (fib, 2013). It is valid for normal weight and self-compacting concrete, subjected to 

monotonic stress increase until failure, and is reproduced below in the MC-90 format: 

22 1
2

´ 1 0
cm cm cm

JJ I

f f f
       (2.6) 

where: 
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 (2.7)
 

Parameters J2, J3 and I1 represent the second and third invariants of the stress deviator and the 

first invariant of the stress tensor, respectively, characterizing the state of stress considered. 

Coefficients α, β, c1 and c2 are material parameters which depend on the strength ratio 

k =  fctm/fcm, where fctm is the mean value of concrete tensile strength, and fcm is the mean value 

of concrete compressive strength: 
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Alternatively, the invariants can be expressed as a function of the principal stresses: 
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 This model is far more sophisticated, accounting for the influence of the intermediate 

principal stress. It will be used for concrete subjected to triaxial compression in the ultimate 

limit state design method of Chapter 3. 

2.2.4 Failure (yield) conditions for reinforcement 

In the limit analysis, reinforcement is assumed to be a rigid-perfectly plastic material with yield 

stress fsy. The yield criterion simply defines that rupture occurs when reinforcement axial 

stresses reach the yield stress. The stress-strain relation for reinforcement is depicted in Figure 

6. 

 It is assumed that reinforcing bars can carry only longitudinal tensile stresses - dowel 

action and contributions from compressed reinforcement are both neglected. This assumption 

is acceptable based on the lower bound theorem since it results in stresses in the reinforcement 

which are statically admissible and safe if the stresses are smaller than or equal to the yield 

stress. 

 An additional assumption, specifically important for the stress field design method, is that 

reinforcing bars are continuously distributed over the volume (smeared rebars), placed at such 

small spacings that the forces in them can be replaced by an equivalent yield stress distribution 

in the concrete ρfsy. In this expression, ρ = As / Ac is the reinforcement ratio, where Ac is the area 

of the section of concrete perpendicular to the bars of area As. 

 Concerning reinforcement bond and anchorage, perfect bond is assumed to exist between 

rebars and concrete. The anchorage is checked as an a posteriori procedure: if the yield 

condition of bond is violated, an alternative procedure is to reduce rebar forces by increasing 

the total reinforcement area. 

 The assumption of rigid-plastic behavior is a simplification justified for reinforcement 

since the total strains are significantly higher than the elastic limit strain εsy. 

 

 

 

Figure 6 – Material model for reinforcement: stress-strain curve. 
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2.2.5 Failure (yield) conditions for reinforced concrete 

When applying methods of limit analysis to structural concrete, which is a composite material, 

concrete and reinforcement are typically considered together as a continuum. Kaufmann (1998), 

states, in the context of limit analysis, that the resistance of structural concrete is given by the 

linear combination of the resistances of concrete and reinforcement. “Although concrete cannot 

reasonably be claimed to be a rigid, perfectly plastic material, classic plasticity theory (limit 

analysis), adopting the modified Coulomb failure criterion, gives surprisingly realistic insights 

into the behavior of structural concrete at failure.” (BRAESTRUP, 2021, p. 2522). 

 The simplifications assumed for concrete in Section 2.2.3 are extended to reinforced 

concrete by introducing a reduced concrete strength known as effective or plastic concrete 

strength. Kaufmann and Mata-Falcón (2017, p.4) contextualized that: 

Pioneers like Nielsen and Thürlimann and his co-workers dared to apply the 
theory of plasticity to reinforced concrete. They were of course fully aware of 
the limited ductility of concrete and even reinforcement. Therefore, they 
completely neglected the tensile strength of concrete and addressed further 
concern regarding ductility by providing minimum reinforcement and using 
conservative limit for the so-called effective concrete compressive strength, 
as well as upper limits for the reinforcement quantities and corresponding 
compression zone depths. 

The simplifications assumed for reinforcement in Section 2.2.4 and their impact on the 

evaluation of the ultimate load of the structure were discussed by Kaufmann (1998, p.40): 

In a real structure, reinforcing bars are not infinitely thin, and considerable 
transverse shear stresses may occur in the reinforcement (“dowel action”). 
Bond stresses are limited by the bond strength, resulting in finite development 
lengths. The crack spacings are not infinitely small and tension stiffening 
effects occur. On the other hand, the analysis of a structure is simplified to a 
great extent by these assumptions, and their influence on the ultimate load is 
often negligible. 

 Nielsen (1984, p. 39) also referred to the simplifications assumed for concrete and 

reinforcement material models in plastic analysis, affirming that “a more accurate description 

of the detailed behavior is not essential when the primary purpose is to determine the load-

carrying capacity of a reinforced concrete structure.” 

 Yield conditions are defined differently according to the structural element being 

analyzed. They can be explicitly obtained for reinforced membranes and slabs with a given 

reinforcement. For shells and structures under three-dimensional stress, however, simple yield 

conditions in closed analytical form are still unavailable, so that we turn to the inverse problem: 

to investigate the reinforcement necessary to carry given stresses. 
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2.3 Application of limit analysis to structural concrete 

2.3.1 Plastic strength of concrete 

A conservative material model for plain concrete is required for use with limit analysis, one 

that somehow conservatively approximates the real behavior to an idealized plastic behavior. 

As pointed out by Nielsen (1984, p.30): “many solutions based on the plastic theory have been 

derived which show a remarkably good correlation with test results when the plastic solutions 

are modified by inserting in the formulas a concrete strength that is smaller than the strength 

measured by standard tests.” The effective (plastic) strength of concrete is given by: 

,c ef cf f  (2.10) 

where ν = ηfc ηε ≤ 1 is the effectiveness factor which, according to Nielsen (1984) and fib (2021), 

accounts for: 

 Geometry and size effects (the larger the dimensions, the lower the effective strength). 

 Loading and loading history of the structure (for example, effective strength varies for 

different shear span/depth ratios in a beam without shear reinforcement loaded by bending 

and shear; also, effective strength varies when changes in cracking directions throughout 

specific loading histories are observed). 

 The reinforcement ratio, yield stress, and arrangement (the higher the number of bars 

distributed in a section, the higher the effective strength). 

 The brittleness of concrete in compression, accounted for by the brittleness factor ηfc, such 

that the plastic strength of concrete, fcp, is given by the fib Bulletin 100 (2021): 

  1/3
, with 30 1cp f c c f c cf f f MPa      (2.11) 

Plain concrete does not behave as a rigid-plastic material; rather, the stress-strain relation 

for plain concrete in uniaxial compression is characterized by the absence of a yield plateau 

and by a descending branch characterizing the strain softening; that is, an unloading curve 

after the maximum value of the stresses is reached, where stresses decrease with increasing 

strains until a brittle crushing occurs at the maximum strain value, εcu. The stress-strain 

curve is represented in Figure 7a, where the dashed line represents the actual behavior, and 

the continuous line represents the assumed plastic behavior. 

 The compression softening effect is accounted for by the factor ηε. The effective plastic 

strength of concrete, fc,ef, is expressed as: 
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 ,c ef cp f c c cf f f f        (2.12)
 

Concrete strength is reduced in the presence of reinforcement and particularly when it is in 

tension leading to cracking that disturbs the transmission of the compression field, softens 

the response, and reduces its capacity. The resulting yield criteria for cracked concrete 

under plane stress conditions can be seen as a shrinkage of the square yield surface, as 

illustrated in Figure 7b. 

 The effectiveness factor utilized in the present dissertation is the one applied to the design 

of reinforcement in 3D solid elements considering that one or more reinforcement layers are 

yielding, as proposed by the Model Code 2010 (fib, 2013, Section 7.3.9.1): 

  1.18
1 0.032

1.14 0.00166i
ydf

  


 (2.13) 

It is not clear from the text in the MC2010, however, whether it accounts for both the strength 

reduction due to transverse tensile stresses and the material brittleness. Equations 2.9 and 2.12 

were directly applied, knowing that this topic should be further clarified in the normative codes. 

 The fib Bulletin 100 (2021, p. 19) presented this equation in an altered format. The revised 

expression excluded the dependence on δi, explicitly incorporated the dependence on the strains 

in the reinforcement directions, and included both lower and upper bounds to it: 
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0.6 1
1.14 3.40max ,x y
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
 (2.14) 

 

 

(a) (b) 

Source: adapted from fib (2021). 

Figure 7 – Material model for concrete: (a) stress-strain curve for uniaxially loaded concrete; (b) 3D 
yield condition for plain cracked concrete. 
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2.3.2 Limit analysis for three-dimensional stress fields 

The SFM for the design of reinforced concrete structures is presented in Chapter 3 of this 

dissertation. The method begins by determining a stress field equilibrating the applied loads 

using linear elastic analysis. Subsequently, it calculates the required reinforcement and concrete 

to carry the given stresses below the yield surface. It is an application of the lower bound 

theorem since equilibrium and static boundary conditions are satisfied and the yield conditions 

are implicitly accounted for. That puts the design method on a solid theoretical basis: it is 

guaranteed that the solution thus obtained is on the safe side, and that the structural element 

will not collapse. Application of limit analysis to the design of reinforced concrete structures, 

however, still faces certain limitations, as outlined below: 

 It is not directly applicable for service verifications. Checking of deformations and crack 

widths should be addressed by different approaches, as later addressed in Chapter 4. 

 It relies on conservative estimation of the concrete compressive strength affected by 

transverse strains. References values for the effectiveness factor in solids under multiaxial 

stress states still lack experimental confirmation. 

 It requires sufficient deformation capacity of all structural members and elements, and the 

theory of plasticity by itself does not address the questions related to the required and 

provided deformation capacities (KAUFMANN, 1998). It is known, however, that 

“reinforced concrete can exhibit considerable ductility if failure is governed by yielding of 

reinforcement, which can be achieved if concrete’s material properties are conservatively 

defined, and careful attention is paid to the detailing of the reinforcing steel”, and that “The 

ductile response of reinforced concrete has been demonstrated by decades of testing of 

large-scale specimens” (MEYBOOM, 2002, p.5). The fib Bulletin 100 (2021, Section 2.2) 

provides complementary insights about the ductility in structural concrete, stating that rules 

are required to ensure that the deformation capacity is not exceeded. Those rules might 

include provision of minimum reinforcement and limits to the inclination of the 

compression field, rotation of the compression field with respect to the uncracked state, 

amount of moment redistribution in redundant girders and compression zone depth. 

 It is timely to close this chapter with Braestrup’s incisive statement found in his extensive 

review on concrete plasticity (2021). Based on a solid theoretical foundation, he pragmatically 

states that: “the main justification for applying limit analysis to concrete structures is that it 

works.” 
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3 Design method: formulation for ULS 

This chapter presents the complete formulation of the resisting mechanism for a given stress 

tensor. Equations for the ULS reinforcement and concrete design at an individual point within 

the structural member are deduced analytically in a new approach. Extension of this approach 

to encompass the entire stress field within the member, as shown in Chapter 5, will establish 

the SFM for a member design. The text is reproduced from the article entitled Design of 

reinforced concrete structures based on three-dimensional stress fields, Chen R, Nogueira 

Bittencourt T, Della Bella JC, Structural Concrete, Copyright ©2023, International Federation 

for Structural Concrete, Wiley. 

3.1 The applied stresses 

The applied stresses at a point, deriving from a linear elastic analysis, are assumed to be known: 

three normal stresses (σx, σy, σz) and three shear stress components (τxy, τxz, τyz) referred to a 

rectangular coordinate system (x, y, z). In an elementary cube, the stresses can be represented 

as shown in Figure 8. The sign convention for the applied stresses is defined as follows: normal 

stresses are considered positive as tensile; shear stresses τxy and τxz are positive in the positive 

coordinate directions in a section with the x-axis as an outwardly directed normal of the element 

face; shear stresses τxy and τyz are positive in the positive coordinate directions in a section with 

the y-axis as an outwardly directed normal of the element face; shear stresses τxz and τyz are 

positive in the positive coordinate directions in a section with the z-axis as an outwardly directed 

normal of the element face. 

 

 
Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 8 – The applied stresses at a point. 
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3.2 The resisting mechanism 

In the proposed resisting mechanism, the applied stress tensor is equilibrated by resisting 

components from reinforcement and concrete. If all the principal stresses at a point are 

compressive, the internal stresses are carried by the unreinforced concrete alone. Yet, if at least 

one of the applied principal stresses at a point is tensile, concrete will be cracked, and 

reinforcement will be subjected to the yield stress. For some applied stress combinations, which 

will be properly identified in the following formulation, an infinity of solutions exists, each one 

corresponding to an equilibrated scheme associated with a specific crack direction. An optimum 

design is then achieved for the specific crack direction that minimizes the reinforcement 

consumption. 

 The assumptions for defining the resisting mechanism are: (1) reinforcement is perfectly 

plastic, uniformly distributed within the element in three mutually orthogonal x-, y-, and z-

directions and capable of carrying exclusively axial stresses; (2) concrete does not resist any 

tensile stress; (3) perfect bond exists between concrete and reinforcement; (4) cracks are 

uniformly distributed in a cracked region as “smeared cracks”; and (5) there is no aggregate 

interlock and no dowel action of the reinforcement on the crack surface, so that no tangential 

stress acts on the crack plane. The resisting mechanism is then such that the applied stress field 

[σ] is resisted by stress fields in both concrete [σc] and reinforcement [ft] as follows: 

     

0 0

0 0

0 0

tc

x xy xz cx xy xz tx

xy y yz xy cy yz ty
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     

 (3.1) 

where fti (i = x, y, z) are the stresses acting on the cube faces with area Aci, which are equivalent 

to the forces in the discrete reinforcement with cross-sectional area Asi and subjected to the 

stress σsi. 
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 (3.2) 

The tensor of concrete stresses can be written as: 
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 
cx xy xz x tx xy xz
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 (3.3) 

The concrete principal stresses σc1, σc2, σc3 are the roots of the characteristic equation: 

3 2
1 2 3 0c c c c c cI I I        (3.4) 

where Ic1, Ic2 and Ic3 are the invariants of the tensor of the concrete stresses: 

 

1 1 2 3

2 2 2
2 1 2 1 3 2 3

2 2 2
3 1 2 3det 2

c cx cy cz c c c
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               

 (3.5) 

 The resisting mechanism, which is illustrated in Figure 9, leads to safe solutions as later 

discussed in Section 7.1. 

 The complete formulation is divided into four design cases, according to the internal 

stress state mobilized in concrete to equilibrate the applied stresses. 

 

 

Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 9 – Resisting mechanism for the applied stress: (a) concrete stresses and (b) equivalent 
reinforcement stresses. 
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3.3 Design case: Concrete stress σc1 = 0, and σc2, σc3 < 0 

3.3.1 Reinforcement in three directions 

When the largest principal applied stress σ1 > 0, reinforcement must be provided. If the applied 

stress field [σ] is equilibrated by concrete stresses such that the principal stresses σc1 = 0, σc2 < 

0, and σc3 < 0, parallel crack planes will be formed at a point. Concrete will be subjected to a 

biaxial compression stress state, with principal stresses σc2 and σc3, between two consecutive 

crack planes (see Figure 10). Considering that the normal vector of the crack planes (or, simply, 

the crack direction) is 𝑛௖ଵሬሬሬሬሬሬ⃗  = (ℓ1, m1, n1), it is found that at the crack face: 

     1 1 1c t c c cn f n n     
  

 (3.6) 

Assuming that no shear stress is transferred on a crack face, either by concrete-to-concrete 

friction, or by dowel action of the reinforcing bars crossing the crack, the concrete stress acting 

on this plane [σc] 𝑛௖ଵሬሬሬሬሬሬ⃗  equals zero, and consequently: 

   1 1c t cn f n   
 

 (3.7) 

which can be rewritten as: 
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 (3.8) 

 

 

Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 10 – Design case with σc1 = 0: (a) concrete principal stresses, (b) crack pattern, and (c) trihedron 
defined by a crack plane with crack direction in the first octant. 
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The equivalent reinforcement stresses are: 
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 (3.9) 

The total reinforcement consumption is: 
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 (3.10) 

which is minimized if: 
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 (3.11) 

The above conditions are simultaneously satisfied if: 

1 1 1
2 2 2
1 1 1 1 1 1

1 1 1
0; 0; 0

m n m

m n m n
       
   (3.12) 

which leads to the following relationship between the components of the crack vector: 

1 1 1 1 1 1; ;m n m n     (3.13) 

This means that an economical design is obtained when 𝑛௖ଵሬሬሬሬሬሬ⃗  is one of the eight vectors equally 

inclined to coordinate axes x, y, z. The concrete stress tensor is obtained by inserting the ft values 

(3.9) into (3.3): 
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From the above Equation, it can be observed that the concrete stress field [σc] depends only on 

the tangential stresses of the applied stress field [σ]. The invariants of the concrete stress tensor 

are: 

3

2 2 2
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 (3.15) 

Analyzing Equation (3.5), concrete is subjected to a biaxial compression stress state with the 

largest principal stress σc1 = 0 and σc2, σc3 < 0, if: 
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 (3.16) 

 For a crack direction in the first octant, 𝑛௖ଵሬሬሬሬሬሬ⃗ = ൫1 √3⁄ , 1 √3⁄ , 1 √3⁄ ൯ = (0.577, 0.577, 

0.577). The reinforcement equivalent stresses, from Equation (3.9), become: 
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The concrete stress tensor is: 

 
 

 
 

xy xz

c xy yz

xz y

xy xz

xy yz

xz yz z

 
 
 
 
 

 

 

  

 

 

 

 

   

 (3.18) 

and the principal stresses are given by: 
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The invariants of the concrete stress tensor are, for the crack direction in the first octant: 
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 (3.20) 

Condition Ic2 > 0 is met if: 

0xy xz xy yz xz yz         (3.21) 

Condition Ic1 < 0 is met if: 

0xy xz yz      (3.22) 

 The aforementioned conditions are simultaneously met for the following sign 

combination of the shear stress components: sgn(τ) = (sign of τxy, sign of τxz, sign of τyz) = (+,+,+), 

(+,+,-), (+,-,+), or (-,+,+). This is graphically represented in the space of the shear stress 

components (Figure 11), where four sub-regions satisfying simultaneously Ic2 > 0 and Ic1 < 0 

are identified: region I with sgn(τ) = (+,+,+), region II with sgn(τ) = (+,-,+), region III with 

sgn(τ) = (-,+,+), and region IV with sgn(τ) = (+,+,-). 

 

 

Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 11 – (a) Ic1 = 0 and Ic2 = 0; (b) region and (c) sub-regions satisfying Ic2 > 0 & Ic1 < 0. 

The internal stresses developed in concrete and reinforcement are further analyzed: 

 When τxy, τxz, and τyz > 0, conditions (3.21) and (3.22) are always met, which means that 

concrete is subjected to a biaxial compression stress state. Equilibrium of the concrete 

internal stresses in a trihedron delimited by a crack plane is represented in Figure 12a. The 
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stresses applied to the trihedron faces are transferred internally by three compression struts 

- AB, BC and CA. Stresses may be projected onto the coordinate planes as indicated in 

Figure 12b. Note that each and every shear stress component increases the tensile stresses 

in the reinforcement ft equilibrating it. 

 When sgn(τ) = (+,-,+), (-,+,+), or (+,+,-), the condition Ic2 > 0 is evaluated by means of an 

artifice: sorting the shear stress components in ascending order, from τ1 to τ3, Equation 

(3.21) can be rewritten as: 

1 2 1 3 2 3 0.       (3.23) 

from which it is found: 
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 (3.24) 

This means that concrete will be subjected to a biaxial compression stress state provided 

that Equation (3.24)a is satisfied and provided that the smallest shear stress component τ1 

is also the one with the smallest absolute value, as required by Equations (3.24)b and 

(3.24)c. Notice that τ1 alleviates the tensile stresses in the respective reinforcement: 

– If τxy is the negative shear stress component, it alleviates ftx and fty, and reduces the 

compression in the AB direction (see Figure 13a). 

– If τxz is the negative shear stress component, it alleviates ftx and ftz, and reduces the 

compression in the BC direction (see Figure 13b). 

– If τyz is the negative shear stress component, it alleviates fty and ftz, and reduces the 

compression in the AC direction (see Figure 13c). 

 For crack directions in the second to the eighth octants, design equations are presented 

in Appendix A. It is found that design Equation (3.17) for crack direction in the first octant can 

be used for crack directions in any octant if it is adopted: 

 When τxy.τxz.τyz > 0: positive values for all shear components; 

 When τxy.τxz.τyz < 0: negative value for the shear stress component with the smallest absolute 

value (τ1), and positive values for the remaining components (τ2, τ3). 

Note: the design Equations for the plane stress state, as proposed by Baumann (1972a, 1972b), can be derived from 

Equation (3.9). This is demonstrated in Appendix B.  
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Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 12 – Concrete stresses when the applied shear stress components are all positive. 

 

(a) (b) (c) 

Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 13 – Concrete stresses when one of the applied shear stress components is negative: (a) τxy < 0, 
(b) τxz < 0, or (c) τyz < 0. 

Particular case: zero shear stresses (either τxy = 0, or τxz = 0, or τyz = 0). For a crack direction 

in the first octant 𝑛௖ଵሬሬሬሬሬሬ⃗  = (ℓ1, m1, n1) = (0.577, 0.577, 0.577), the internal stresses developed in 

concrete and reinforcement are analyzed below: 

 When τxy = 0 in Equation (3.20), the concrete stress tensor invariants are: 
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 (3.25) 
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Condition Ic2 > 0 is met if sgn(τ) = (0,+,+) or (0,-,-), whereas Ic1 < 0 if sgn(τ) = (0,+,+). 

Concrete will be under a biaxial compression stress state if sgn(τ) = (0,+,+). 

 When τxz = 0 in Equation (3.20), the concrete stress invariants are: 
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c
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 (3.26) 

Condition Ic2 > 0 is met if sgn(τ) = (+,0,+) or (-,0,-), whereas Ic1 < 0 if sgn(τ) = (+,0,+). 

Concrete will be under a biaxial compression stress state if sgn(τ) = (+,0,+). 

 When τyz = 0 in Equation (3.20), the concrete stress invariants are: 

 
2

1

3

2 z

c

c

xy xz

xy x

I

I

 

 



  
 (3.27) 

Condition Ic2 > 0 is met if sgn(τ) = (+,+,0) or (-,-,0), whereas Ic1 < 0 if sgn(τ) = (+,+,0). 

Concrete will be under a biaxial compression stress state if sgn(τ) = (+,+,0). 

 Table C1 in Appendix C presents the design equations when an applied shear stress is 

zero for crack directions in the second to the eighth octants. It is found that all cases can be 

designed with Equation (3.17) of the crack direction in the first octant assuming the zero-shear 

stress combined with the other two shear stress components with positive values. By doing so, 

if one equivalent reinforcement stress ftx, fty, or ftz results negative, equivalent reinforcement 

stresses should be calculated as described in Section 3.3.2. If, however, two equivalent 

reinforcement stresses ftx, fty, or ftz result negative, equivalent reinforcement stresses should be 

calculated as described in Section 3.3.3. See Section 3.4.1 for stress states with τxy = τxz = 0, or 

τxz = τyz = 0, or τxz = τyz = 0. 

3.3.2 Reinforcement in two directions 

Reinforcement in the x-direction dispensed 

When in Equation (3.17) the equivalent reinforcement stress ftx turns out to be negative, while 

(fty, ftz) > 0, it is possible to dispense the reinforcement in the x-direction by assuming ftx = 0 in 

(3.8): 
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 (3.28) 

from which: 
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The equivalent reinforcement stresses are: 
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The concrete stress tensor, in the general form, is: 
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 (3.31) 

The invariants of the concrete stress tensor are, in the general form: 
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 (3.32) 

Notice that, from Equation (3.17)a, condition ftx =0 occurs when: 

 xy xzx       (3.33) 

The analysis of Equation (3.33) shows that the normal stress σx is always compressive because: 

– If all shear stresses are positive, then positive values of τxy and τxz lead to σx < 0. 

– If τxy is the negative shear stress component, then σx < 0, since |τxy| < τxz. 

– If τxz is the negative shear stress component, then σx < 0, since |τxz| < τxy. 
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Note: the maximum σx delimiting this design case is independent of the τyz value. 

Solution 1: Economical solution. Variables m1 and n1 may be determined minimizing the total 

required reinforcement. The derivative of the total reinforcement with respect to the variable 

m1 must equal zero: 
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The above condition is met independently of the stress state if: 
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The derivative of the total reinforcement with respect to variable n1 must also equal zero: 
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The above condition leads to the same result from (3.35): 
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Therefore, there are four feasible directions for the first principal crack 𝑛௖ଵሬሬሬሬሬሬ⃗ : (ℓ1, m1, n1) = (ℓ1, 

1, 1), (ℓ1, 1, -1), (ℓ1, -1, 1), or (ℓ1, -1, -1). Case m1 = n1 = 1 is then analyzed. Equation (3.29) 

can be rewritten as: 

 1 xy xz x      (3.38) 

from which ℓ1 is found to be always positive because: 

– If all shear stresses are positive, then positive values of τxy and τxz lead to ℓ1 > 0. 

– If τxy is the negative shear stress component: since |τxy| < τxz and σx < 0, then ℓ1 > 0. 

– If τxz is the negative shear stress component: since |τxz| < τxy and σx < 0, then ℓ1 > 0. 

This locates the first principal crack direction 𝑛௖ଵሬሬሬሬሬሬ⃗  in the first octant. 

The equivalent reinforcement stresses, from Equation (3.30), are: 
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The concrete stress tensor for a crack direction in the first octant is: 
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The invariants of the concrete stress tensor are: 
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 (3.41) 

From Equation (3.41)b, condition Ic2 > 0 is verified to be met if: 

x yz xy xz     (3.42) 

The analysis of Equation (3.41)c indicates that condition Ic1 < 0 is always met because: 

– If all shear stresses are positive, then (σx – 2 τyz) < 0, and Ic1 results negative. 

– If τxy is the negative shear stress, then τyz > 0, and all terms of Ic1 are smaller than zero. 

– If τxz is the negative shear stress, then τyz > 0, and all terms of Ic1 are smaller than zero. 

– If τyz is the negative shear stress, knowing that the |τyz| < τxy and |τyz| < τxz: 

2 ( )yz xy xz    ; ( ) 2xy xz yz      ; ( ) 2xy xz yz      (3.43) 
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Since σx < -(τxy + τxz), it is possible to state that σx < 2 τyz, and, consequently, (σx - 2 τyz) < 

0, which in (3.41)c gives Ic1 < 0. 

The internal stresses developed in concrete and reinforcement are further analyzed: 

 When τxy, τxz, and τyz > 0, condition (3.42) is satisfied, and since Ic1 < 0, concrete is 

confirmed to be under a biaxial compression stress state. Each and every shear stress 

component increases the tensile stresses in reinforcement ft equilibrating it. 

 When sgn(τ) = (+,-,+), (-,+,+), or (+,+,-): 

– If τxy < 0, this negative shear stress component reduces the required y-reinforcement. 
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– If τxz < 0, this negative shear stress component reduces the required z-reinforcement. 
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 (3.45) 

– If τyz < 0, this component reduces both y- and z- required reinforcement. 
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Design equations for crack directions in the second to the eighth octants can be found 

analogously. It can be shown that the design Equation (3.39) for a crack direction in the first 

octant can be used for crack directions in any octant if it is adopted: 

 When τxy.τxz.τyz > 0: positive values for all shear stress components; 

 When τxy.τxz.τyz < 0: a negative value for the shear stress component with the smallest 

absolute value, and positive values for the remaining ones. 

Solution 2: Complementary solution. This solution is adopted when, for a crack direction in the 

first octant, Equation (3.42) is not satisfied, that is, when: 

x yz xy xz     (3.47) 
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A crack direction defined by n1/m1 = - τxy / τxz is chosen. This direction cancels ℓ1 out, so that 

the plane of σc1 becomes perpendicular to the direction of zero reinforcement. 
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The equivalent reinforcement stresses are obtained from (3.30): 
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The concrete stress tensor is: 

 

xyx xz

c xy yz

xz y

z

xy yz

x

xz y

xy
z

z

 
 
 
 
 
 
 
 
  

 








 


 


  (3.50) 

The concrete stress invariants are: 
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From (3.47) and (3.51)b, it is found that: 
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From (3.51)c, considering that all individual terms are negative, it is found that Ic1 < 0. Since 

Ic2 > 0 and Ic1 < 0, concrete is confirmed to be subjected to a biaxial compression stress state. 
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Design equations for crack directions in the second to the eighth octants can be found 

analogously. It can be shown that the design Equation (3.49) for a crack direction in the first 

octant can be used for crack directions in any octant if it is adopted: 

 When τxy.τxz.τyz > 0: positive values for all shear components; 

 When τxy.τxz.τyz < 0: a negative value for the shear stress component with the smallest 

absolute value, and positive values for the remaining ones. 

Reinforcement in the y-direction dispensed 

When fty < 0 and (ftx, ftz) > 0 in Equation (3.17), it is possible to dispense the reinforcement in 

the y-direction, and fty = 0 is assumed so that: 
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 (3.53) 

Concrete will be subjected to a biaxial compression stress (Ic2 > 0 and Ic1 < 0) state while: 

.xz xy yzy     (3.54) 

If the condition above is not met, the following design equation should be adopted: 
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Reinforcement in the z-direction dispensed 

When ftz < 0 and (ftx, fty) > 0 in Equation (3.17), it is possible to dispense the reinforcement in 

the z-direction, and ftz = 0 is assumed so that: 
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Concrete will be subjected to a biaxial compression stress (Ic2 > 0 and Ic1 < 0) state while: 

.xy xz yzz     (3.57) 

If the condition above is not met, the following design equation should be adopted: 
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3.3.3 Reinforcement in one direction 

Reinforcement in the z-direction 

When the equivalent reinforcement stresses ftx and fty turn out to be negative in (3.17) while ftz 

is still positive, reinforcement in the x- and y-directions are dispensed, and ftx = fty = 0 is assumed 

in Equation (3.8): 
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From Equations (3.59)a and (3.59)b, isolating ℓ1 shows that: 
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so that the relation between components m1 and n1 of the first principal direction vector is: 
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From Equation (3.59)a: 

1 1

1 1

xy xz

x x

m

n n

 
 

  


 (3.62) 

The equivalent reinforcement stresses, from (3.59)c, are then calculated by: 
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 (3.63) 

The concrete stress tensor is: 
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The invariants of the concrete stress tensor are: 
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The applied normal stresses are then evaluated. From (3.17)a, condition ftx = 0 occurs when σx 

is compressive (see 3.3.2): 

 x xy xz     ;   x xy xz    ;   x xy   (3.66) 

From (3.17)b, it may be shown, likewise, that fty = 0 occurs when σy is also compressive: 

 y xy yz     ;   y xy yz    ;   y xy   (3.67) 

Multiplying the latter two equations: 

2
x y xy   (3.68) 

Condition Ic2 > 0 is evaluated as follows: rearranging Ic2 into a common denominator, its 

numerator can be expressed as a sum of squared terms, so that it will be always positive: 

     22 2 2
x yz xy xz y xz xy yz x y xy              (3.69) 

The sign of the denominator is also always positive. Since both numerator and denominator are 

positive, condition Ic2 > 0 is confirmed to be met. 

Condition Ic1 < 0 is then evaluated as follows: rearranging Ic1 into a common denominator, it is 

found that Ic1 < 0 if: 
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Multiplying all terms by σx < 0: 

     2 2 2 2 22 0x y x y x xy x y x xy xz yz x yz x y xz                       (3.71) 

Substituting (σx . σy) as the sum of two terms (τ2
xy + p), where p > 0, Equation (3.71) turns into: 

    22 2 2

00 0

. 0x x y x y xy x yz xy xz xzp          
 

     


 (3.72) 

which confirms that Ic1 < 0. Since Ic2 > 0 and Ic1 < 0, concrete is assured to be subjected to a 

biaxial compression state.  

Reinforcement in the y-direction 

Similarly, if (ftx, ftz) < 0 in (3.17), it is assumed that ftx = ftz = 0. Concrete is subjected to a biaxial 

compression stress state, and the equivalent stress in the y-direction reinforcement is given by: 

2 2

2

2 xy xz

z

yz x yz z xy
ty y

x z x

f
   


 

 









 (3.73) 

Reinforcement in the x-direction 

If (fty, ftz) < 0 in (3.17), it is assumed that fty = ftz = 0. Concrete is subjected to a biaxial 

compression stress state, and the equivalent stress in the x-direction reinforcement is given by: 

2 2

2

2 xy xz

z

yz y xz z xy
tx x

y z y

f
   


 

 









 (3.74) 

3.4 Design case: Concrete stresses σc1 = σc2 = 0, σc3 < 0 

When the largest principal applied stress σ1 > 0, reinforcement must be provided. If the applied 

stress field [σ] is equilibrated by concrete stresses such that the principal stresses σc1 and σc2 are 

zero, two mutually orthogonal set of crack planes, with normal 𝑛௖ଵሬሬሬሬሬሬ⃗  = (ℓ1, m1, n1) and 𝑛௖ଶሬሬሬሬሬሬ⃗  = (ℓ2, 

m2, n2), will be formed in the element. The concrete stress state of an element between cracks 

is one of uniaxial compression with σc3 < 0, as shown in Figure 14. 

 The invariants of the concrete stress tensor are: 
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       
 (3.75) 

For the first set of planes, it can be written: 

     1 1 1c t c c cn f n n     
  

 (3.76) 

in 𝑛௖ଵሬሬሬሬሬሬ⃗ , since 𝜌௖ଵሬሬሬሬሬ⃗ = 𝜎⃗ + 𝜏 = 0, 

   1 1c t cn f n   
 

 (3.77) 

For the second set of planes, it can be written: 

     2 2 2c t c c cn f n n     
  

 (3.78) 

in 𝑛௖ଶሬሬሬሬሬሬ⃗ , since 𝜌௖ଶሬሬሬሬሬ⃗ = 𝜎⃗ + 𝜏 = 0, 

   2 2c t cn f n   
 

 (3.79) 

 

 

Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 14 – Design case with σc1 = σc2 =0: (a) concrete principal stresses, (b) crack pattern, and 
(c) trihedron defined by a crack plane with crack direction in the first octant. 

First, see that Equation (3.9) was obtained projecting the stress tensor in the direction of 𝑛௖ଵሬሬሬሬሬሬ⃗ : 
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 (3.80) 
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Repeating the same procedure for the plane with direction 𝑛௖ଶሬሬሬሬሬሬ⃗ , the reinforcement stresses on 

this plane are obtained: 
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 (3.81) 

First, by equating ft from (3.80) and (3.81), it is found that: 
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 (3.82) 

Second, vector 𝑛௖ଷሬሬሬሬሬሬ⃗ = (ℓ3, m3, n3) can be expressed in terms of the components from the vector 

product: 

 3 1 2 1 2 2 1 2 1 1 2 1 2 2 1, ,c c cn n n m n m n n n m m     
  

     (3.83) 

The shear stresses relations (3.82)a and (3.82)b can be rewritten as a function of the coordinates 

of 𝑛௖ଷሬሬሬሬሬሬ⃗ : 
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
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( )

( )
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b
 (3.84) 

Therefore, it is possible to determine the direction 𝑛௖ଷሬሬሬሬሬሬ⃗ : 

3 3 3 3, ,xy xy

yz xz
cn n n n

 
 
 

   
 


 (3.85) 

Dividing each of the three components of 𝑛௖ଷሬሬሬሬሬሬ⃗  by (τxy. n3), it is found that the direction of the 

compression is given by a vector with coordinates proportional to: 
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  
 

   
 


 (3.86) 

Since σc1 = σc2 = 0, directions 𝑛௖ଵሬሬሬሬሬሬ⃗  and 𝑛௖ଶሬሬሬሬሬሬ⃗  may be any set of two arbitrary mutually orthogonal 

vectors, contained in a plane whose normal is 𝑛௖ଷሬሬሬሬሬሬ⃗ . A particular direction vector 𝑛௖ଶሬሬሬሬሬሬ⃗ = (ℓ2, m2, 

n2) = (-n3, 0, ℓ3) is chosen, which is perpendicular to 𝑛௖ଷሬሬሬሬሬሬ⃗  as shown by the following scalar 

product: 

2 3 3 3 3 3 3. 0. . 0c cn n n m n   
 
    (3.87) 

Retaking Equation (3.81)a, and inserting (3.84)b: 
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 (3.88) 

Adopting a new 𝑛௖ଶሬሬሬሬሬሬ⃗    𝑛௖ଷሬሬሬሬሬሬ⃗  to avoid division by zero: 

   2 2 2 2 3 3, , 0, ,cn m n n m  

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Retaking Equation (3.81)b and inserting (3.84)a: 
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Retaking Equation (3.81)c and inserting (3.84)a: 
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So that the equivalent reinforcement stresses are defined for this case: 
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 (3.91) 

The concrete stress state is obtained by inserting (3.91) into (3.3): 
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 (3.92) 

The invariants of the concrete stress tensor are: 
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 (3.93) 

Note from Equation (3.5) that Ic2 =Ic3 = 0. Therefore, Equations (3.91) are applicable to all cases 

whereby τxy.τxz.τyz < 0, without restrictions. In some cases, there are solutions in either biaxial 

or uniaxial compression but, in these situations, reinforcement and principal stresses |σc3| are 

larger for the uniaxial compression, especially when one of the tangential stresses gets closer 

to zero. Therefore, when τxy.τxz.τyz < 0, it should be prioritized the design for concrete under 

biaxial compression while Equation (3.24) applies. 

 In the particular case of uniaxial compression, all shear stresses contribute to σc3. Figure 

15a presents an element subjected to a uniaxial compression stress state, where σc3 is the 

principal stress and two crack planes are formed. Compression acts on an inclined plane 

characterized by a direction vector 𝑛௖ଷሬሬሬሬሬሬ⃗ . The stress state in the element is represented in a cube 

with unit dimension (Figure 15b). The resultant of the concrete stress in the plane xz is: 

 , , , , , ,1xz xy xy xy
B x tx xy xz xy xz xz

yz yz xz

f
   

         
   

    
      

  
 (3.94) 

Retaking Equation (3.85), the two vectors 𝜌஻ሬሬሬሬ⃗  and 𝑛௖ଷሬሬሬሬሬሬ⃗  are verified to be parallel. The same 

verification applies to points A and C, from where it is found that 𝜌஺ሬሬሬሬ⃗ , 𝜌஻ሬሬሬሬ⃗ , 𝜌஼ሬሬሬሬ⃗  and 𝑛௖ଷሬሬሬሬሬሬ⃗  are all 

parallel. By equilibrium, it is found that: 

3c A B C       (3.95) 
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Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 15 – Two tensile concrete principal stresses: (a) uniaxial concrete compression σc3; 
(b) components equilibrating σc3. 

3.4.1 Particular case: either τxy = τxz =0, or τxz = τyz = 0, or τxy = τyz = 0 

This case is identified in the shear stress space in Figure 11c. It corresponds to the highlighted 

continuous blue lines, which coincide simultaneously with the coordinate axes and the surface 

representing Ic2 = 0. From Equation (3.20), for a crack direction in the first octant, when τxy = 

τyz = 0 it is found that: 

2

1

0

2 yz

c

c

I

I 


 
 (3.96) 

Since Ic2 = 0, concrete will be subjected to a uniaxial compression stress state (σc1 = σc2 = 0). 

See Table C1 in Appendix C for the design cases with two simultaneous shear stress 

components in the second to the eighth octants. All cases can be treated considering Equation 

(3.17) for crack directions in the first octant by assuming a positive value for the non-zero shear 

stress component. If one component in (ftx, fty, ftz) results negative, equivalent reinforcement 

stresses fti should be calculated as described in Section 3.3.2. If, however, two components in 

(ftx, fty, ftz) result negative, equivalent reinforcement stresses fti should be calculated as described 

in Section 3.3.3. 

3.5 Design case: Concrete stresses σc1 = σc2 = σc3 =0 

When the applied normal stresses are simultaneously tensile (σi > 0), and the applied shear 

stresses are zero (τxy = τxz = τyz = 0), the concrete stresses are σc1 = σc2 = σc3 = 0. In this case, 

cracks are formed in three mutually orthogonal directions (see Figure 16). 
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The invariants of the concrete stress tensor are Ic3 = Ic2 = Ic1 = 0, and the applied stresses are 

resisted by the reinforcement alone: 
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 (3.97) 

The concrete stress tensor is: 

 
0 0 0

0 0 0

0 0 0
c

 
   
  

 (3.98) 

 

 
Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 16 – Design case with σc1 = σc2 = σc3 = 0: (a) zero concrete stresses, and (b) crack pattern. 

3.6 Design case: Concrete stresses σc1, σc2, σc3 < 0 

When the applied stress tensor is such that all concrete principal stresses are compressive (σc1, 

σc2, σc3 < 0), concrete will be subjected to a triaxial compression stress state. The element 

remains uncracked, as shown in Figure 17, and no reinforcement is required: 

0tx ty tzf f f    (3.99) 

The concrete stress tensor is: 
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 (3.100) 

The invariants of the concrete stress tensor are: 
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 (3.101) 

This design case occurs when ftx, fty, and ftz all become negative in Equations (3.74), (3.73), and 

(3.63). The condition delimiting this design case is: 

2 2 2 02x y z x yxy xz yz yz xz xyz              

 

 
Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 17 – Design case: (a) compressive concrete stresses σc1 , σc2 , σc3; (b) uncracked element. 

3.7 Dimensioning 

3.7.1 Reinforcement design 

Reinforcement is designed on the assumption of using the bars up to the design value, 

and stresses must be limited to: 

; ;tx sx yd ty sy yd tz sz ydf f f f f f      (3.102) 

where ρsx, ρsy, ρsz are the reinforcement ratio in the x-, y- and z-directions, respectively, and fyd 

is the design value of the reinforcement steel yield stress. 

3.7.2 Concrete check 

Concrete stresses are required to satisfy: 

3c cdf    (3.103) 

where fcd is the design compression strength of concrete, and ν is the efficiency factor introduced 

to account for both confinement effects, as in the case of concrete in biaxial or triaxial 
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compression, disturbance effects as those caused by transmission of tension fields through 

compression fields, and micro-cracking in the concrete paste due to shrinkage. Then, ν accounts 

for the imperfect assumption that concrete behaves as a rigid-plastic material and ensures that 

ductility demands are met. The following values of ν are indicated by the Model Code 2010 

(fib, 2013): 

 If no reinforcement has yielded and at least one principal stress is in tension, then: 

1.18
1

1.14 0.00166 si




 


 (3.104) 

where σsi is the maximum tensile stress (in MPa) in any layer of the reinforcing steel  

 If one or more layers of reinforcement yield: 

  1.18
1 0.032

1.14 0.00166i
ydf

  


 (3.105) 

where δi (i = 1, 2, 3) is given by Equation (3.107). 

 If all principal stresses are compressive, ν may be taken as 1.0 or determined in accordance 

with more elaborate expressions for the strength under multiaxial states of stress, such as 

the one given by Ottosen (OTTOSEN, 1977; fib, 2013): 

22 1
2

' 1 0
cm cm cm

JJ I

f f f
        (3.106) 

where I1 and J2 characterize the state of stress considered, and fcm is the concrete uniaxial 

compressive strength. 

 In a solid subjected to increasing loads, the stress field is continuously redistributed, 

starting from an initial approximately elastic state, followed by cracking of concrete, and 

yielding of steel. Throughout this process, elements shall be capable of allowing for sufficient 

plastic strains to prevent local rupture before the calculated stress distribution has been attained. 

Foster, Marti and Mojsilović (2003) warn that “designers must critically examine the load path 

being assumed to satisfy themselves that a sufficient level of ductility is available to meet the 

demands of the imposed tractions.” For this purpose, they presented an expression for the 

enclosed angle between the principal direction of the applied stresses and those of the concrete 

stresses: 

1cosi ix cix iy ciy iz cizn n n n n n     (3.107) 
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where nci (i = 1, 2, 3) are the direction cosines of the concrete stress tensor. They suggested a 

limit of 25 degrees to δi, value that was later revised by the Model Code 2010 (fib, 2013) to 15 

degrees (see Figure 18). 

 

 

Source: adapted from Foster et al. (2003). 

Figure 18 – Comparison of concrete principal stress directions and the principal stress directions for the 
case of optimum reinforcement. 

3.8 Summary of design equations 

The design equations in Sections 3.3 to 3.6 were written as a function of the six components of 

the applied stress tensor. The definition of the limits of application of each design equation is 

examined herein. For the first design case (σc1 = 0, and σc2, σc3 < 0), these limits are visualized 

in the shear stress space, as indicated in Section 3.3.1, since they rely on the shear stress 

components alone. However, for other design cases, the limits of application also depend on 

the concomitant applied normal stresses. One way to visualize the application of the design 

formulas is by ordering them as a function of the normal stresses applied to each coordinate 

direction, as shown in Figure 19. Arranging the ftx, fty, and ftz design equations in terms of σx 

when τyz > 0, for example, it is found that: for both tensile and “small” compressive stresses, 

Equation (3.17) applies; for “high” compressive stresses, the effect of shear stresses in the 

reinforcement is surpassed, and reinforcement in the x-direction is dispensed (Equation (3.39) 

applies). From eq. (3.74), it is observed that this is valid while ftx remains positive, that is, while: 

   2 2 22x y xz zxy x xz yz y y z yz            (3.108) 

 It should be emphasized that design equations, however, must be applied considering 

the behavior of the resisting mechanism in the three coordinate directions simultaneously. 
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Equations for computing the required reinforcement are then summarized in a framework suited 

for design practice in Table 1. The column “Condition 1” identifies positive and negative values 

for the calculated reinforcement stresses, whereas the column “Condition 2” identifies triaxial, 

biaxial or uniaxial compression stress states in concrete. 

 

 
 

Source: Chen, Nogueira Bittencourt, and Della Bella (2023a) 

Figure 19 – ftx, fty, and ftz design equations: intervals of application as a function of the applied normal 
stress in a chosen direction. 
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Table 1 – Summary of design equations 
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Notes: (1) Symbol convention: /\\ x-reinforcement; /\\ y-reinforcement; /\\ z-reinforcement. 
(2) Sign convention for normal stresses: (+) for tension, (-) for compression. 
(3) Sign convention for shear stresses: 

a) Sign (τxy, τxz, τyz) = (+,+,+), or (+,-,-), or (-,+,-), or (-,-,+) → τxy.τxz.τyz > 0 → consider (+,+,+); 
b) Sign (τxy, τxz, τyz) = (+,+,-), or (+,-,+), or (-,+,+), or (-,-,-) → τxy.τxz.τyz < 0 → sort (|τxy|, |τxz|, |τyz|) 

in ascending order → consider the smallest shear stress component with its negative sign, and 
the remaining ones with positive value; 

c) When one or more τij =0, consider positive value for the non-zero shear stress components. 
(4) Concrete stresses: σcx= σx - ftx; σcy= σy - fty; σcz= σz - ftz; concrete verification as described in Section 

3.7.2. 
(5) Reinforcement design: ρsx = ftx / fyd; ρsy = fty / fyd; ρsz = ftz / fyd; and asi= ρsi. Ac.  
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3.9 Application examples for selected stress states 

Selected application examples are presented and noted in Table 2. 

 

Table 2 – Noted application examples. 

  Applied stresses Auxiliary stresses 
Reinforcement 

stresses 
Concrete 

stresses/invariants 
Exam. Design σx σy σz σx σy σz ftx fty ftz σcx σcy σcz 

# Eq. τxy τxz τyz τ*xy τ*xz τ*yz       σc1 σc2 σc3 
                    Ic1 Ic2 Ic3 
1 (3.17) 2.00 3.00 2.50 2.00 3.00 2.50 3.20 4.00 6.30 -1.20 -1.00 -3.80 
   -0.80 2.00 1.80 -0.80 2.00 1.80      0.00 -0.29 -5.71 
                     -6.00 1.68 0.00 
2 (3.17) 2.00 3.00 2.50                   
   0.80 -2.00 1.80   ʹʹ    ʹʹ     ʹʹ   

                           
3 (3.17) 2.00 3.00 2.50                   
   0.80 2.00 -1.80   ʹʹ    ʹʹ     ʹʹ   

                           
 Examples #1, 2, and 3 show that when τxy.τxz.τyz < 0, the smallest shear stress component alone should 

be considered with a negative value, as indicated in note 3 of Table 1. Concrete is subjected to a 
biaxial compression stress state. Eq. (3.17) indicates that reinforcement is required in three directions. 

 
 
4 (3.39) -1.20 3.00 2.50 -1.20 3.00 2.50 0.00 3.97 5.97 -1.20 -0.97 -3.47 
   -1.00 2.00 1.80 -1.00 2.00 1.80      0.00 -0.08 -5.56 

                     -5.63 0.43 0.00 
 Starting from the stress state of Example #1, σx is reduced until it becomes compressive. Reinforce- 

ment in the x-direction is dispensed; concrete is subjected to a biaxial compression stress state.  
5 (3.63) -1.20 -1.20 2.50 -1.20 -1.20 2.50 0.00 0.00 5.88 -1.20 -1.20 -3.38 

   -1.00 2.00 1.80 -1.00 2.00 1.80      0.00 -0.24 -5.54 
                     -5.78 1.32 0.00 

 Starting from the stress state of Example #4, σy is reduced until it becomes compressive. 
Reinforcement in the y-direction is also dispensed; concrete is still subjected to a biaxial compression 
stress state.  

6 (3.91) -1.05 3.00 2.50 -1.05 3.00 2.50 0.06 3.90 6.10 -1.11 -0.90 -3.60 
   -1.00 2.00 1.80 -1.00 2.00 1.80      0.00 0.00 -5.61 

                     -5.61 0.00 0.00 
 Starting from the stress state of Ex. #1, σx is reduced until it becomes compressive, but still larger than 

τxy.τxz / τyz. Reinforcement is required in three directions; concrete is under a uniaxial compression 
stress state.  

7 (3.99) -3.00 -3.00 -3.00 -3.00 -3.00 -3.00 0.00 0.00 0.00 -3.00 -3.00 -3.00 
   -1.00 2.00 1.80 -1.00 2.00 1.80      -0.76 -2.01 -6.24 
                     -9.00 18.76 -9.48 
 Starting from the stress state of Example #5, three compression stresses are applied. No reinforcement 

is required; concrete is subjected to a triaxial compression stress state.  
8 (3.97) 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 0.00 0.00 0.00 
   0.00 0.00 0.00 0.00 0.00 0.00      0.00 0.00 0.00 
                     0.00 0.00 0.00 
 The shear stress components are zero, and three tensile stresses are applied. Reinforcement is required 

in three directions; concrete is cracked in these three directions.  
9 (3.17) 0.00 0.00 0.00 0.00 0.00 0.00 1.50 1.00 3.50 -1.50 -1.00 -3.50 
   -0.50 2.00 1.50 -0.50 2.00 1.50      0.00 -0.71 -5.29 
                     -6.00 3.75 0.00 

10 (3.91) 0.00 0.00 0.00 0.00 0.00 0.00 1.33 0.75 3.00 -1.33 -0.75 -3.00 
   -1.00 2.00 1.50 -1.00 2.00 1.50      0.00 0.00 -5.08 
                     -5.08 0.00 0.00 

 In Example #9, τxy τxz + τxy τyz + τxz τyz > 0. Concrete is subjected to a biaxial compression stress state. In 
Example #10, τxy τxz + τxy τyz + τxz τyz < 0. Concrete is subjected to a uniaxial compression stress state.   
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4 Design method: formulation for SLS 

The design method for ULS presented in the previous chapter assumed rigid perfectly plastic 

material behavior for both reinforcement and concrete. Once the yielding point is reached, the 

material deforms plastically, and infinite strains are associated to the constant yielding stress, 

such that a univocal strain field cannot be associated with the stress field. Verifications for SLS 

are, therefore, outside the scope of limit analysis and, so far, no information has been attained 

concerning the actual deformation or crack widths within the structure. 

 The alternative solution for SLS verification is to recur to assessment based on stress field 

approaches since “Other than for verifying the Ultimate Limit State, stress fields can be used to 

assess the serviceability response of structures.” (fib, 2021, p. 28). More specifically, linear 

elastic stress fields are used for the analyses. Eurocode 2, when referring to the strut-and-tie 

method, states that “Verifications in SLS may also be carried out […] if approximate 

compatibility for strut-and-tie models is ensured (in particular the position and direction of 

important struts should be oriented according to linear elasticity theory” (CEN, 2004, Section 

5.6.4 (2)). Kleissl and Ravn (2017) interpret that “by approximate compatibility is referred to 

that the position and direction of important struts shall be oriented according to compressive 

stress trajectories in the uncracked state based on linear elastic theory.” Eurocode 2 also states 

that “When using strut-and-tie models with the struts oriented according to the compressive 

stress trajectories in the uncracked state, it is possible to use the forces in the ties to obtain the 

corresponding steel stresses to estimate the crack width” (CEN, 2004, Section 7.3.1 (8)). 

Similarly, the linear elastic stress fields can be used to estimate crack widths since 

reinforcement for the ULS are oriented by the struts in the uncracked state, according to the 

linear elasticity theory. 

 Over one hundred crack width formulas were categorized, in a comprehensive work by 

van der Esch et al. (2023), into three groups according to their application, representation, and 

background. Categorization by background identified the assumptions behind each formula, 

and sub-categorized them as either based on experiments, on fracture mechanics, on bond 

stress-slip relationships, or on semi-analytical models. 

 This chapter presents a design method for computation of crack widths in three-

dimensional analysis based on semi-analytical models. The formulation is first presented for 
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linear elements and then extended to membrane elements. Further extension for three-

dimensional elements subjected to three-dimensional stress states is finally presented, such that 

the performance of the member under service loads can thereof be assessed. This completes the 

ULS and SLS design of a structural member. 

4.1 Crack spacing 

Crack width calculation methods are found in design codes such as Eurocode 2 (CEN, 2004) 

and fib Model Code 2010 (fib, 2013). They were critically assessed by Tan, Hendriks and 

Kanstad (2018). They pointed out large discrepancies in the computation of crack widths by 

different methods and suggested that a more consistent approach should be employed, by 

explicitly solving the expression for slip. This is, however, outside the scope of this work, and 

focus is given to the normative MC2010 formulation (fib, 2013; BALÁZS et al., 2013). 

4.1.1 Basic crack width formula 

Crack widths and spacing vary throughout a structural element. “Hence formulas for calculating 

the crack width and spacing frequently express a representative value of the calculated crack 

width, which might slightly deviate from actual crack widths observed on a structure.” (van der 

ESCH et al., 2023, p.5). The fib Model Code 2010 calculates the design crack width by the 

following equation: 

 ,max2d s sm cm csw l       (4.1) 

where: 

ℓs,max is the transfer length over which slip between steel and concrete occurs. The 

maximum crack spacing, is given by sr,max = 2 ℓs,max. 

εsm is the average steel strain within ℓs,max. 

εcm is the average concrete strain within ℓs,max. 

εcs is the concrete strain due to shrinkage. 

 The transfer length is determined by a semi-analytical approach, meaning that formulas 

“are partially based on bond stress–slip relations and calibrated with experimental crack width 

and spacing measurements.” (van der ESCH et al., 2023, p.7). It is calculated as a linear additive 

combination of two terms: the first one accounting for the influence of concrete cover, and the 

second one for the bond stress-slip: 
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,max
,

1

4
ctm s

s
bms s ef

f
l k c


 

      (4.2) 

where k is an empirical parameter considering the influence of the concrete cover c (as a 

simplification, k = 1.0 can be assumed); and τbms is the mean bond strength between steel and 

concrete (τbms = 1.8 fctm for stabilized cracking stage, and long-term loading). 

 The relative mean strain follows from: 

  s sr
sm cm cm r sr

sE

     
     (4.3) 

where σs is the steel stress in a crack; and σsr is the maximum steel stress in a crack in the crack 

formation stage, which is, for pure tension: 

 ,
,

1ctm
sr e s ef

s ef

f  


   (4.4) 

where: 

ρs,ef  = As/Ac,ef. Ac,ef is the effective area of concrete in tension (fib, 2013, Fig. 7.6-4). 

αe the modular ratio = Es/Ec. 

β is an empirical coefficient to assess the mean strain over ℓs,max depending on the 

type of loading (fib, 2013, Table 7.6-2). 

ηr is a coefficient for considering the shrinkage contribution. 

εsh is the shrinkage strain. 

 Equation (4.2) has been evaluated by several researchers. The formulas were found to 

generally tend to yield good results for relatively small specimens, but inconsistent results, and 

rather to the conservative side, for larger members (ROSPARS; CHAUVEL, 2014; TAN; 

HENDRIKS; KANSTAD, 2018). Also, the consideration of the cover term has been contested: 

Debernardi and Taliano (2016) proposed improved expressions for calculating the transfer 

length where the cover term was suppressed, and τbm was reduced taking into account the 

influence of the secondary cracks on the mean deformation. The equation for the transfer length 

was rewritten as a function not only of the concrete tensile strength, but also of the 

reinforcement ratio and bar diameter. 

4.1.2  Two orthogonal reinforcement directions 

For members reinforced in two orthogonal directions where cracks are expected to form at an 

angle which differs substantially from the direction of the reinforcement, that is, an angle larger 



76 

than 15º, the fib Model Code 2010 (fib, 2013, Section 7.6.4.4.3) suggests the use of the 

following expression for the transfer length: 

1

,max,
, ,

cos sin
s

sx k sy k

l
l l
 


 

   
 

 (4.5) 

where θ denotes the angle between the reinforcement in the x-direction and the direction of the 

principal tensile stress, and ℓsx,k and ℓsy,k denote the slip lengths in the two orthogonal directions, 

so that the design crack width can be calculated from: 

 ,max, ,2.d s cw l       (4.6) 

where ε⟂ and εc,⟂ represent the mean strain and the mean concrete strain, evaluated in the 

direction orthogonal to the crack. 

4.1.3 Three orthogonal reinforcement directions 

The crack width formulation was extended to elements reinforced in three orthogonal directions 

by Hoogenboom and de Boer (2008, 2011). In their formulation, which is reproduced as follows, 

cracks are expected to form in up to three directions, and the mean crack spacing sx, sy, sz for 

uniaxial tension in the reinforcement directions is calculated from the MC90 simplified 

equation for stabilized cracking (CEB-FIP, 1993): 

,max
,3.6

s
s

s ef

l



  (4.7) 

2 2 2
; ;

3 3.6 3 3.6 3 3.6
yx z

x y z
x y z

s s s
 

  
       (4.8) 

where ϕx, ϕy, ϕz are the diameter of the reinforcing bars in the x-, y-, z-directions, respectively. 

Crack spacing s in the principal direction i (i= 1, 2, 3) is computed from: 

cos cos cos1 i i i

i x y zs s s s

  
    (4.9) 

where α, β and γ are the angles of the crack face normal vector. 

The mean crack width in the principal direction i is: 

 i i i c sw s       (4.10) 

For simplicity, they assumed that the concrete strain (εc > 0) and the concrete shrinkage (εs < 0) 

cancel each other out, such that the crack width is given by: wi = si εi. 
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4.2 Crack width computation and control 

Once the reinforcement is determined from the ULS design, an iterative approach may be 

employed to estimate the cracking behavior under the applied stress tensor. Hoogenboom and 

de Boer (2008) proposed a source code for the numerical computation of crack widths of 

elements under three-dimensional stresses, which is described as follows. 

 Concrete principal stresses and the principal strains are assumed to have the same 

direction, and crack directions, which are perpendicular to the principal directions, continuously 

follow the orientation of the principal strains, according to the rotating crack concept. Also 

assumed is that aggregate interlock can carry any shear stress in the crack. Concerning the 

material models for the serviceability limit state, the following constitutive relations are 

assumed: for the reinforcing bars, linear elastic constitutive relation, since yielding is supposed 

not to occur in the SLS; for concrete in compression, linear elastic (uncracked) constitutive 

relation in the principal directions, and Poisson’s ratio is set to zero.  

 Equilibrium equation for the applied stresses resisting mechanism can be rewritten to: 

1
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3

0 0

0 0

0 0

x xy xz c x sx

xy y yz c y sy

xz yz z c z sz
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 (4.11) 

where σsx, σsy, σsz are the mobilized stresses in the reinforcement in service condition (< fy) and: 
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 (4.12) 

The columns in P are the vectors of the concrete principal directions. Constitutive relation for 

tensioned concrete follows the Modified Compression Field Theory (VECCHIO; COLLINS, 

1986): 

 1 500ci ctm if    (4.13) 

where fctm is the concrete mean tensile strength, and εi (i = 1, 2, 3) are the principal strains, that 

is, the eigenvalues of the strain tensor: 
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 (4.14) 
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where ε = σ/Ec; γ = τ/Gc (Ec and Gc are the concrete elastic and shear modulus, respectively). 

 The iterative process aims at solving the strain tensor numerically by the modified 

Newton-Raphson method with initial stiffness, as represented in Figure 20, where i represents 

the number of the iteration. Given the service stress state (σ SLS) and the reinforcement ratios 

calculated from the design method for the ULS presented in Chapter 3 (ρsx, ρsy, ρsz), the process 

starts by calculating the linear elastic strains for uncracked concrete (ε0). The effective stresses 

mobilized in the cracked concrete (σc
0) and reinforcement (ft

0), corresponding to the linear 

strains, are then summed to give the total mobilized stress (σ0). The residual strain (Δε0), 

corresponding to the residual stress (Δσ0), is used to update the previous strain to the first 

estimation of the strain of the cracked concrete (ε1). The incremental strains in the successive 

iterations are updated until the residual stress falls below a threshold defined by the designer. 

In the proposed procedure, the threshold value is defined by a variable computing the sum of 

the six stress components of the residual stress, set as 0.01 MPa. 

 

 

 

Figure 20 – Flowchart and graphical representation of the iterative procedure for crack width 
verification. 
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The crack width is limited to a maximum value wi ≤ wmax (i = 1, 2, 3). If the condition is not 

fulfilled in a specific direction, the reinforcement amount should be increased in this direction, 

and the verification process should be restarted for the new reinforcement arrangement. 

4.3 Discussion 

The crack widths were verified following an iterative procedure at individual integration points 

of the structural model. 

 Alternatively, crack widths could have been computed by full numerical simulations of 

the designed structural members. However, as discussed in Section 1.1, those simulations 

require extensive modeling and analysis time and computational resources, making this solution 

impractical in design practice. 

 Two further comments on the standard formulas used to calculate crack widths are 

pointed out. First, it is noted that to disregard the first term in Equation (4.2), which is related 

to the concrete cover, is reasonable and advisable when applying the formulation for massive 

structures, whereby reinforcement is placed throughout the member volume. Second, it is 

indicated that Bastekår et al. (2019) presented a work evaluating under what circumstances, and 

to what extent, SLS requirements can exceed the ULS requirement. 

 Automatic crack width computation offers a powerful tool for verifying serviceability 

limit state (SLS) requirements. Although not implemented in the automatic ultimate limit state 

(ULS) design due to time constraints, the formulation presented can directly couple ULS and 

SLS verifications. 
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5 Design of structural members: examples 

The SFM was applied to the design of five selected examples to allow for discussing aspects of 

the complete design process including: construction of the numerical model, treatment of 

singularities, handling of multiple load cases and complex geometries, provision of minimum 

reinforcement, checking for anchorage of rebars, and their detailing. 

5.1 Methodology for ULS design of a structural member 

The methodology for designing reinforced concrete structural members based on three-

dimensional stress fields (SFM) followed three well-delimited steps, as described by Chen, 

Bittencourt and Della Bella (2023b): 

Step 1: Linear analysis. An initial linear analysis was performed with the 
software STRAP version 12.5 from Atir Engineering Software Development 
Ltd. (ATIR, 2005). The structure was modeled with finite solid elements 
assuming uncracked material, linear stress-strain relationships, and the mean 
value of the concrete modulus of elasticity. From this initial model two output 
*.lst files were obtained: one containing the geometry definition (nodal 
coordinates and element nodal incidence), and the other containing the 
complete stress field deriving from the analysis (nodal stresses). 

Step 2: Data processing – individual element SFM1 design. An application 
was developed with Java programming language for data treatment using Java 
Development Kit JDK 17. This application was built to: (i) read the data from 
the *.lst files created in step 1; (ii) treat the data, computing stress invariants, 
principal stresses and directions, and equivalent resisting stresses in each 
model node (both reinforcement stresses ftx, fty, ftz and concrete stresses); (iii) 
automatically assemble the calculated quantities into a *.vtk file to be later 
accessed by a post processor. The flowchart of the application structure is 
presented in Figure 21. 

Step3: Data analysis and structural member SFM 1 design. The *.vtk file 
was loaded into software ParaView version 5.9.1 from Kitware Inc. This 
software, described by Ahrens, Geveci and Law (2005), is an open-source 
software system for 3D computer graphics, modeling, volume rendering and 
information visualization by operations such as clipping, slicing, filtering, or 
generating contours from the loaded data. At this point, a thorough analysis of 
the reinforcement requirements and concrete stresses sufficed for the global 
structural design and subsequent detailing by delimitation of zones with 
constant reinforcement ratio. 

 
1 Originally termed “RSM”, but herein referred to as “SFM”, following the dissertation nomenclature. 
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Source: adapted from Chen, Bittencourt, and Della Bella (2023b) 

Figure 21 – Flowchart of the developed application. 

 STRAP was chosen for the static linear elastic finite element analysis because it offered a 

user-friendly interface for finite solid element mesh generation and boundary condition 

application, and was concurrently cost-effective. Although other software with more extensive 

modelling and post-processing capabilities do exist, cost considerations limited their selection. 

ParaView, in turn, was chosen for post-processing the results due to its accessibility as a free 

open-source software, and its strong resources for data manipulation and visualization. 

 Assessment of concrete behavior was obtained with the aid of two variables created to 

assess the concrete strength in the design process: the Ottosen variable for concrete strength 

under triaxial compression (if Ottosen < 0, no failure occurs); and the ConcFailRel variable for 

concrete under bi- or uniaxial compression (it indicates the ratio between concrete maximum 

compression in relation the assumed compression strength): 
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5.2 Example 1: cantilever beam 

The first example presents the application of the design method based on three-dimensional 

stress fields (SFM) to a simply supported beam with a 0.40 m x 0.80 m rectangular cross-section, 

span length of 8.35 m, and a cantilever with a length of 2.65 m. The left and right supports were 

0.20 m and 0.30 m wide, respectively, both extending through the width of the concrete beam. 

A uniformly distributed design load of 112,5 kN/m acted over the span, and a concentrated 

design load of 270 kN acted on the cantilever, at 2.15 m from the support. The beam should be 

designed with normal-weight concrete C30 and B500 reinforcement (fy = 500 MPa). 

 This practical example was chosen to illustrate the application of the design method to a 

linear structural member subjected to combined flexure and shear forces. 

 

 

 

Figure 22 – Beam with cantilever: Geometry and loading (dimensions in cm). 

5.2.1 Structural model for the linear analysis 

The structural model elaborated for the linear elastic analysis was meshed with cubic elements 

with dimension of 0.10 m, leading to a model with 3,680 cubic solid elements, as shown in 

Figure 23. Four elements were distributed along the beam width, and eight elements along the 

beam height. 

 The concentrated design load was applied as a pressure load of q1 = 270 / (0.10 x 0.40) = 

6,750 kN/m²; the linear design load was applied as a pressure of q2 = 112.5 / 0.40 = 281.3 kN/m². 

Specifically for this model, reaction forces which equilibrated the structural model in the z-

direction were also applied as pressure loads: qleft = 405 / (0.20 x 0.40) = 5,063 kN/m², and qright 

= 810 / (0.30 x 0.40) = 6,750 kN/m². Point supports were then defined to restrain the model, 

without mobilizing reaction forces at all. The beam was modeled with modulus of elasticity Ec 

= 26,070 MPa and Poisson’s ratio ν = 0.2. 
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Figure 23 – Cantilever beam: structural model for the linear analysis: boundary conditions and applied 
loads. 

5.2.2 Reinforcement design 

Proceeding to Step 3 of the methodology described in Section 5.1, reinforcement stress 

distributions were analyzed in each coordinate direction with the aid of the post processor 

ParaView. Figures were prepared with color scales of the ft values at the center of the elements. 

 ftx distribution is shown in Figure 24, where elements with zero stress were filtered out. 

In the midspan region, reinforcement stresses developed in the x-direction along the lower mid-

depth of the beam, reaching the peak value of 14.4 MPa. Above the right support, reinforcement 

stresses developed along the upper mid-depth of the beam, reaching the peak value of 11.3 MPa. 

 fty distribution is shown in Figure 25, where elements with stress smaller than 0.01 MPa 

were filtered out. Stresses in the y-direction were mostly null, as expected for the behavior of 

the linear member. Stresses fty amounted to only just 0.22 MPa, which is equivalent to 0.15 fctd. 

They were mainly found in the tension faces of the beam, along 0.10 m of the beam depth, but 

further developed in the projection of the applied loads. 

 ftz distribution is shown in Figure 26, where elements with stress smaller than 0.05 MPa 

were filtered out. Regions with the higher stresses in the z-direction corresponded to those with 

higher shear forces. The peak value of 2.12 MPa occurred at the beam mid-depth, close to the 

left side of the right support. Stresses amounting to about 1.40 MPa occurred close to left 

support. Reinforcement resisting stresses of 1.40 MPa were also required and along the 

cantilever length, at the beam mid-depth, for the suspension of the concentrated load. 
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Figure 24 – Cantilever beam: reinforcement stresses ftx. 

 

 

 
 

Figure 25 – Cantilever beam: reinforcement stresses fty. 

 

 

 
 

Figure 26 – Cantilever beam: reinforcement stresses ftz 
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5.2.3 Concrete check 

Verification of concrete against crushing was performed in two stages. First, elements under 

triaxial compression were filtered out and verified to respect the Ottosen failure criterion as 

shown in Figure 27: since the Ottosen variable was smaller than zero for all filtered elements, 

it is certified that the stress states did not exceed concrete multiaxial strength. Second, elements 

under biaxial and uniaxial compression were filtered out (Figure 28a). All elements with 

variable ConcFailRel < 1.0 were verified to respect the design compression strength of concrete, 

properly accounting for reduction introduced by the ν efficiency factor. The elements filtered 

out in Figure 28b presented ConcFailRel ≥ 1.0, which indicated, at first sight, that they did not 

respect the failure criteria. Further analyses showed that the element with the highest 

ConcFailRel variable, for example, was subjected to the following stress state (in MPa): 

14.25 0 0.02

0 0 0

0 0 0

x xy xz

xy y yz

xz yz z

  
  
  

    
      
     

 (5.2) 

which corresponded to the principal stresses (in MPa): 
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      
      

 (5.3) 

with a small tensile principal stress σ1 and negligible associated reinforcement stress in the z-

direction: 

   , , 0,0,2.8 5tx ty tzf f f e   (5.4) 

Indeed, the stress state given in Equation (5.3) can be considered as one of uniaxial compression: 

since in a real structure, those elements will not crack, concrete check for the elements from 

Figure 28b was performed following the Ottosen failure criteria. 

 The extended application of the Ottosen criterion is presented in Figure 29a: since all 

elements presented negative values for the Ottosen variable, it was guaranteed that the concrete 

strength was respected. The remainder elements, shown in Figure 29b adequately presented 

ConcFailRel < 1.0. 
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Figure 27  – Cantilever beam: Ottosen variable for concrete under triaxial compression 

 

 
(a) 

 
(b) 

 

Figure 28 – Cantilever beam: (a) ConcFailRel for elements under bi- and uniaxial compresion; 
(b) elements with ConcFailRel ≥ 1.0. 
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(a) 

 

 
(b) 

 

 

Figure 29 – Cantilever beam: (a) Ottosen variable extended to the elements indicated in Figure 28b; (b) 
ConcFailRel for the remainder of the elements. 

5.2.4 Detailing 

Reinforcement stresses in the x-direction were analyzed in two transversal YZ cross-sections, 

one at the beam span (section A-A) and the other at the right support (section B-B). Different 

reinforcement arrangements were designed for each row of elements, that is, constant resisting 

reinforcement stresses were provided along 0.10 m intervals in the beam height. In the midspan 

(Figure 30), the arrangement was defined as follows: 
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 (5.5) 

In section B-B (Figure 31), the arrangement was defined from the calculations below: 
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 (5.6) 

 

 Reinforcement stresses in the y-direction were analyzed in a longitudinal XZ cross-section 

(Figure 32a). Critical design values were grouped into three bands. Reinforcement stresses, 

amounting to 0.22 MPa at the outer bands, were resisted by the horizontal bends of the closed 

stirrups. 

2
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 (5.7) 

                      

                     (a) (b) (c) 

 

Figure 30 – Cantilever beam: (a) ftx at midspan cross-section; (b) assumed ftx; (c) x-reinf. 

                          

                     (a) (b) (c) 

 

Figure 31 – Cantilever beam: (a) ftx at right support cross-section; (b) assumed ftx; (c) x-reinf. 
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 Reinforcement stresses in the z-direction were analyzed in a longitudinal XY cross-section 

(Figure 32b). Critical design values were grouped into three bands along the beam span, and an 

additional band in the cantilever: 
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 (5.8) 

 

 

(a) 

 

(b) 

 

Figure 32 – Cantilever beam: assumed (a) fty and (b) ftz for design. 

Anchorage and complementary reinforcement 

The formulation of the SFM considers a perfect bond between concrete and reinforcing bars. 

Design values of bond are used to calculate the anchorage length, even though they imply a 

much higher degree of conservatism than other failure modes such as rigid-plastic bond model 

or more refined bond models accounting for transverse pressures to reduce the anchorage length 

or to increment the bond strength, as discussed by the fib Bulletin 100 (fib, 2021, p.26). 

 Verifications does not rely on the geometrical definition of nodes converging uniform 

forces so that anchorage could be checked over or outside the nodal regions, as in the STM 

design. Rather, they must be undertaken at every point of the structural model requiring 

reinforcement. An adequate detailing is achieved by guaranteeing anchorage of rebars: if rebars 

cannot be adequately anchored, that is, if yield conditions of bond are not satisfied, either the 

area of the reinforcement should be increased to limit rebar axial forces, or anchorage should 

be provided by welded bars or mechanical anchors. In this particular example, the beam 
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extended a sufficient length beyond the left support and concentrated applied force to anchor 

the reinforcement forces. 

 Two observations are made regarding complementary rebars. First, longitudinal rebars at 

the top and bottom faces, summing at least 4 ϕ20, extended throughout the longitudinal 

direction of the beam, conservatively, for the assemblage of the closed stirrups. Second, no skin 

reinforcement was detailed since the maximum distance between longitudinal bars, in the z-

direction, resulted in 0.40 m, which was considered adequate for crack control. 

Final detailing 

 The cantilever beam final detailing1 is presented in Figure 33. The unusual arrangement 

will be later assessed and discussed in Section 6.2. By the end of the design process, 

reinforcement consumption was evaluated in terms of total cross-sectional area of the detailed 

rebars in the x-direction: 

2
,

2
,

5 3.15 5 2.00 3 2.00 2 1.13 34.0

4 3.15 4 2.00 3 2.00 2 1.13 28.9

sx positive

sy negative

A cm

A cm

        

        
 (5.9) 

These quantities will be compared to those obtained from the sectional design in Section 6.2.6. 

 

 

Figure 33 – Cantilever beam: final reinforcement arrangement 

 
1 Note on the nomenclature for stirrup arrangement: “stir _ bar diameter (mm)/ bar spacing (cm)”. For example: 

“stir ϕ10/20” stands for “stirrups with diameter of 10 mm, spaced at 20 cm”. Rebar sizes following European 

Standards. 
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 The SFM was applied to the ULS design of a structural member that, in engineering 

practice, would certainly be designed by a sectional approach. However, application of the SFM 

provided insights into key aspects related to the design process, such as the construction of the 

numerical model for the linear analysis (including element size and support discretization), the 

delimitation of regions with uniform reinforcement stresses, the verification of concrete 

strength under triaxial stress states, and the effective transfer of forces between reinforcement 

and concrete. 
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5.3 Example 2: corbel 

The second designed structural element was a double corbel. It measured 0.30 m deep, 0.40 m 

wide, and 0.40 m long, and was supported by a 0.40 m square column. The design was focused 

on the corbel, which was loaded on both sides with 500 kN, applied at 0.20 m from the column 

faces. Steel plates measuring 0.15 m x 0.20 m distributed the concentrated load to the top face 

of the corbel. Another steel plate was located at the bottom of the column to uniformly distribute 

the vertical reactions. The member should be designed with normal-weight concrete C30 (fck = 

30 MPa) and B500 reinforcement (fyk = 500 MPa). 

 This practical example was chosen to illustrate the application of the design method to a 

simple D-region. 

 

 

Figure 34 – Corbel: geometry and loading (dimensions in cm). 

5.3.1 Structural model for the linear analysis 

The structural model elaborated for the linear elastic analysis was meshed with cubic elements 

with dimension of 0.05 m, leading to a model with 2,436 cubic solid elements, as shown in 

Figure 35a. Eight elements were distributed along each dimension of the column, and six 

elements along the depth of the corbel. Concerning the boundary conditions, four pin supports 
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were modeled symmetrically to the axis of the column, as shown in Figure 35b. The 

concentrated loads were applied as distributed pressures of q = 500/0.15/0.20 ≈ 16,700 kN/m². 

 Column and corbel were modeled with modulus of elasticity Ec = 26,070 MPa and 

Poisson´s ratio ν = 0.2. Steel plates were modeled with a modulus of elasticity ten times greater 

than the steel modulus (Es,equiv = 10 x Es = 2,100 GPa) to distribute both applied and reaction 

loads. 

 

(a) (b) (c) 

 

Figure 35 – Corbel: structural model for the linear analysis: (a) geometry perspective view; 
(b) boundary conditions; (c) loading. 

5.3.2 Reinforcement design 

Proceeding to Step 3 of the methodology described in Section 5.1, reinforcement stress 

distributions were analyzed in each coordinate direction with aid of the post-processor 

ParaView. Values at the center of the elements, rather than values at their nodes, were 

represented for the refined meshes. 

 The ftx distribution is initially shown in Figure 36a, where elements with stresses lower 

than 1.5 MPa were filtered out for a clearer visualization (elements stressed below this cutoff 

value, which corresponds to a reinforcement ratio of ρ = 1.5/434.8 = 0.34%, were properly 

considered in the reinforcement detailing). The higher ftx values were found at the top of the 

corbel, at the intersection between column and corbel, reaching the peak value of 19.2 MPa. 

The overall distribution showed that reinforcement in the x-direction was required in the upper 

two thirds of the corbel height, approximately. It was also required in the portion of the column 

up to 0.25 m above the corbel top face above the corbel, showing the diffusion of the corbel 

main tensile stresses into the column volume. In Figure 36b, only elements with ftx higher than 
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6.0 MPa were shown to isolate the distribution of the peak values. Figure 36c presents the model 

sectioned at planes passing through the center of the first element of the corbel in both x- and 

z-directions. As can be seen, reinforcement stresses diminish from the column face towards the 

center of the column from 19.2 MPa to about 5.0 MPa, and from the corbel top face towards its 

bottom face from 19.2 MPa to zero. 

 

(a)    (b) 
 

  

(c) 

 

  

Figure 36 – Corbel reinforcement stress ftx: (a) values above 1.1 MPa and (b) above 6.0 MPa; (c) clipped 
model. 
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 The fty distribution is shown in Figure 37a, where elements with stresses lower than 0.5 

MPa were filtered out. The higher fty values were found at the top of the corbel, at the column 

intersection, reaching the peak value of 2.7 MPa. It was associated, however, with a singularity 

of the numerical model affecting stresses in the elements neighboring the 90 degrees edge. In 

Figure 37b, elements with stresses lower than 1.0 MPa were filtered out to highlight the peak 

values in the projection of the load plate, which derived from the triaxial bottle-shaped tension-

compression stress field developed in the partially loaded corbel. 

 

(a) (b) 

   
(c) 

 
 

Figure 37 – Corbel reinforcement stress fty: (a) values above 0.5 MPa and (b) above 1.0 MPa; (c) clipped 
model. 
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 The ftz distribution is shown in Figure 38a, where elements with stresses lower than 1.0 

MPa were filtered out. The higher ftz values were found at the intersection between column and 

corbel, reaching the peak value of 10.4 MPa. Once again, the observed structural response was 

associated with the singularity of the numerical model in the elements neighboring the edge. 

Apart from this region, ftz values lower than 1.0 MPa were observed in the portion between the 

plate and column face, which were required for the suspension of the applied loads (Figure 38b). 

 

(a) (b) 

   
(c) 

 

 

Figure 38 – Corbel reinforcement stress ftz: (a) values above 1.0 MPa and (b) above 4.0 MPa; (c) clipped 
model. 
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5.3.3 Concrete check 

Verification of concrete against crushing was performed in two steps. In the first one, elements 

under triaxial compression were filtered out and verified to respect the Ottosen failure criterion 

(Figure 39): the calculated Ottosen variable was smaller than zero for all elements, which 

indicated that the applied stresses did not surpass the concrete multiaxial strength. In the second 

step, elements under biaxial and uniaxial compression were filtered out and verified to respect 

the design compression strength of concrete, properly accounting for the reduction introduced 

by the ν efficiency factor (Figure 40). 

 

 
 

Figure 39 – Corbel: concrete check for elements under triaxial compression. 

  
(a) (b) 

 

Figure 40 – Corbel: concrete check for elements under bi- and uniaxial compression: (a) overall 
distribution; (b) slice crossing the peak value. 
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5.3.4 Detailing 

The reinforcement arrangement should then be defined from the stress distribution presented in 

Section 5.3.2. Reinforcement stresses in the x-direction were analyzed in transversal YZ cross-

section, which passed through the center of the first column of corbel elements (Figure 41b). 

The section was subdivided into three bands along the corbel height, each of them enveloping 

two elements, thus extending to 0.10 m. Each band was assumed to be subjected to the average 

stress of the enveloped elements (Figure 41c): for example, the upper third of the corbel was 

reinforced for the average value of ftx,upper: 

,
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19.2 7.9 13.6
13.6 ; 3.13%

2 434.8

3.13 100 10 40 12.5

tx upper sx
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f MPa

A cm
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   
 (5.10) 

which was arranged as 7 ϕ16 mm rebars. The peak value of 19.2 MPa was known to be affected 

by the numerical model singularity but was still computed in the calculations. This 

consideration will be further evaluated in this current section. Apart from the singularity itself, 

it should be noted that the election of a unique cross-section for the analysis was a conservative 

decision, since ftx variation along the corbel width, with stresses ranging from 19.2 MPa, at the 

corbel core, to 16.8 MPa, at the corbel lateral faces (Figure 41b), was not accounted for reducing 

arrangements layouts locally. 

 Reinforcement stresses in the y-direction were analyzed in the longitudinal XZ cross-

section located 0.075 m away from the corbel lateral face (Figure 42a) - the peak value of 2.7 

MPa at the cross-section passing through the column axis was discarded since it corresponded 

to the numerical model singularity. The section was then subdivided into three bands along the 

height, yielding the design values presented in Figure 42b. Stresses at the upper and lower bands 

were covered by the horizontal folds of the vertical closed stirrups: 
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 (5.11) 

For the central band, complementary reinforcement was detailed to resist the mean fty value 

acting on two elements (length of 0.10 m): 
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 (5.12) 

which was arranged in 4 ϕ8 complementary horizontal stirrups (Figure 42c). 



100 

(a) 

 

 

(b) 

 

 
(c) 

 
 

Figure 41 – Corbel: ftx distribution in (a) longitudinal and (b) tranversal cross-sections; (c) assumed ftx 
stresses for design. 
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(a) 

 

(b) (c) 
 

    

 

Figure 42 – Corbel: (a) fty distributions in a longitudinal cross-section; (b) assumed fty stresses for design; 
(c) adopted arrangement. 

 Reinforcement stresses in the z-direction were analyzed in the longitudinal XY cross-

section at mid-height of the corbel (Figure 43a). Peak values surrounding the column/corbel 

superior corner were discarded since they corresponded to the numerical model singularity. The 

analyzed section was then subdivided into four bands along the corbel length, yielding the 

design values presented in Figure 43b. For the two bands adjacent to the column, for example, 

vertical reinforcement was calculated from: 

2

2.8 3.9 3.35
3.4 ; 0.77%

2 434.8
0.77

10 40 3.1
100

tz sz
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f MPa
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 (5.13) 

which was arranged in 1 stirrup ϕ12 with 4 legs for each band. The complete set of stirrups for 

the corbel is presented in Figure 42c.  
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(a) 

 

(b) (c) 
 

 

 

Figure 43 – Corbel: ftz distribution at mid-height of the corbel; (b) assumed ftz stresses for design; 
(c) adopted arrangement. 

Complementary analysis for the singularity 1: column without upper portion 

To assess the effects of the singularities, an additional numerical model was elaborated where 

the portion of the column above the corbel was suppressed. It was observed that: 

 The maximum ftx of 14.1 MPa (see Figure 44) occurred at a section passing through the 

axis of the column, and no longer in an element neighboring the singularity. This peak 

value was close to the assumed average value of 13.6 MPa obtained from Equation (5.10). 

 The maximum fty of 2.0 MPa (see Figure 45) was approximately equal to the assumed value 

of 1.6 MPa obtained from Equation (5.12). 

 The maximum ftz of 3.6 MPa (see Figure 46) was approximately equal to the assumed value 

of 3.4 MPa obtained from Equation (5.13). 

This showed that the criteria established for dealing with the singularity was adequate in this 

design case. 
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(a) (b) 

 

Figure 44 – Corbel without upper column: ftx distribution above (a) 1.5 MPa; (b) 7.0 MPa. 

  
(a) (b) 

 

Figure 45 – Corbel without upper column: fty above (a) 0.5 MPa and (b) 1.2 MPa. 

  
(a) (b) 

 

Figure 46 – Corbel without upper column: ftz above (a) 0.5 MPa and (b) 2.0 MPa. 
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(a) (b) 
 
 

 

(c) (d) 
 
 

 

(e) (f) 

 

Figure 47 – Corbel without upper column: (a) ftx design stresses; (b) x-reinf. arrangement; (c) fty design 
stresses; (d) reinforcement arrangement in the y-direction; (e) ftz design stresses; (f) reinforcement 
arrangement in the z-direction.  
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Complementary analysis for the singularity 2: mesh refinement 

To further evaluate the influence of the singularity on the design outcome, a new model was 

created with a refined mesh. Column and corbel were meshed with elements half the size of the 

original model (0.025 m), resulting in a model with 19,176 cubic solid elements (Figure 48a). 

Analyzing the results in the critical cross-section (Figure 48b), it was observed that the peak ftx 

value increased from 19.2 MPa to 27.7 MPa; it was also observed that the equilibrium of forces 

in the y-direction was improved (the sum of FZ forces acting on the elements crossing the 

section was closer to the applied force of 500 kN). 

 

   

(a) (b) 

 

Figure 48 – Corbel with refined mesh: (a) ftx distribution; (b) detail for the elements in the vertical 
alignment of the element with the peak value. 

Final detailing 

The corbel final detailing is presented in Figure 49. The main corbel tie was assumed to be 

anchored by a welded bar at each extremity. Minimum reinforcement was provided at the 

bottom of the corbel, following usual detailing prescriptions.  

detail 

upper 

 

 

interm. 

 

 

lower 
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Figure 49 – Corbel: final detailing. 

 By the end of the design process, reinforcement consumption was evaluated in terms of 

total detailed reinforcement area. The proposed arrangement summed: 

2
, 7 2.00 4 1.13 4 0.50 20.5sx corbelA cm        (5.14) 

This quantity will be later compared to the one obtained from an alternative design method in 

Section 6.3.6. 

 This second example addressed the following aspects for the SFM design: the 

management of singularities, the averaging of design stresses between neighboring elements, 

and the employment of welded bars for improving anchorage.  
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5.4 Example 3: beam under axial forces 

This third design example employed the SFM to design a set of three beams with a total length 

of 3.10 m and a square cross-section of 0.20 m each. All beams were subjected to an axial force 

of 1,020 kN: while beam I was subdivided into two spans with equal length, beams II and III 

were subdivided into spans with length ratio of 1:2 (Figure 50). Beams should be designed with 

normal weight concrete C30 (fck = 30 MPa) and B500 reinforcement (fyk = 500 MPa). This 

example was chosen to allow for discussion on ductility of concrete and reinforcement. 

5.4.1 Structural model for the linear analysis 

The structural analysis could have been performed by modeling the beams with solid elements. 

However, as a simplification, the structural models for the linear elastic analyses were 

constructed with linear elements. 

 

(a) 

  
(b) 

     
(c) 

  

 

Figure 50 – Beam under axial forces: geometry and loading for: (a) beam I; (b) beam II; and (c) beam 
III (dimensions in cm). 
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Each structural model was composed of two single bars with modulus of elasticity of the 

uncracked concrete, Ec = 26,070 MPa, and Poisson´s ratio ν = 0.2. The resulting normal forces 

diagrams are presented in Figure 51. 

 

 

 

 

Figure 51 – Beam under axial forces: axial forces diagram for: (a) beam I; (b) beam II; and (c) beam 
III. 

 In the diagrams above, suffix (C) was used for compression forces, and suffix (T) for 

tension forces. Forces in each span were proportional to their relative axial rigidity EA/ℓ. 

Stresses for the SFM design were obtained by the simple division of the sectional forces by the 

beam sectional areas. 

  

(a) 
 
 
 
 
(b) 
 
 
 
 
 
(c) 
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5.4.2 Reinforcement design 

Beam I 

The left span of the beam was subjected to a tensile force of +510 kN. The applied stresses on 

this side of the beam should be equilibrated by reinforcement stresses: 

, 2

510
12,750

0.20 0.20tx x right

kN
f

m
  


 (5.15) 

which led to the arrangement of 4 ϕ20 rebars: 

2

12.75
0.029

434.8

0.029 0.20 0.20 11.7 {4 20

x
sx

yd

sx

f

A cm






  

   

 (5.16) 

Beam II 

The left side of the beam was subjected to a tensile force of +680 kN. The applied stresses on 

this side of the beam should be equilibrated by reinforcement stresses: 

, 2

680
17,000

0.20 0.20tx x right

kN
f

m
  


 (5.17) 

which led to an arrangement of 8 ϕ16 rebars: 

2

17.00
0.039

434.8

0.039 20 20 15.6 {8 16

x
sx

yd

sx

f

A cm





  

   

 (5.18) 

Beam III 

The right side of the beam was subjected to a tensile force of +340 kN. The applied stresses on 

this side of the beam should be equilibrated by reinforcement stresses: 

, 2

340
8,500

0.20 0.20tx x right

kN
f

m
  


 (5.19) 

which led to an arrangement of 4 ϕ16 rebars: 

2

8.50
0.020

434.8

0.020 0.20 0.20 7.8 {4 16

x
sx

yd

sx

f

A cm






  

   

 (5.20) 
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5.4.3 Concrete check 

Concrete stresses should be limited to the design compressive strength. According to MC2010 

(fib, 2013, Section 7.2.3.1.4), it is defined as: 

30
1.0 21.4

1.4
ck

cd cc
c

f
f MPa


    (5.21) 

where “αcc is a coefficient taking account of long-term effects of compressive strength and of 

unfavorable effects from the way the loas is applied. For normal design situations it may be 

assumed that the increase of the compressive strength after 28 days compensates the effect of 

sustained loading, so that αcc = 1.0 for new structures.” “For concrete strength determined at an 

age greater than 28 days, the effect of hydration may not be able any more to compensate the 

effect of sustained loading, so that αcc = αct = 0.85 is more suitable.” In this particular example, 

γc was assumed to be 1.4, in accordance with the Brazilian Code (ABNT, 2023). 

Beam I 

The right span of the beam was subjected to the following compressive stress: 

3 2

510
12,750 12.75 0.59

0.20 0.20c right cd

kN
MPa f

m
     


 (5.22) 

which was smaller than the limit compressive design strength of 21.4 MPa. 

Beam II 

The right span of the beam was subjected to the following compressive stress: 

3 2

340
8,500 8.5 0.40

0.20 0.20c right cd

kN
MPa f

m
     


 (5.23) 

which was smaller than the limit compressive design strength of 21.4 MPa. 

Beam III 

The left span of the beam was subjected to the following compressive stress: 

3 2

680
17,000 17.0 0.79

0.20 0.20c left cd

kN
MPa f

m
     


 (5.24) 

which was smaller than the limit compressive design strength of 21.4 MPa. 
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5.4.4 Detailing 

The final detailing is presented in Figure 52. In the three beams, closed stirrups, spaced at 0.10 

m, were provided along the tension spans with two stronger stirrups positioned near the central 

steel plate to resist tangential stresses in that region. 

 To isolate the specific behavior of concrete in compression in the assessment of the 

achieved solution in Section 6.4, reinforcement was not provided in the compression span. 

However, it is recognized that real structures typically require reinforcement in compressed 

zones as well, following code requirements for consideration of minimum eccentricities or 

minimum reinforcement ratios. 

 

(a) 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
(c) 
 

 
 
 
 
 
 
 
Figure 52 – Beam under axial forces: reinforcement detailing for (a) beam I; (b) beam II; and (c) beam 
III. 

 This third example presented the complete SFM design process for three beams subjected 

to axial forces. The key assumption in this solution, the use of an uncracked modulus of 

elasticity for both tension and compression zones, is critically evaluated in Section 6.4. 
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5.5 Example 4: six-pile cap 

The fourth designed structural member was a pile cap with 8.00 m x 5.20 m plan dimensions 

and 2.40 m depth, responsible for transferring the loads from three rectangular columns to six 

0.80 m square concrete piles, centers spaced at 2.80 m. The pile cap geometry was symmetrical 

about the y-axis, but asymmetrical about the x-axis. One of the columns was located outside the 

projection of the envelope of the pile group. The pile cap should be designed with normal-

weight concrete C30 (fck = 30 MPa) and B500 reinforcement (fyk = 500 MPa). 

 For the first load combination, a characteristic vertical load of 5,750 kN was applied on 

top of columns C1 and C2, and a vertical characteristic load of 3,840 kN was applied on top of 

column C3. For the second load combination, a concomitant characteristic bending moment of 

-2,398 kN.m acting around the x-axis was applied on top of both C1 and C2, and a concomitant 

moment of 704 kN.m acting around the y-axis was applied on top of C3. 

 This example was chosen to illustrate the application of the design method to a complex 

D-region, a volumetric structural element where load paths followed multiple three-

dimensional directions. 

 

 

 

Figure 53 – Six-pile cap: geometry (dimensions in cm) and characteristc loads, second load 
combination. 
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5.5.1 Structural model for the linear analysis 

Along with the pile cap itself, 2.00 m of the column length and 1.20 m of the pile length were 

modeled for the diffusion of the applied loads/reactions to the cap. Also, 0.20 m thick steel 

plates were included at the bottom of the piles. 

 The complete structural element comprised 13,656 cubic solid elements with 0.20 m in 

length (Figure 54). Twelve elements were distributed along the cap depth, and four elements 

were distributed along each dimension of the pile cross-section. Concerning the boundary 

conditions, a single fixed pin support was defined at the bottom of each steel plate to provide 

vertical restraint and to concurrently ensure that no bending moment would be transferred to 

the piles. Additional constraints guaranteed horizontal equilibrium for the structural model: pile 

P1 was restricted in the x- and y-directions; pile P3, in the y-direction; and pile P4, in the x-

direction (Figure 55b). 

 Columns and pile cap were modeled with modulus of elasticity Ec = 26,070 MPa and 

Poisson´s ratio ν = 0.2. Piles, in turn, were modeled with a reduced modulus of elasticity, 

calibrated to simulate a settlement of 9 mm for a working load of 2,600 kN (Ec,pile = Ec/40 = 

650 MPa). Steel plates were modeled with a modulus of elasticity ten times greater than the 

steel modulus (Es,equiv = 10 Es = 2,100 GPa), to distribute the concentrated support reactions to 

the bottom face of the concrete piles. 

 

 
 

Figure 54 – Six-pile cap structural model for the linear analysis: perspective view. 
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 Vertical loads (N) on top of columns were applied as uniform pressure loads, while 

flexural moments (M) were applied as binary forces, as shown in Figure 55c. Two load 

combinations were considered for the ULS design: 

1 1.4 ( )

2 1.4 ( )
k

k k

U N

U N M

 

  
 (5.25) 

 

(a) 

    

(b) (c) 

       

 

Figure 55 – Six-pile cap structural model for the linear analysis: (a) geometry; (b) boundary conditions; 
(c) loading U2. 

5.5.2 Reinforcement design 

Proceeding to Step 3 of the methodology described in Section 5.1, reinforcement stress 

distributions were analyzed in post-processor ParaView for each load combination. 
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Load combination U1 

The ftx distribution is shown in Figure 56, where elements with stresses lower than 0.20 MPa 

were filtered out. The higher ftx values were found at the bottom of the pile cap, in the projection 

of C3. The peak value, particularly, was found between piles P1 and P2, and between piles P2 

and P3, reaching 2.21 MPa. The overall distribution showed that the reinforcement in the x-

direction was required in the lower two thirds of cap depth, approximately. Stresses in this 

region accounted for the flexural behavior of the structure. 

 

(a) 

 
(b) 

 
 

Figure 56 – Six-pile cap: ftx distribution for load combination U1 - (a) top view perspective; (b) bottom 
view perspective.  
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 The fty distribution is shown in Figure 57. The higher fty values were found at the top of 

the pile cap, extending through the length of C3. Peak values, particularly, reached 0.82 MPa. 

The overall distribution showed that reinforcement in the y-direction was required throughout 

the cap volume: for the lower half of the cap, fty stresses were mainly accounted for the flexural 

behavior from columns C1 and C2 loads acting on the y-span between piles; for the upper half, 

stresses derived mainly from the load of C3 acting eccentrically to the plane containing piles 

P1-P2-P3 axis, thus generating a negative bending moment. 

 

(a) 

 

 
(b) 

 
 

Figure 57 – Six-pile cap: fty distribution for load combination U1 - (a) top view perspective; (b) bottom 
view perspective. 
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 The ftz distribution is shown in Figure 58, where elements with stresses lower than 0.10 

MPa were filtered out. The highest ftz values were found in the projection of column C3. The 

peak value, in particular, was found at the south face of the pile, reaching the value of 1.60 MPa. 

The overall distribution showed that, besides the aforementioned region, reinforcement stresses 

were found in the cap spans. This response was already expected for the suspension of vertical 

forces. 

 

(a) 

 

 
(b) 

 
 

Figure 58 – Six-pile cap: ftz distribution for load combination U1 - (a) top view perspective; (b) bottom 
view perspective. 
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Load combination U2 

The symmetrical response of the cap about the y-axis was lost. The overall reinforcement stress 

distribution was modified because bending moments applied at the top of C1 and C2 increased 

P1, P2, and P3 reactions, while the bending moment applied at the top of C3 increased P3 and 

P6 reactions. Figures were prepared, once again, filtering out elements with reinforcement 

stresses lower than 0.20 MPa. 

 The ftx distribution is shown in Figure 59. The maximum ftx value changed slightly from 

2.21 to 2.13 MPa. Isosurfaces (Figure 59b) show the asymmetric response of the pile cap: in 

the projection of C3, a wider ‘red isosurface’ was identified between P2 and P3 than between 

P1 and P2, whereas in the projection of C1 and C2 two ‘red isosurfaces’ were identified below 

the extremities of the columns with increased compression due to the column moments. 

 

(a) 

         
 
(b) 

         
 

Figure 59 – Six-pile cap: ftx for U2 - (a) top view perspective; (b) bottom view perspective. 
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 The fty distribution is shown in Figure 60. The maximum fty value increased from 0.82 to 

1.03 MPa. Stresses that were distributed along C3 length was now concentrated in the vicinities 

of the column extremity with increased compression. Also, increased fty stresses were found at 

the bottom of the cap, in regions neighboring piles P4, P5 and P6 below the extremities of the 

columns C1 and C2 with increased compression. Interestingly, comparing Figure 57b and  

Figure 60b, the reduction of fty stresses is observed in the y-span between piles. 

 

(a) 

 

 
(b) 

 
 

Figure 60 – Six-pile cap: fty distribution for load combination U2 - (a) top view perspective; (b) bottom 
view perspective.  
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 The ftz distribution is shown in Figure 61. The maximum ftz value changed slightly from 

0.77 to 0.72 MPa. New ‘red isosurfaces’ were found at the north side face of cap, deriving from 

the increased compressive stresses of columns C1 and C2. The reduction of the ftz stresses at 

the bottom of the cap in the region of the piles, interestingly derived from the reduced 

compressive stresses of the same columns. 

 

(a) 

 
 
 

 
 

(b) 

 
 

Figure 61 – Six-pile cap: ftz distribution for load combination U2 - (a) top view perspective; (b) bottom 
view perspective.  
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5.5.3 Concrete check 

Load combination U1 

Verification of concrete against crushing was performed in two steps. In the first one, elements 

under triaxial compression were filtered out in Figure 62 - they were mainly found immediately 

below the columns, and immediately above the piles. The calculated Ottosen variable was 

negative for them all, ranging from -1.58 to -1.00, indicating adequate concrete strength of the 

uncracked elements. The element subjected to the lowest σc3 was located immediately below 

columns C1 and C2, under the stress state (σc1, σc2, σc3) = (-1.48 MPa, -2.36 MPa, -7.16 MPa); 

the node with the lowest σc3 was subjected to the stress state (σc1, σc2, σc3) = (-2.80 MPa, -4.35 

MPa, -11.58 MPa). 

 In the second step of the verification, elements under biaxial and uniaxial compression 

were filtered out and verified to respect the design compression strength of cracked concrete, 

properly accounting for the reduction introduced by the ν efficiency factor. Only elements with 

variable ConcFailRel > 0.12 were shown in Figure 63 to better illustrate the more stressed 

elements. 

Load combination U2 

Verification of concrete against crushing followed the same steps described in the analysis of 

load combination U1. None of the elements under triaxial compression, which once again were 

mainly found immediately below the columns, and immediately above the piles, exceeded the 

concrete strength according to the Ottosen failure criteria (Figure 64). The calculated Ottosen 

variable ranged from -1.90 to -1.00, indicating adequate concrete strength of the uncracked 

elements. The element subjected to the lowest σc3 was located immediately below columns C1 

and C2, under the following stress state: (σc1, σc2, σc3) = (-2.39 MPa, -3.35 MPa, -11.98 MPa); 

the node with the lowest σc3 was subjected to the stress state (σc1, σc2, σc3) = (-4.28 MPa, -7.05 

MPa, -20,26 MPa). 

 In the second step of the verification, elements under biaxial and uniaxial compression 

were also verified to respect the design compression strength of cracked concrete. Only 

elements with variable ConcFailRel > 0.15 were shown in Figure 65, isolating the more stressed 

elements. The peak value of this variable increased from 0.36 to 0.48 (about 30%), due to the 

increased compression of the columns subjected to bending moments. 
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Figure 62 – Six-pile cap: concrete check for load combination U1- elements under triaxial compression. 

 

 

 

Figure 63 – Six-pile cap: concrete check for load combination U1 - elements under biaxial or uniaxial 
compression. 
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Figure 64 – Six-pile cap: concrete check for load combination U2 - elements under triaxial compression. 

 

      
 

Figure 65 – Six-pile cap: concrete check for load combination U2 - elements under biaxial or uniaxial 
compression.  
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5.5.4 Detailing 

Once the ft distribution was known, it was necessary to delimit zones of uniform reinforcement 

stress for design. The design stress for each zone should simultaneously cover reinforcement 

stresses from load combinations U1 and U2. 

 To illustrate the process, the definition of the zone of uniform ftx at the bottom of the cap 

is described. The height of the zone extended through 0.60 m of the cap depth, encompassing 

three rows of elements, which were isolated in Figure 66. For load combination U1, the peak 

value of 2.21 MPa occurred close to pile P2; for load combination U2, the peak values were 

also found in the projection of columns C1 and C2, amounting to 2.13 MPa. The maximum 

stress, ftx = 2.21 MPa, was assumed for the design of the whole of the analyzed zone. Such an 

assumption was quite conservative but guaranteed that the reinforced concrete strength would 

be nowhere exceeded. Consequently, no plastic stress redistribution was required between 

neighboring elements. 

 

(a) 

 

(b) 

 

 

Figure 66 – Six-pile cap: definition of the enveloping ftx value for the arrrangement in the lowest 0.60 
m of the cap - load combination (a) U1 and (b) U2. 
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 The process of delimiting zones of uniform design stress was repeated for the three 

coordinate directions, in a quite handcrafted activity. 

 ftx distribution was subdivided into three main zones in the lower part of the cap. The 

lowest one, particularly, was arranged with 3 layers of 16 mm rebars spaced at 0.20 m in y-

direction and at 0.20 m in the z-direction (separation between layers). 

2

2.21
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0.51%
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0.51

100 100 51 provided by 16 / 20 / 20
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A cm







 

   

 (5.26) 

Although no ftx was observed at the top face of the pile cap, one layer of ϕ20 /40 was provisioned. 

 fty distribution was subdivided into three zones: one larger zone covering about 40% of 

the lower height of the cap, where 5 layers of 10 mm rebars spaced at 0.20 m were provided; 

one strengthened zone at the top of the cap, covering the length of the cap and thickened below 

the projection of C3, where 12 mm rebars were provided; another region in the projection of 

C3, where 12 mm rebars spaced at 0.40 m were provided in three layers. 

 ftz distribution, was subdivided into four zones: two of them adjacent to columns C1 and 

C2, where stirrups were provided by 16 mm rebars spaced at 0.40 m in the x- and y-directions; 

and the two others close to the extremities of C3, for the suspension of the vertical loads by 16 

mm rebars spaced at 0.20 m in the x- and y-directions. 

 To facilitate concrete casting, reinforcement bars were positioned at multiples of 0.20. 

Concerning constructive process, horizontal meshes of x- and y-rebars can be independently 

pre-assembled on-site and lowered into their final position; industrialized welded meshes can 

be used for arranging rebars with diameter between 8 and 12 mm. 

Anchorage 

The SFM adopts the same principle for bar anchorage as discussed for the stringer-panel model: 

the anchorage length must be sufficient to transfer “the maximum tensile force that occurs in 

the reinforcing bar under consideration.” (fib, 2021, p.117). For this, enough length should be 

provided to ensure proper transfer of these tensile forces from the reinforcement to the 

surrounding concrete.  

 Particular attention was paid to verifying anchorage in the critical regions above the 

supports and below the applied loads. Since the cap extended 0.80 m beyond the pile faces, 

enough transfer length was provided for the bottom reinforcement. The same scenario was not 



126 

found for top reinforcement in the y-direction, below column C3. In that case, provision of a 

welded bar in the x-direction, at the extremity of the top ties, would be recommended. 

Final detailing 

 By the end of the design process, the reinforcement consumption was evaluated in terms 

of total detailed reinforcement area. The proposed arrangement summed: 
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 (5.27) 

These quantities are compared to those obtained from an alternative design method in Section 

6.5.6. The final detailing rendered the arrangements1 shown in Figure 67 and Figure 68. 

 Each load case was treated independently to isolate and allow for visualizing the 

individual structural responses. In design practice, however, the process could likely be 

automated to generate an envelope of point wise required reinforcement in all load cases. By 

automating this process, the SFM would efficiently and rigorously handle multiple load cases. 

 This fourth example addressed the following aspects for the SFM design: the capability 

of the method to deal with complex three-dimensional behavior and complex load cases, the 

still handcrafted process of defining reinforcement zones, the conservatism in the choice of 

arrangements, and the practical assembling of the reinforcement layouts. 

  

 
1 Note on the nomenclature for reinforcement arrangement: “Number of rebars _ bar diameter (mm)/ bar spacing 

in the first transverse direction (cm)/ bar spacing in the second transverse direction (cm)”. For example, 

reinforcement in the z-direction arranged as “24 ϕ10/20/40” stands for “24 rebars with diameter of 10 mm, spaced 

at 20 cm in the x-direction, and at 40 cm in the y-direction”. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 67 – Six-pile cap: sectorization of reinforcement stresses (a) in the z-direction; (b) in the y-
direction; (c) in the x-direction.  
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 68 – Six pile cap: reinforcement detailing (a) in the z-direction; (b) in the y-direction; (c) in the 
x-direction.  
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5.6 Example 5: trunnion girder 

Dams are built primarily to impound water for water storage and energy generation. The water 

level of the dams or reservoirs is controlled by flood discharger structures, such as the one 

presented in Figure 69, where the discharge flows through spillways by the opening and closure 

of spillway gates to adjust the discharge under the gate. A Tainter or radial gate, specifically, is 

“is a segment of a cylinder mounted on radial arms that rotate on trunnions anchored to the 

piers.” (U.S. Army Corps of Engineers, 2000, p. 2-1). Trunnions girders, on that account, are 

rigid structural elements that connect the gate arms to vertical reinforced concrete columns, as 

shown in Figure 70. 

 The fifth worked example presents the application of the design method based on three-

dimensional stress fields to the design of a trunnion girder connected to an interior column, that 

is, a column supporting two adjacent gates simultaneously. It had a 4.20 m x 5.00 m rectangular 

cross-section, total length of 8.00 m, and was inclined 8 degrees from the horizontal plane. The 

girder rested on the column over two different contact surfaces: at its bottom face through a 

polyethylene film, and at its upstream face through concrete-to-concrete friction. Therein, the 

contact surface area was limited to two vertical bands, each of them measuring 1.20 m wide. 

This condition was achieved by the installation of a 1.60 m polystyrene sheet between the 

vertical contact bands, as shown in Figure 71. 

 

 

Source: adapted from Andritz (2022). 

Figure 69 – Laúca flood discharger. 
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(a) (b) 

Source: (a) adapted from Jornal de Angola (2023); (b) adapted from Intertechne (2022). 

Figure 70 – Zoom view of trunnion girders supporting tainter gates: (a) different opening positions; (b) 
downstream detailed view of the flow control structures. 

 Forces from the Tainter gate acted through the pivot point located 1.235 m from the 

upstream face of the girder. They are summarized in Table 3 for four different gate positions. 

FN were the characteristic applied normal forces, and FT the characteristic applied tangential 

forces. Each gate support included a 1.40 m x 2.60 m steel plate to uniformly distribute the 

concentrated loads to the girder. 

 Post-tensioning consisted of 4 x 7 tendons made of 21 strands with diameter of 15.2 mm 

in the longitudinal direction (PL), and 3 x 6 tendons made of 10 strands with diameter of 15.2 

mm in the transverse direction (PT), where each strand cross-sectional area summed 1.4 cm². 

The anchor heads of the longitudinal tendons measured 0.40 m x 0.40 m, whereas the anchor 

heads of the transversal tendons measured 0.32 m x 0.32 m. For the current design, post-

tensioning quantities were assumed to be already known, obtained from preceding calculations 

to control serviceability states and bearing stresses in the column-girder interface. Those 

calculations, however, are beyond the scope of this example. In the structural model, post-

tensioning was simulated by the application of equivalent forces at the anchor heads. Girder 

should be designed with normal-weight concrete C30 (fck = 30 MPa), B500 reinforcement (fyk 

= 500 MPa), and low relaxation post-tensioning steel (fpu = 1 900 MPa). 

 This example was chosen to illustrate the application of the design method to another 

complex D-region: a structural member subjected to combined bending and twisting moments, 

axial and transverse shear forces. It did not aim at presenting a full design covering all load 

combinations as prescribed by design codes (ACI, 2006; U.S. ARMY, 2000). Rather, it 
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illustrated the design process for two representative load combinations. The same design 

process could be easily and directly extended to cover multiple load combinations. 

 

 

 

Figure 71 – Trunnion girder: geometry, post-tensionsing tendons and applied loads (dimensions in cm). 

Daniel Della Bella
Carimbo
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Table 3 – Loads applied to the trunnion girder for different gate opening position (loads per trunnion, 
characteristic values). 

Position opening FN FT 

  [degrees] [kN] [kN] 

#1 0 18,200 300 

#2 15.83 11,000 -2,000 

#3 30.67 5,700 -2,200 

#4 45.63 2,600 -1,700 

 

5.6.1 Structural model for the linear analysis 

The structural model for the linear elastic analysis was meshed with cubic elements with 

dimension of 0.20 m, leading to a model with 62,758 cubic solid elements, as shown in Figure 

72. Only one half of the structure was modeled due to geometry and loading symmetry. The 

girder, specifically, was modeled with 21 elements along the width, 25 elements along the 

height, and 20 elements along the length. 

 

        

 

Figure 72 – Trunnion girder: structural model for the linear analysis. 
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 The model was rotated 8 degrees clockwise about the z-axis, so that the beam directions 

would coincide with the global coordinate system. This artifice was employed because the 

formulation presented in Section 3 is restricted to reinforcement directions coinciding with the 

stress tensor coordinate system. Concerning the boundary conditions, a local coordinate system, 

rotated 8 degrees about the z-axis, was established to define the supports along the base and 

height of the column. Also, rigid links in the global z-direction were defined to connect the 

nodes of the bottom of the girder to nodes in the column with the same x and y coordinates. 

Lastly, restrictions were attributed to the nodes at the symmetry plane. 

 Column and girder were modeled with linear elastic material with modulus Ec = 4,760 

fck
0,5 = 26,000 MPa, and 0.2 Poisson modulus. Steel plates at the post-tensioning anchor heads 

and at the gate support were modeled with a linear elastic material with an elastic modulus ten 

times greater than the steel modulus, to better distribute the applied loads (Es = 2,100 GPa). 

 Note that, by modeling the structure with an axis of symmetry, it was assumed that two 

adjacent gates were assumed to be opened at identical positions. Design loads FN and FT acting 

on the pivot point were transformed to equivalent forces applied at the steel plate surface: FN 

and FT were directly subdivided into four subcomponents; flexural moment FT x 1.235 was 

decomposed into binary forces with a 1.80 m lever arm along the z-direction. The resulting 

components were as show in Figure 73 and Table 4. 

sup, inf,

sup, inf,

1.235 1.235
0.5 ; 0.5

4 1.8 4 1.8

4

x x

z z

FN FT FN FT
FN FN

FT
FT F

 
   

 
 (5.28) 

 

Table 4 – Equivalent concentrated loads applied to the trunnion girder for different gate position. 

  characteristic value design value 
  (per node) (per node) 

Position Opening FNsup FNinf FT FNsup FNinf FT 
 [degrees] [MN] [MN] [MN] [MN] [MN] [MN] 

#1 0 4.65 4.45 0.08 6.51 6.23 0.11 

#2 15.83 2.06 3.44 -0.50 2.89 4.81 -0.70 

#3 30.67 0.67 2.18 -0.55 0.94 3.05 -0.77 

#4 45.63 0.07 1.23 -0.43 0.09 1.73 -0.60 
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(a) (b) (c) 

 

Figure 73 – Trunnion girder: loading (a) nomenclature; (b) gate position #1; (c) position #3. 

 Post-tensioning forces were applied as concentrated loads on the anchor plate, as 

presented in the following equation, assuming 20% of prestress losses, and permissible stress 

in prestressing steel equal to 0.74 fpu, where fpu is the ultimate stress of the prestressing strands: 

 

 

2 2

2 2

21 1.4 0.8 0.74 190 3,300

10 1.4 0.8 0.74 190 1,575

PL

PT

F strand cm strand kN cm kN

F strand cm strand kN cm kN

     

     
 (5.29) 

 In addition to post-tensioning and gate forces, the self-weight of the girder (G) was also 

computed. Two load combinations were selected for the ULS design, one for gate position #1, 

and another one for gate position #3. All loads were computed as unfavorable loads: 

   
   

#1

#3

1 1.4 1.4 1.2

2 1.4 1.4 1.2

gate position

gate position

U FN FT G PL PT

U FN FT G PL PT

    

    
 (5.30) 

 

                  
                   (a)                                                                      (b) 

 

Figure 74 – Trunnion girder post-tensioning: (a) longitudinal PL; (b) transversal PT. 
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5.6.2 Reinforcement design 

Proceeding to Step 3 of the methodology described in Section 5.1, reinforcement stress 

distributions were analyzed in post-processor ParaView for each load combination. Detailed 

results were extracted from the two chosen perspective views adjusted in Figure 75. 

 

(a) 

 
(b) 

 
 

Figure 75 – Trunnion girder: overall views identifying detailed views - (a) upstream top perspective; 
(b) downstream bottom perspective.  
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Gate at position #1 

The ftx distribution is shown in Figure 76. The highest ftx values were found in regions close to 

the south and downstream faces of the girder. The peak values, particularly, were found behind 

the trunnion steel plate, and between the second and third vertical lines of the transverse post-

tensioning anchor heads, reaching the value of 1.23 MPa. In the south face, particularly, the 

response was already expected for a discontinuity region resulting from the application of the 

eccentric PT loads, which leads to side face tension stresses. The overall distribution showed 

that reinforcement stresses vanished towards the core of the girder. 

 

(a) 

    
 
(b) 

 
 

Figure 76 – Trunnion girder: ftx distribution for gate position #1 – (a) upstream top perspective; 
(b) downstream bottom perspective.  
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 The fty distribution is shown in Figure 77. The highest fty values of were found in the 

vicinity of column-girder contact surface. The peak value was observed at the axis of symmetry 

of the structure, reaching the value of 2.31 MPa. This response was already expected for a 

corbel subjected to a concentrated load, FN, which should be equilibrated by tensile forces in 

the y-direction. The overall distribution showed that the reinforcement stresses vanished 

towards the core of the girder. 

 

(a) 

    
 
(b) 

 
 

 

Figure 77 – Trunnion girder: fty distribution for gate position #1 – (a) upstream top perspective; 
(b) downstream bottom perspective.  
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 The ftz distribution is shown in Figure 78. Differently from the distribution presented in 

the previous directions, the greatest values of ftz were distributed over the whole volume of the 

trunnion girder. The peak, particularly, was found behind the trunnion steel plate, reaching the 

value of 3.91 MPa. The peak values extended through a very reduced area, corresponding to 

just about four elements (0.40 cm), and were ascribed to the concentrated applied loads. The 

overall distribution showed that the reinforcement stresses were smaller at the core of the girder. 

This response was expected for the suspension of vertical forces. 

 

(a) 

    
 
(b) 

 
 

Figure 78 – Trunnion girder: ftz distribution for gate position #1 – (a) upstream top perspective; 
(b) downstream bottom perspective.  
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Gate at position #3 

When the gates are in Position #3, applied normal forces FN are much higher at the upper half 

of the girder, and FT introduces additional torsional moments to the girder. 

 The ftx distribution is shown in Figure 79. The higher ftx values were now intensively 

observed in the upper half of the girder. The peak value, particularly, increased from 1.23 MPa 

to 1.77 MPa (+43,9%). 

 

(a) 

    
 
(b) 

 
 

 

Figure 79 – Trunnion girder: ftx distribution for gate position #3 – (a) upstream top perspective; 
(b) downstream bottom perspective.  
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 The fty distribution is shown in Figure 80. The higher fty were more pronounced in the 

upper third of the girder, in the vicinity of the contact column-girder. The peak value, 

particularly, increased from 2.31 MPa to 2.76 MPa (+19,4%). 

 The ftz distribution is shown in Figure 81. The higher ftz values were found behind FNsup. 

The peak value, particularly, reduced from 3.91 MPa to 2.61 MPa (-33,2%). 

 

(a) 

    

(b) 

 

 

Figure 80 – Trunnion girder: fty distribution for gate position #3 – (a) upstream top perspective; 
(b) downstream bottom perspective.  



141 

(a) 

  

(b) 

 

 

Figure 81 – Trunnion girder: ftz distribution for gate position #3 – (a) upstream top perspective; 
(b) downstream bottom perspective. 

5.6.3 Concrete check 

Verification of concrete against crushing was performed in two steps. First, elements under 

triaxial compression were filtered out in Figure 82. They were mainly found in the projection 

of the PL anchor heads; some elements were also found in the projection of the first and second 

columns of the transverse post-tensioning PT. The calculated Ottosen variable was negative for 
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all elements, for both load cases, and ranged from -2.31 to -1.00, indicating adequate concrete 

strength of the uncracked elements. 

 In the second step of the verification, elements under biaxial and uniaxial compression 

were filtered out and verified to respect the design compression strength of cracked concrete, 

properly accounting for the reduction introduced by the ν efficiency factor. 

 

(a) 

    
 
(b) 

    
 

Figure 82 – Trunnion girder: concrete check for elements under triaxial compression for (a) gate 
position #1 and (b) gate position #3.  
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 For gate position #1, variable ConcFailRel < 1.0 indicated the adequate concrete strength. 

Few elements presented ConcFailRel variable ranging from 1.0 and 1.17 (Figure 83b). Some 

of them were located behind the trunnion steel plate. Compressive stresses at those elements 

would certainly be reduced to allowable stresses if a more accurate modeling of the 

concentrated applied load were assumed; other few elements were located behind longitudinal 

anchor plates. However, it is anticipated that complementary spiral reinforcement prescribed 

by the suppliers of post-tensioning systems efficiently confines those regions, increasing the 

concrete compressive strength. 

 

(a) 

    
 
(b) 

    
 

 

Figure 83 – Trunnion girder: concrete check for elements under bi/uniaxial compression for gate 
position #1 – (a) all elments; (b) elements with ConcFailRel > 1.  
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 For gate position #3, variable ConcFailRel < 1.0 indicated the adequate concrete strength. 

Few elements presented ConcFailRel variable ranging from 1.0 and 1.12 (Figure 84b). They 

were located behind longitudinal anchor plates. However, it is once again anticipated that 

complementary spiral reinforcement will increase the concrete compressive strength to 

admissible values. 

 

(a) 

    
 
(b) 

    
 

 

Figure 84 – Trunnion girder: concrete check for elements under bi/uniaxial compression for gate 
position #3 – (a) ConcFailRel < 0; (b) ConcFailRel > 1.  
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 Figure 85 presents the distribution of the principal compressive concrete stress σc3 for the 

two load combinations. 

 

 

(a) 

    
 
(b) 

    
 

 

Figure 85 – Trunnion girder: smallest concrete principal stress for (a) gate position #1; (b) gate position 
#3.  

σc3

σc3
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5.6.4 Detailing 

ftx distribution was sectorized in the YZ plane for the reinforcement detailing as presented in 

Figure 86: 

 A 0.40 m band straight after the PT anchor plates with 1.76 MPa. 

 A 0.40 m transition band with 1.0 MPa. 

 The remainder area with 0.34 MPa, except in two sub-regions: the projection of girder 

disconnected from the column by the polystyrene band, and localized strips at the top and 

bottom faces of the girder with 0.56 MPa. 

 

 
 

Figure 86 – Trunnion girder: (a) assumed ftx distribution; (b) reinforcement arrangement. 

Daniel Della Bella
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 The fty distribution was sectorized in the XZ plane for the reinforcement detailing as 

presented in Figure 87: 

 At the upstream face of the girder, a 0.20 m band straight after the column-girder interface 

with 2.68 MPa was followed by a 0.20 m band with 1.54 MPa. 

 At the downstream face of the girder, a 0.20 m band with 1.54 MPa was defined straight 

behind the PL anchor plates. 

 At the top and bottom faces of the girder, 0.40 m bands were defined with 0.92 MPa. 

 

 

 

Figure 87 – Trunnion girder: (a) assumed fty distribution; (b) reinforcement arrangement. 

Daniel Della Bella
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 The ftz distribution was sectorized in the XY plane for the reinforcement detailing as 

presented in Figure 88: 

 At the upstream face of the girder, behind the trunnion steel plate, a 0.20 m band with 3.11 

MPa was followed by a 0.60 m band with 0.94 MPa. Behind the polyethylene plate, a 0.20 

m band with 0.94 MPa was followed by a 0.60 m band with 0.40 MPa. 

 At the downstream face of the girder, a 0.20 m band with 1.18 MPa followed by a 0.20 m 

band with 0.94 MPa. Behind the PL anchor plates, the bands assumed higher values: a 0.20 

m band with 1.18 MPa followed by a 0.80 m band with 0.94 MPa. 

 At the south face of the girder, a0.20 m band was defined with 0.94 MPa. 

 In the remainder regions, a uniform distribution of 0.40 MPa, except for small areas close 

to the column, where reinforcement was dispensed. 

 

 

 

Figure 88 – Trunnion girder: (a) assumed ftz distribution; (b) reinforcement arrangement. 

 This fifth example addressed the application of the SFM design to a structure with real 

complex loading. The required reinforcement was successfully calculated and detailed into 

constructive arrangements, confirming the strength of the design method. 

 

Daniel Della Bella
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6 Design of structural members: validation 

Structural members were designed for the ULS by the SFM in the last chapter: concrete was 

checked against crushing, and the required reinforcement was quantified and detailed in 

constructive arrangements. From the lower bound theorem of the theory of plasticity, it is 

known beforehand that a safe design was achieved for all members, meaning that the ultimate 

load was higher than the design load. However, it was neither possible to quantify the ratio 

between failure and design loads, nor to obtain information about the serviceability 

performance of the solutions achieved. In this chapter the structural members designed by the 

SFM are assessed by nonlinear analysis performed by a commercial finite element software to 

answer these questions. 

6.1 Assessment by nonlinear analysis 

Verifications assisted by numerical simulations are explicitly allowed by the MC2010 (fib, 

2013). They are an alternative to physical testing in a laboratory or on a site, mainly for massive 

structures with complex geometry and loading. By adequately adjusting solution methods and 

material parameters it is possible to check the structural performance throughout the loading 

process up to failure. 

 Guidelines for performing nonlinear analyses are widely available in the literature (fib, 

2008, 2021; de BOER et al., 2014). Solution strategies, in particular, were discussed by Vidosa, 

Kotsovos and Pavlović (1991) and Engen et al. (2015). The accuracy of nonlinear analyses 

depends on factors including the choice of material properties, mesh size, analysis methods, 

and convergence criteria. To ensure reliable predictions, calibration and validation of the 

nonlinear structural models were performed. This involved selecting appropriate parameters 

and conducting sensitivity analyses to understand how these parameters affect the structural 

response. 

 The structural members were modeled with preprocessor GiD (COLL et al., 2018) and 

analyzed with the software ATENA Studio (BENES; MIKOLASKOVA; ALTMAN, 2015), 

which is part of the ATENA program system from Červenka Consulting (ČERVENKA; 

JENDELE; ČERVENKA, 2020). GiD is an adaptive and user-friendly graphical interface for 

geometrical modelling, finite element mesh generation, and preparation of data for a variety of 
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numerical simulation programs. Its use is enhanced with the installation of the ATENA-GiD 

Interface (ČERVENKA et al., 2020) into the GiD environment, which enables ATENA-specific 

commands for defining the material models, boundary conditions, and load conditions. ATENA 

provides comprehensive frameworks for nonlinear structural analysis, incorporating various 

material models, element types, and solution strategies. ATENA Studio, particularly, performs 

the nonlinear analyses of the numerical model, and provides graphical resources for post-

processing the numerical results. 

 Full nonlinear analyses were chosen for assessing the SFM solutions for their 

completeness and accuracy, in detriment of other simplified three-dimensional nonlinear 

methods (MERGNY et al., 2015; MELÉNDEZ; MIGUEL; PALLARÉS, 2016; ABRA; FTIMA, 

2020, 2022; COLAS et al., 2023) which remain in early stages of development, require 

implementation in finite element software, and lack widespread validation within the field. 

6.1.1 Numerical model and numerical method 

The finite element method was adopted for the numerical method of simulation. The continuum 

was discretized into solid elements, and loading and boundary conditions were applied to the 

model. 

6.1.2 Material models 

The constitutive models utilized for the nonlinear analyses are described in the following 

paragraphs, highlighting the key aspects of the formulation found in the ATENA Program 

Documentation, Part 1: Theory (ČERVENKA; JENDELE; ČERVENKA, 2020). 

Concrete material model 

The concrete was modeled with a fracture-plastic material model named CC3DNonLin 

Cementitious2. It combines a plasticity model for concrete crushing in compression with a 

Rankine fracture model for concrete cracking in tension. The material model formulation is 

based on the strain decomposition into elastic (εij 
e), plastic (εij 

p), and fracturing (εij 
f ) 

components (de BORST, 1986): 

e p f
ij ij ij ij       (6.1) 

 The Menétrey-Willam failure criterion (1995) was used for the plasticity model for 

concrete crushing. It is a three-parameter model that has been calibrated in terms of the uniaxial 

strength fc and ft, and eccentricity e. It is represented in Figure 89a and given by: 
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 (6.2) 

where: 

ξ, ρ, θ are the Heigh-Westergaard coordinates: ξ is the hydrostatic stress invariant, ρ is 

the deviatoric stress invariant, and θ is the deviatoric polar angle. 

m is a material parameter that measures cohesive and frictional strengths. 

c is a parameter controlling hardening and softening effects. 

e is a parameter defining the roundness of the failure surface. 

The law for concrete in compression is described by two distinct branches: 

(i) The elliptical ascending branch is based on strains and characterizes the concrete 

hardening for compression stresses exceeding the elastic limit fc0 = 2 ft, where ft is the 

tensile strength, and Ec is the concrete Young’s modulus. The curve is defined by two 

input parameters: the onset of nonlinear behavior fc0, and the value of plastic strain at 

compressive strain εcp, as shown in Figure 89b. The hardening curve in ATENA is given 

by the following formula: 

 
2

0 0 1 c cp
c c c

c

f f f
 



 

    
 

 (6.3) 

where εcp = fc / Ec. is the concrete plastic strain at compressive strength, fc is derived from 

a cylinder test. 

(ii) The linear descending branch is based on displacements and characterizes the concrete 

softening for compression stresses after reaching concrete strength fc, as shown in Figure 

89c. The equivalent plastic strains are transformed into displacements Wd by the length 

scale parameter Lc. This parameter corresponds to the projection of the element size into 

the direction of minimal principal stress, that is, the direction parallel to the crack. Wd can 

be determined by: 

 p p
d eq c cW L    (6.4) 

and may be assigned as 0.5 mm for normal strength concrete. 

 The Rankine-fracturing model for concrete in tension is used to identify zones with 

initiation of cracking in concrete - cracking occurs when the maximum principal tensile stress 

σ₁ exceeds the concrete tensile strength fti in the material direction i. The material behavior, in 

turn, is divided into two stages. Before cracking, it is assumed to be linear elastic, with stress-
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strain relationship given by the concrete elastic modulus Ec; after cracking, it is modeled based 

on the crack band theory (BAŽANT; Oh, 1983) combined with Hordjik’s formulation for 

tension stiffening (1991). The crack band theory is a fracture-mechanics approach for 

localization of deformations in the failure state. In this formulation, the fracture is not modeled 

as a line crack (a sharp interelement crack), but as a band of continuously distributed parallel 

cracks (orthotropic smeared cracks). The crack width w = εf Lt is obtained by accumulating 

strains εf due to microcracking over width Lt of the crack band. The direction of the failure 

planes is assumed to be normal to the principal stresses in tension. The stress-strain relationship 

within the crack band exhibits strain-softening, which reflects the loss of load-carrying capacity 

due to microcracking and damage accumulation. The material fracture properties are 

characterized by only three parameters – fracture energy Gf (the energy consumed in the 

formation and opening of all microcracks per unit area, required to create a unit area of stress-

free crack), uniaxial strength limit ft (derived from a failure function), and the width of crack 

band Lt (calculated as a size of the element projected into the crack direction). Hordijk’s 

softening model builds upon the crack band theory for describing tension-stiffening behavior 

within the crack band. The strength of concrete under tension decreases sharply as the crack 

opening increases, according to an exponential crack opening law: 

 2
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1 11 e 1 ec
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  
     
   

 (6.5) 

where: 

w is the crack width calculated from the crack band theory, w = εf Lt. 

wc is the crack opening at the complete release of stress estimated by wc = 5.14 Gf / ft. 

σ is the normal tensile stress at the crack band. 

c1, c2 are adjustment coefficients obtained experimentally (c1 = 3, c2 = 6.93). 

The curve is represented in Figure 90b. The area under the curve is fracture energy Gf. 

 Shear strength of cracked concrete is calculated in ATENA using the Modified 

Compression Field Theory (VECCHIO; COLLINS, 1986). It corresponds to the maximum 

shear stress developed in a crack due to aggregate interlock: 

0.18
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24
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

 (6.6) 
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where fc is in MPa, ag is the maximum aggregate size in mm, and w is the maximum crack width 

in mm at the given location. 

 Simulations were performed assuming a smeared fixed crack model, in which the crack 

direction is given by the principal stress direction at the onset of the crack initiation. In the 

uncracked concrete, the principal stress and strain directions coincide because of the assumption 

of isotropy in the concrete component. After cracking, the orthotropy is introduced, with 

material properties varying in the principal directions at the onset of cracking. It is possible that 

stresses in directions orthogonal to the crack direction also exceed the tensile strength, so that 

cracks are formed in up to three directions following the same softening model. 

 

 

(a) (b) (c) 

Source: (a,b) adapted from Červenka, Jandele and Červenka (2020); (c) Palomo (2024). 

Figure 89 – Plasticity model for concrete in ATENA: (a) Menétry-Willam failure surface; 
(b) compression hardening; (c) compresssion softening. 

                 
(a) (b) 

Source: adapted from Červenka, Jandele and Červenka (2020). 

Figure 90 – (a) Uniaxial stress-strain relationship for concrete in tension (elastic branch); (b) fracture 
model for concrete in ATENA: tensile softening according to Hordijk. 
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Steel plate material model 

Steel plates were modeled as an isotropic elastic 3D material. The linear stress-strain curve in 

tension and compression was characterized by the Young’s modulus of the steel material E, and 

its Poisson’s ratio μ. 

Reinforcement material model 

Reinforcement was modeled as a material obeying a perfectly elasto-plastic behavior in one 

dimension. It followed a bi-linear constitutive relationship in both tension and compression, 

characterized by two regions: an initial elastic branch where stresses increase proportionally to 

the strains at a constant rate equal to the steel Young´s modulus Es up to the yield point (εsy, fsy), 

and a plastic branch where reinforcement stresses remain constant after the yield stress is 

reached, for strains increasing beyond the yielding strain up to the ultimate strain εsu. No strain-

hardening was considered, and flexural and shear stiffnesses were disregarded. Also, perfect 

bond was assumed. 

 Depending on the application, reinforcement was modeled by a discrete or a smeared 

approach. In both cases, the state of uniaxial stress was assumed. Discrete reinforcement in the 

form of reinforcing bars was modeled by truss elements incorporated into the concrete mesh. 

Smeared reinforcement, in turn, was modeled as a component of a composite material. It was 

characterized by two parameters: reinforcing ratio ρ, and direction angle β, and enhanced the 

tensile properties of concrete elements. The total material stiffness of the reinforced concrete 

was the sum of material stiffness of concrete and smeared reinforcement. 

 

 

 

Figure 91 – Stress-strain relationship for reinforcement in tension. 
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6.1.3 Meshing 

Discretization of the structure into finite elements must accurately describe the stresses in the 

structure. The maximum element size in the model must be chosen such that relatively smooth 

stress fields are obtained. In the worked examples, as an overall guideline, at least four elements 

were distributed over each dimension of the structural members. Mesh sensitivity studies were 

conducted to determine the optimum element size for the meshes, equilibrating accuracy of 

results and computational economy. 

 Unstructured meshes with 10-node tetrahedral elements were generated for the concrete 

volumes. Structured meshes with brick elements were preferred for the steel plate volumes. 

Meshes were generated automatically by the ATENA software. 

 For discrete reinforcement, rebars were drawn individually as continuous lines in the 

definition of the geometrical model. In the meshing process, their meshes were generated based 

on the existing mesh of solid elements: first, all nodes where the bar changes direction are found; 

second, the intersection of all straight parts of the bar with underlying solid elements are 

detected, such that all end nodes of embedded bar elements are defined; lastly, displacements 

of the nodes of the bar are linked to the underlying solid elements. For smeared reinforcement, 

no explicit rebar elements are defined since rebar properties are averaged over concrete element 

volumes. 

 Master-slave boundary conditions were defined for the contact of different structural 

volumes discretized with non-coinciding nodes. 

6.1.4 Solvers and design strategies 

Methods for solving the nonlinear equations in structural analysis involve solving linear 

equations within each iteration. The linear equations at each iteration are typically written in 

the form: 

x bA  (6.7) 

where A is the global structural matrix, x is the unknown solution vector, and b is the known 

vector, named the right-hand side (rhs) of the problem. They are solved using either a direct or 

an iterative solver. The PARDISO is a direct solver that factorizes the stiffness matrix into 

triangular matrices and solves the resulting linear systems at each iteration; it is highly efficient 

for small to medium-sized problems but memory-intensive for large matrices and was chosen 

as the preferential solver in the design examples. The ICCG, in turn, is an iterative solver that 

approximates the solution iteratively through a series of steps; it is recommended for large-scale 
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problems, converging to a solution with less memory usage and was chosen for design examples 

4 and 5. 

 Three different solution methods may be employed for solving the nonlinear equations: 

(i) the full Newton-Raphson method, which recomputes matrix K for every iteration; (ii) the 

modified Newton-Raphson method, which fixes matrix K for all iterations - it converges more 

slowly than the original Newton-Raphson method but requires “less computing time because it 

is necessary to assemble and to eliminate the stiffness matrix only once” (ČERVENKA; 

JENDELE; ČERVENKA. 2020); and (iii) the arc-length method, a well-established numerical 

technique for both geometrical and material non-linearity that assures good results even in cases 

in which traditional Newton-Raphson methods fail: it does not assume constant loading 

increments during iterations, and addresses instabilities during loading increments more 

efficiently. 

 The loading history for all design examples followed a scheme with small load steps for 

loads at the beginning of the loading process to capture the elastic behavior before cracking, 

and small load steps for load close to the ultimate load, whereby the effects of high localized 

nonlinearities due to cracking of concrete and yielding of steel occur. In structures with complex 

geometry and loading dozens of analyses were required to allow for drawing a detailed loading 

history. For all the analyses, proportional loading was assumed, meaning that the various loads 

applied to the structure maintained a constant ratio throughout the loading process. Note that 

this is an idealization of the real behavior. Blomfors, Engen and Plos (2016) showed how load 

history influenced the safety level of structures assessed by nonlinear analyses. When dealing 

with more complex loading scenarios, loading history may possibly be defined by a different 

approach. 

 Throughout the incremental procedure of the analyses, the convergence of solutions was 

checked at each iteration in terms of the vector increments for displacements, residual forces, 

residual stresses, and residual strains. 

6.1.5 Safety format for nonlinear analysis 

The safety format adopted for the analyses was the partial factor method. In this method, design 

resistance Rd is calculated using the design values as input parameters fd for the nonlinear 

analysis: 

( ,...)d dR r f  (6.8) 
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where r(fd,…) represents the nonlinear analysis model, and fd refers to design values of actions, 

material properties, geometrical quantities, and variables which account for the model 

uncertainties, as described in MC2010 Sections 4.5.1.3 and 7.11.3.4 (fib, 2013). The ultimate 

load Pu obtained from the analysis by inputting the design mechanical properties is already the 

design resistance Pd. 

 When applying this safety format, the structural analysis is based on extremely low 

material parameters in all locations. This may cause deviations in the structural response, as 

pointed out by Hendriks, de Boer and Belletti (2016), but leads to a safe estimate in the absence 

of a more refined solution. 
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6.2 Example 1: cantilever beam 

6.2.1 Structural model for the nonlinear analysis 

The structural model for the nonlinear analysis was meshed with elements with dimension of 

0.10 m: at least four elements were distributed along the beam width, and eight elements along 

the beam height (Figure 92a). Also, all the rebars from the reinforcement layout presented in 

Section 5.2.4 were discretized as linear elements (Figure 92b). The complete structural model 

summed 36,370 tetrahedral elements and 3,552 linear elements. It was named ‘model A’. 

 Concerning boundary conditions, displacements were constrained in the x-, y- and z-

directions in the left line support (Figure 93a), and in the z-direction in the right line support. 

 Concrete was modeled with a “solid concrete” material model (fcd = 20 MPa, fct = 1.33 

MPa, Ec = 26,070 MPa, ag = 20 mm, εcp = -1.54‰, fco = -2.8 MPa, Wd = 5 mm). Embedded 

rebars were modeled with a “1D reinforcement” material model (fyd = 435 MPa, Es = 210 GPa, 

εsu = 10‰). Steel plates at the supports were modeled with a “solid elastic” material model with 

increased modulus of 10 x Es = 2 100 GPa, to better distribute the reaction forces). 

 Loads were applied as surface loads (Figure 93b), incrementally increasing up to failure. 

Analysis was performed with the arc-length solution method, utilizing the PARDISO solver. 

The behavior of the structural model was assessed with the aid of two monitoring entities: one 

monitoring point (mnt.1) located at the right end of the beam, at its bottom corner, to read 

displacements in the z-direction; and one monitoring line (mnt.2) located under the right steel 

plate to read the reaction forces in the z-direction. They are also presented in Figure 92a. 

6.2.2 Results: failure load 

The reinforced concrete beam failed at a load 1.26 times the design load. It failed by the yielding 

of the three lowest layers of longitudinal bars located at midspan. The upper longitudinal bars 

and stirrups did not yield. Selected results of the numerical analysis at failure load are shown 

in Figure 94 and Figure 95 and described as follows. 

 At the maximum sustained load in the analysis, the maximum displacement in the z-

direction was -5.04 cm in the midspan; stresses of the tensioned reinforcement within the 

flexural span were around the value of the yield stress of the material (fyd = 435 MPa). The 

stirrups confined the compression zone such that the concrete maximum compressive stress 

reached 23.6 MPa. Shear cracks were observed adjacent to both supports. Flexural cracks 

developed in the faces tensioned by flexure, and crack widths reached 0.50 mm. Plastic strains 

in the last converged iteration summed 1.69‰ in concrete, and 7.41‰ in the reinforcement. 
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(a) 

 
 

(b) 

 
 

Figure 92 – Cantilever beam NLA structural model: (a) volume elements, close detail at support, 
monitoring point mnt.1 and monitoring line mnt.2; (b) linear elements. 

              
(a)                                          (b) 
 

 

Figure 93 – Cantilever beam NLA: (a) boundary condition; (b) surface loading.  

mnt.2 

mnt.1 
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(a) 

  

 
(b) 

  

 
 
(c) 

 
 
(d) 

 
 

 

Figure 94 – Cantilever beam NLA at failure load: (a) deflections in the z-direction; (b) concrete 
principal stress σc3, (c) reinforcement stresses; (d) crack widths.  

23.6 MPa 
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(a) 

 
 
(b) 

               
 
(c) 

 
 
 

 

Figure 95 – Cantilever beam NLA at failure load: (a) concrete principal stress tensors; (b) concrete 
plastic strains; (c) reinforcement plastic strains. 

6.2.3 Results: design load 

Selected results at design load are shown in Figure 96 and described as follows. 

 The maximum displacement in the z-direction was -2.98 cm in the midspan. The concrete 

maximum compressive stress reached 17.3 MPa, while the reinforcement tensile stress in the 

lowest layer of the longitudinal bars reached the yield value (fy = 435 MPa). The maximum 

crack width was 0.27 mm.  
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(a) 

  

(b) 

  

 
(c) 

 
 
(d) 

 
 

 

Figure 96 – Cantilever beam NLA at design load: (a) deflections in the z-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses, (d) crack widths.  

17.3 MPa 



163 

6.2.4 Results: service load 

Selected results at service load are shown in Figure 97 and described as follows. 

 The maximum displacement in the z-direction was -1.94 cm in the midspan. The concrete 

maximum compressive stress reached 12.9 MPa, while the reinforcement tensile stress reached 

327 MPa. The maximum crack width was 0.15 mm. 

 

(a) 

  
(b) 

  
(c) 

 
(d) 

 

 

Figure 97 – Cantilever beam NLA at service load: (a) deflections in the z-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses; (d) crack widths.  

12.9 MPa 
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6.2.5 Alternative solution: plastic sectional design 

The beam was designed for Ultimate Limit State as a linear member, as regularly done in design 

practice, by the Sectional Method (SecM), which is based on a truss model with longitudinal 

chords and a web. Sectional design was performed for the peak sectional forces at the right 

support and at the midspan. Bending moment and shear force diagrams for the calculations are 

presented in Figure 98a. 

Flexural design 

The flexural moment is resisted by horizontal chords spaced at a distance z. A plastic design 

where concrete in compression is utilized up to the material capacity was performed using a 

rectangular stress block. The design values of the bending moments and the corresponding 

required reinforcement were: 

2
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 
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 (6.9) 

Shear design 

Four sections were analyzed for the shear design, assuming the angle of the inclined struts θ = 

45°. The maximum shear forces and the resulting designed reinforcement were: 
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 (6.10) 

Reinforcement for crack control 

Longitudinal skin reinforcement was distributed uniformly on both side faces of the beam to 

control cracking in the web. According to NBR-6118 (2014): 

2

0.10% 4.00 10/ 20h c

cm
A A each face

m
     (6.11) 

 The final arrangement for the sectional design of the cantilever beam is presented in 

Figure 98b.  
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(a) 

 
(b) 

 
 

Figure 98 – Cantilever beam designed by the SecM: (a) bending moment and shear force diagrams; (b) 
reinforcement layout. 

Nonlinear analysis of the alternative solution 

The solution achieved by the sectional design was assessed by a nonlinear analysis so that a 

direct comparison could be established between the SFM e SecM solutions. The structural 

model elaborated for the analysis was named ‘model B’; it considered the reinforcement 

modeled as 1D elements as presented in Figure 99. 

 Selected results at service load are shown in Figure 100 and described as follows: the 

maximum beam displacement in the z-direction was -1.89 cm, and the maximum crack width 

reached 0.19 mm. 

Daniel Della Bella
Carimbo

Daniel Della Bella
Carimbo
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Figure 99 – Cantilever beam designed by the SecM:  NLA – 1D elements. 

(a) 

   
(b) 

 
(c) 

 
 

 

Figure 100 – Cantilever beam designed by the SecM: NLA results at service load - (a) deflections in 
the z-direction; (b) reinforcement stresses; (c) crack widths.  
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6.2.6 Discussion 

The behavior of the beams is visualized in four load-displacement curves (Figure 101): the 

ordinate plots the reaction of the right support, and the abscissa the vertical displacement, either 

at midspan or at the extremity of the cantilever beam (in this case, the computed displacement 

adequately discounted the parcel attributed to the rigid body movement of the hangover which 

resulted from the rotation of the section at the right support: δ*
cant = δcant – θrigh supp. ℓhang). The 

load-displacement curves show similar stiffness responses of the beams designed by the SFM 

and the SecM. 

 

 
 

Figure 101 – Cantilever beam NLA: load-displacement curves. 

 The maximum sustained load in the beam designed by the SFM was 26% higher than the 

design load, and 11% higher than the failure load of the beam designed by the SecM. 

 The beam designed by the SFM presented a better performance in service conditions. 

This was observed by the crack widths, which were 26% smaller, and by the crack pattern, 
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which did not extend up to the beam mid height, as in the SecM, but was concentrated at the 

bottom of the beam. 

Reinforcement consumption 

The SFM design required more reinforcement compared to the SecM design: 

 The total area of flexural reinforcement was 35% higher at a midspan section, and 53% 

higher at a section passing through the right support: 

, , , ,

, , , ,

34.0 28.9
1.35; 1.53

25.2 18.9
sx positive SFM sx negative SFM

sx positive SECT sx negative STM

A A

A A
     (6.12) 

The difference is explained by the fact that the sectional design for flexure assumes 

optimized lever arms between compressive and tension chords in each cross-section. 

 The SFM design resulted in a more conservative stirrup arrangement for shear 

reinforcement. It did not account, as in the SecM design, for the portion of the shear 

resistance provided by concrete (VRd,c) which, after cracking, is “attributed to aggregate 

interlock, dowel action, and the shear transmitted across the concrete compression zone” 

(ACI, 2019, p. 401). 

Remarks 

The nonlinear analyses confirmed the safety of the SFM for the ULS design of the cantilever 

beam. The SFM design required more flexural and shear reinforcement but yielded a better 

performance in service conditions. The sectional method is certainly preferable for designing 

regular beams in B-regions for its efficiency, economy, and validated results. This first example, 

however, clearly demonstrated the feasibility of applying the SFM to provide an alternative 

design solution. 
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6.3 Example 2: corbel 

6.3.1 Structural model for the nonlinear analysis 

Column and corbel were meshed with elements with dimension of 0.05 m, so that at least six 

elements were distributed along the corbel depth, and eight elements were distributed along the 

corbel width and length (Figure 102a). All the rebars from the reinforcement layout presented 

in Figure 49 were discretized as linear elements, as shown in Figure 102b. Steel plates were 

meshed with elements with dimension of 0.025 m, yielding two elements along its height. The 

resulting structural model for the nonlinear analysis summed 31,186 tetrahedral elements and 

1,006 linear elements. It was named ‘model A’. 

 Concerning the boundary conditions, displacements were constrained in the x-, y- and z-

directions in four points below the steel plate at the bottom of the column, as presented in Figure 

103. Concrete was modeled with a “solid concrete” material model (fcd = 20 MPa, fctd = 1.33 

MPa, Ec = 26,070 MPa, ag = 20 mm, εcp = -1.54‰, fco = -2.8 MPa, Wd = 5 mm). Embedded 

rebars were modeled with a “1D reinforcement” material model (fyd = 435 MPa, Es = 210 GPa, 

εsu = 10‰). Steel plates above the corbel faces and at the bottom of the column were modeled 

with a “solid elastic” material model with increased modulus of 10 Es = 2 100 GPa, to distribute 

the concentrated applied forces. 

 

  
(a) (b) 

 

Figure 102 – Corbel NLA structural model: (a) volume elements; (b) linear elements. 
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(a) (b) 

 

Figure 103 – Corbel NLA structural model: (a) applied loads and monitoring points; (b) points of 
application of the boundary conditions at the bottom of the lower steel plate. 

 Loads were applied as a pair of concentrated loads for each top steel plate. Analysis was 

performed with the arc-length solution method, utilizing the PARDISO solver for loads 

increasing incrementally up to failure. The behavior of the structural model was assessed with 

the aid of the three monitoring points: one monitoring point (mnt.1) located on the surface of 

the top steel plate to read the concentrated applied force in the z-direction, and the other ones 

(mnt.2 and mnt.3) located at the bottom corners of the corbel to read displacements in the z-

direction. Loads and monitoring points are shown in Figure 103. 

6.3.2 Results: failure load 

The corbel failed by the yielding of the main tie at a load of 740 kN (1.47 times the design load). 

Selected results of the numerical simulation at failure load are shown in Figure 104 and Figure 

105, and described as follows. 

 At the maximum sustained load of the analysis, the maximum displacement in the z-

direction was -0.28 cm; tie reinforcement was stressed up to the yield stress (fyd = 435 MPa). 

Stirrups confined the compression zone such that the concrete maximum compressive stress 

could reach 35.0 MPa. Cracks formed in the region extending from the support areas to the 

corbel-column interface, and propagated into the column above the corbel, with a maximum 

width of 0.36 mm. In the last converged iteration, plastic strains summed 0.30‰ in concrete, 

and 5.67‰ in the reinforcement  

  

mnt.2 
mnt.3 

mnt.1 
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(a) 

 

 

(b) (c) 

  

 

(d) 

 
 

 

Figure 104 – Corbel NLA results at failure load: (a) deflections in the z-direction; (b) concrete principal 
stress σc3, (c) reinforcement stresses; (d) crack widths.  
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(a) 

  
 
(b) 

 
 
(c) 

 
 

 

Figure 105 – Corbel NLA results at failure load: (a) concrete principal stress tensors; (b) concrete 
plastic strains; (c) reinforcement plastic strains.  
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6.3.3 Results: design load 

Selected results at design load are shown in Figure 106 and described as follows. 

 The maximum displacement in the z-direction was -0.14 cm. The concrete maximum 

compressive stress was 24.5 MPa, while the main reinforcement tensile stress reached 409 MPa. 

The maximum crack width was 0.17 mm. 

 
(a) 

 
 
(b) (c) 

  
 
(d) 

 
 

 

Figure 106 – Corbel NLA results at design load: (a) deflections in the z-direction; (b) concrete principal 
stress σc3; (c) reinforcement stresses, (d) crack widths.  
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6.3.4 Results: service load 

Selected results at service load are shown in Figure 107 and described as follows. 

 The maximum displacement in the z-direction was -0.11 cm. The concrete maximum 

compressive stress was 20.2 MPa, while the main reinforcement tensile stress reached 359 MPa. 

The maximum crack width was 0.13 mm. 

 

(a) 

 
 

(b) (c) 

  
 

(d) 

 
 

 

Figure 107 – Corbel NLA results at service load: (a) deflections in the z-direction; (b) concrete principal 
stress σc3; (c) reinforcement stresses; (d) crack widths.  
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6.3.5 Alternative solution: structure designed by the STM 

Applying the strut-and-tie method (STM) for designing corbels is allowed by design codes such 

as Eurocode 2 (CEN, 2004), MC2010 (fib, 2013), ACI-315 (2014), and NBR-6118 (2023), 

assuming that the applied load is transferred directly to the support by means of an inclined 

strut, as illustrated in Figure 108a. The main tensile reinforcement was initially designed 

according to Brazilian Code NBR-9062 (2017, Section 7.3.5.3), following the design rules for 

short corbels: 

2
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c d
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a F
A cm

d f
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 (6.13) 

Complementarily, it was designed according to the fib Practical design of structural concrete 

(1999, Section 6.5.2.3). The assigned design steps are listed below: 

 Step 1: determination of the lever arm, a: 
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 (6.14) 

 Step 2: determination of the compressive height: 

2
2 12 0.073a d d a a m     (6.15) 

 Step 3: determination of the longitudinal reinforcement, A1: 
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 (6.16) 

 The longitudinal reinforcement was detailed for the highest value from the two different 

approaches. An arrangement of 6 ϕ16 straight bars anchored with welded transverse bars at the 

extremities was chosen. Additional horizontal closed ties parallel to the primary tension 

reinforcement, uniformly distributed within two-thirds of the effective depth, were detailed for 

crack control according to ACI 318 (2014, section 16.5.5.2). The total area, Ah, was: 

  2
10.5 0.5 11.8 5.9h nA A A cm       (6.17) 

which was covered by 8 ϕ10 rebars.  
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 At the bottom of the corbel, 4 ϕ8 rebars were arranged: 

2
,inf 0.15% 0.0015 40 30 1.8s cA A cm       (6.18) 

 The transverse reinforcement, Aw, was designed for the following part of the load: 

 2 / 1 3 0.35wF F a z F    (6.19) 

2500
0.35 4.02

43.48
w

w
yd

F
A cm

f
     (6.20) 

which was detailed with 2 stirrups ϕ8 mm with four legs each, enclosing the longitudinal tension 

reinforcement and the compression zone and distributed over length aw: 

0.85 4 0.13wa a d cm    (6.21) 

The final reinforcement arrangement is presented in Figure 108b. The reinforcement area 

in the x-direction arrangement summed: 

2
, 6 2.00 6 1.13 4 0.50 20.8sx corbelA cm        (6.22) 

which was approximately equal to the total area obtained from the SFM design (20.5 cm²). 

(a) 

 
(b) 

 
 

Figure 108 – Corbel designed by the STM: (a) structural model; (b) detailing. 

Daniel Della Bella
Carimbo

Daniel Della Bella
Carimbo
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Nonlinear analysis of the alternative solution 

The STM solution was then assessed by a nonlinear analysis. The structural model elaborated 

for this analysis, ‘model B’, was identical to the one elaborated to assess the SFM solution, 

except for the reinforcement arrangement presented in Figure 109. Selected results at service 

load are shown in Figure 110: the maximum vertical displacement was -0.11 cm; the main tie 

reached a stress of 396 MPa; and the maximum crack width was 0.14 mm. 

 

 
 

Figure 109 – Corbel designed by the STM: nonlinear structural model – 1D elements. 

(a) 

 
(b) (c) 

 

 

Figure 110 – Corbel designed by the STM: NLA results at service load - (a) deflections in the z-
direction; (b) reinforcement stresses; (c) crack widths. 
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6.3.6 Discussion 

The behavior of the corbels is visualized in the load-displacement curves of Figure 111, where 

the ordinate plots the total applied force, and the abscissa the relative vertical displacement 

(difference between measurements from mnt.2 and mnt.3). The load-displacement curves show 

a slightly stiffer response of the corbel designed by the SFM. 

 The maximum sustained load in the beam designed by the SFM was 47% higher than the 

design load, and 10% higher than the failure load of the corbel designed by the STM. 

 The beam designed by the SFM presented a better performance in service conditions. 

Although the absolute value of the maximum crack widths and vertical displacements were 

similar in both simulated corbels, the crack pattern developed in the one designed by the STM 

was noticeably more pronounced, extending through the column-corbel intersection volume. 

 

 
 

Figure 111 – Corbel NLA: load-displacement curves.  
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Reinforcement consumption 

The SFM design used similar total horizontal reinforcement as the STM design, but it was more 

concentrated towards the top face of the corbel. The procedure adopted for treating the 

singularities turned out to be appropriate, since a safe design was achieved. 

 Vertical reinforcement in the SFM design was provided by a total amount 2.15 times 

larger than the STM design; additional stirrups in the column above the corbel were needed to 

equilibrate the forces deriving from the structural analysis, which assumed elastic material 

behavior. 

 Two complementary comments are presented concerning the reinforcement detailing. 

First, it is noted that there is experimental evidence that horizontal tensile stresses and cracks 

develop in the column above the corbel, as observed in the tests performed by Urban and 

Krawczyk (2016). The introduction of complementary column stirrups in the SFM design is 

justified theoretically and observed practically. Second, the SFM yields reinforcement in three 

orthogonal directions by following elastic stress lines; it can be considered an intermediate 

solution to the design method proposed by Hoffmann, Käseberg and Holschemacher (2023) 

giving fanned-out reinforcement layouts. 

Remarks 

The nonlinear analyses confirmed the safety of SFM for the ULS design of the corbel. The SFM 

design required more flexural and shear reinforcement, but yielded a better performance in 

service conditions. This second example demonstrated the feasibility of application of the SFM 

to provide a competitive alternative design solution for this simple D-region. 
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6.4 Example 3: beam under axial forces 

6.4.1 Structural model for the nonlinear analysis 

The structural model for the nonlinear analysis was meshed with elements with dimension of 

0.04 m; at least five elements were distributed along each dimension of the cross-section. 

 For beam I: 408 linear and 21,476 tetrahedral elements, as shown in Figure 112. 

 For beam II: 376 linear and 21,156 tetrahedral elements, as shown in Figure 113. 

 For beam III: 536 linear and 21,175 tetrahedral elements, as shown in Figure 114. 

Concerning boundary conditions, displacements were constrained in the x-, y- and z-directions 

on the faces of the steel plates of the extremities of the beam. 

 Concrete was modeled with a “solid concrete” material model (fcd = 21.4 MPa, fct = 1.33 

MPa, Ec = 26,070 MPa, ag = 20 mm, εcp = -1.54‰, fco = -2.8 MPa, Wd = 5 mm). Embedded 

rebars were modeled with a “1D reinforcement” material model (fyd = 435 MPa, Es = 210 GPa, 

εsu = 10‰). Steel plates, in turn, were modeled with a “solid elastic” material model with 

increased modulus of 10 x Es = 2 100 GPa. 

 Loads were applied as a set of ten concentrated loads at the central steel plate, as indicated 

in the cross-sections of Figure 50. They were incrementally increased up to failure. Analyses 

were performed with the arc-length solution method, utilizing the PARDISO solver. The 

behavior of the structural model was assessed with the aid of one monitoring point (mnt.1) 

located at the central steel plate to read displacements in the x-direction, and two monitoring 

surfaces at the lateral steel plates (mnt.2 and mnt.3) to read support reactions (Figure 112c). 

 

(a) 

 
(b) 

   
(c) 

 
 

 

Figure 112 – Beam I model for theNLA: (a) mesh; (b) steel plates and linear elements; (c) monitoring 
points.  

mnt.1 

mnt.2 mnt.3 
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(a) 

 
(b) 

 
 

Figure 113 – Beam II model for the NLA: (a) mesh; (b) steel plates and linear elements. 

(a) 

 
(b) 

 
 

Figure 114 – Beam III model for the NLA: (a) mesh; (b) steel plates and linear elements. 

6.4.2 Results: beam I 

The maximum sustained load in the numerical analysis was 1,410 kN, which corresponded to 

1.39 times the design load. The concrete beam failed by the yielding of the reinforcement in the 

tension span (see Section 6.4.6). 

 Selected results at the maximum sustained load in the analysis are shown in Figure 115: 

the maximum horizontal displacement was 0.34 cm at the central plate; reinforcement in the 

tension span was stressed up to the yield stress (fyd = 435 MPa). The concrete compressive stress 

reached 21.9 MPa at the compression midspan. Cracks throughout the tension span reached 

widths of 0.41 mm. 

 Selected results at design load are shown in Figure 116: the maximum horizontal 

displacement was 0.19 cm; concrete compressive stresses reached 17.8 MPa; reinforcement 

stresses reached 272 MPa; and the maximum crack width was 0.06 mm. 

 Selected results at service load are shown in Figure 117: the maximum horizontal 

displacement was 0.12 cm; concrete compressive stresses reached 13.5 MPa; reinforcement 

stresses reached 173 MPa; and the maximum crack width was 0.04 mm. 
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Figure 115 – Beam I NLA results at maximum load: (a) deflections in the x-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses; (d) crack widths.  
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Figure 116 – Beam I NLA results at design load: (a) deflections in the x-direction; (b) concrete principal 
stress σc3; (c) reinforcement stresses; (d) crack widths. 
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Figure 117 – Beam I NLA results at service load: (a) deflections in the x-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses; (d) crack widths. 
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6.4.3 Results: beam II 

The maximum sustained load in the numerical analysis was 1,503 kN, which corresponded to 

1.47 times the design load. The concrete beam failed by the yielding of the reinforcement in the 

tension span (see Section 6.4.6). 

 Selected results at the maximum sustained load in the analysis are shown in Figure 118 

and described as follows: the maximum horizontal displacement was 0.22 cm at the central 

plate. Concrete compressive stresses reached 16.4 MPa (representative value, outside the zone 

of the central plate), while reinforcement stresses in the tension span reached the yield stress 

(fyd = 435 MPa). Cracks throughout the tension span reached widths of 0.18 mm. 

 Selected results at design load are shown in Figure 119 and described as follows: the 

maximum horizontal displacement was 0.15 cm; concrete compressive stresses reached 13.3 

MPa; reinforcement stresses reached 326 MPa; and the maximum crack width was 0.07 mm. 

 Selected results at service load are shown in Figure 120 and described as follows: the 

maximum horizontal displacement was 0.12 cm; concrete compressive stresses reached 11.1 

MPa; reinforcement stresses reached 251 MPa; and the maximum crack width was 0.06 mm. 

6.4.4 Results: beam III 

The maximum sustained load in the numerical analysis was 1,087 kN, which corresponded to 

1.06 times the design load. The concrete beam failed by concrete crushing (see Section 6.4.6). 

 Selected results at the maximum sustained load in the analysis are shown in Figure 120: 

the maximum horizontal displacement was 0.22 cm; concrete compressive stress reached 22.0 

MPa; reinforcement stresses in the tension span reached 233 MPa; and cracks widths 

throughout the tension span reached 0.06 mm.  
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Figure 118 – Beam II NLA results at maximum load: (a) deflections in the x-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses; (d) crack widths. 



187 

(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
 
 

 

Figure 119 – Beam II NLA results at design load: (a) deflections in the x-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses; (d) crack widths. 
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Figure 120 – Beam II NLA results at service load: (a) deflections in the x-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses; (d) crack widths.  
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Figure 121 – Beam III NLA results at maximum load: (a) deflections in the x-direction; (b) concrete 
principal stress σc3, (c) reinforcement stresses; (d) crack widths.  
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 Selected results at design load are shown in Figure 122: the maximum horizontal 

displacement was 0.20 cm; concrete compressive stresses reached 21.7 MPa, while 

reinforcement stresses reached 214 MPa; and the maximum crack width was 0.06 mm. 
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Figure 122 – Beam III NLA results at design load: (a) deflections in the x-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses, (d) crack widths.  
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 Selected results at service load are shown in Figure 123: the maximum horizontal 

displacement was 0.09 cm; concrete compressive stresses reached 15.1 MPa, while 

reinforcement stresses reached 105 MPa; and the maximum crack width was 0.03 mm. 

 

(a) 
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Figure 123 – Beam III NLA results at service load: (a) deflections in the x-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses; (d) crack widths. 
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6.4.5 Alternative solution: concrete limit design (CLD) 

The alternative solution adopted for this worked example was a plastic limit design for concrete. 

It assumed that concrete presented no tensile strength, and that concrete was utilized up to its 

maximum strength in compression. 

 Assuming a parabola-rectangle stress-strain relation for the concrete, the maximum 

sustained load in the beam was obtained for concrete strains reaching the value: 

2 ‰2.00c    (6.23) 

The compressed spans, therefore, were subjected to the maximum force: 

 . 80 571 0 ccu cdF A kNf     (6.24) 

The tension span was designed for the portion of the applied force not resisted by concrete: 

1020 857 163su d cuF F F kN      (6.25) 

 

 

 

Figure 124 – Beam under axial forces: parameters for the alternative plastic design. 

Beam I 

The tensioned span was subjected to the same strain as the one in the compressed span: 

2 ‰2.00su c      (6.26) 

This deformation was smaller than the reinforcement yielding strain εyd = fyd / Es = = 2.07‰, so 

that the force mobilized in the reinforcement was calculated from: 

Daniel Della Bella
Carimbo
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 1 (2‰ 210,000) 420u s s ssu sF E A A A     (6.27) 

The total area of required reinforcement was then calculated as: 

21
4

163
3.9

420,000 10 42
u

s

F
A cm  


 (6.28) 

which was arranged with 4 ϕ12 longitudinal rebars. 

Beam II 
The tensioned span was subjected to: 

2 ‰) 4‰2 2 ( .00su cu          (6.29) 

meaning that reinforcement was yielding, and the force mobilized in the reinforcement was: 

1 434.8ydu s sF Af A    (6.30) 

The total area of required reinforcement was then calculated as: 

21 163
3.7

43.48 43.48
u

s

F
A cm    (6.31) 

which was arranged with 4 ϕ16 longitudinal rebars. 

Beam III 
The tensioned span was subjected to: 

0.5 1 00‰.su cu      (6.32) 

This deformation was smaller than the yield strain εyd, so that the force mobilized in the 

reinforcement was calculated from: 

 2 (1.00‰ 210,000) 210 [ ]u s s ss sF A A A unit MNE       (6.33) 

The total area of required reinforcement was then calculated as: 

22
4

163
7.8

210,000 10 21
u

s

F
A cm  


 (6.34) 

which was arranged with 4 ϕ16 longitudinal rebars, that is, the same arrangement of the beam 

designed by the SFM. 

Nonlinear analysis of the alternative solution 

Selected results at service load are shown in Figure 125: the maximum crack widths for beams 

I, II and III were, respectively, 0.04 mm, 0.07 mm and 0.03 mm, approximately identical to 

those observed in the simulations of the SFM design.  
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(a) 

 
 
(b) 

 
(c) 

  
 

  

Figure 125 – Beams designed by the concrete limit design - NLA results: crack widths at service load: 
(a) beam I; (b) beam II; and (c) beam III. 

6.4.6 Discussion 

The behavior of the beams is visualized in the load-displacement curves of Figure 126, where 

the ordinate plots the total applied force (as the sum of reaction forces measured from mnt.2 

and mnt.3), and the abscissa the horizontal displacement measured by mnt.1. The curves in blue 

correspond to the beam designed by the SFM, and the curves in red, to the beam designed by 

the concrete limit design (cld). Forces equilibrated by the compression span (C) and tension 

span (T) appear in dashed lines, while their sum appear in continuous line. 
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Figure 126 – Beam under axial load NLA: load-displacement curves for (a) beam I; (b) beam II; and 
(c) beam III.  
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Beams I and II designed by the SFM required more reinforcement compared to the ones 

designed by CLD. They showed stiffer responses. 

 Beam III designed by the SFM required the same reinforcement as the one designed by 

the CLD. The SFM assumed uncracked concrete in the structural analysis, and limit design for 

the reinforcement, which was assumed to be yielding. The nonlinear analysis showed, however, 

that it did not occur. Even so, plastic stress redistribution of concrete in the compression span 

allowed for the development of a strain state in the beam that was sufficient to mobilize the 

design load. This example was purposedly conceived to illustrate an extreme case in which a 

short beam in compression is associated with a long beam in tension. It is recalled that the beam 

ultimate capacity would have been further increased if minimum reinforcement in the 

compression span were provided as prescribed by normative codes. 

Uncracked and cracked stiffnesses 

The SFM assumed uncracked stiffness for the structural analysis determining the applied stress 

field for the design. Questions may arise as to whether this assumption is adequate to check 

strength criteria: it could be argued that concrete stiffness in areas of anticipated cracking should 

be reduced. The ACI (2019, p.72) recognizes the difficulty of reflecting the degree of cracking 

along each member before yielding: “complexities involved in selecting different stiffnesses 

for all member of a frame would make frame analyses inefficient in the design process”. 

Complexities would be even more pronounced in selecting different stiffnesses for individual 

solid elements: (i) composing massive structural members; (ii) with their stiffness largely 

affected by the loading history and load cases, which in a real structure may lead to the 

formation of new cracks, or widening or closure of existing ones. 

 Simpler assumptions are, therefore, required in the definition of material stiffnesses. 

Assuming uncracked stiffnesses for the structural analyses was adequate in the three examples. 

Remarks 

The nonlinear analyses confirmed the safety of the SFM for the ULS design of the beams 

subjected to axial forces. The third worked example showed that by assuming uncracked 

stiffness, a safe design was achieved.  
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6.5 Example 4: six-pile cap 

6.5.1 Structural model for the nonlinear analysis 

For the nonlinear structural model, additional steel plates were modeled at the top of the 

columns, so that the concentrated applied loads could be uniformly distributed to the concrete 

column elements. Columns, pile cap, piles and rebars were meshed with elements with 

dimension of 0.25 m, while steel plates were meshed with elements with dimension of 0.10m. 

The resulting structural model for the nonlinear analysis summed 74,218 tetrahedral elements 

and 14,708 linear elements, as presented in Figure 127a, and was named ‘model A1’. Boundary 

conditions were assumed as in the elastic model. The contact between steel plates and column, 

column and pile cap, pile cap and piles, and piles and steel plates were all modeled as master-

slave fixed contacts. 

 Pile cap elements were modeled with a “solid concrete” material model (fcd = 20 MPa, Ec 

= 26,070 MPa). Embedded rebars were modeled with a “1D reinforcement” material model (fyd 

= 435 MPa, Es = 210 GPa, εsu = 10‰). Steel plates were modeled with a “solid elastic” material 

model (increased modulus of 10 x Es = 2 100 GPa, to better distribute the applied forces). 

Column elements, in turn, were modeled with a “reinforced concrete” material model, which 

combined C30 concrete (fcd = 20 MPa, fct = 1.33 MPa, Ec = 26,070 MPa, ag = 20 mm, εcp = -

1.54‰, fco = -2.8 MPa, Wd = 5 mm) with smeared reinforcement at a ratio of 1% in the x- and 

y-directions; additionally, embedded rebars in the z-direction were modeled: 32 #20 for C1 and 

C2, and 24 #10 for C3. This reinforcement amount was assumed to avert loss of convergence 

in the column elements throughout the loading process and thus focusing the nonlinear analysis 

on the pile cap element. Piles were modeled with a softened a “solid concrete” material model 

(fcd = 20.0 MPa, Ec = 650 MPa), for the same purpose as discussed in the linear structural model. 

 Vertical loads were applied on top of the columns differently from the elastic model. They 

were applied as concentrated forces, so that they could be more easily monitored throughout 

the analysis. The nonlinear analysis was performed with the arc-length solution method, 

utilizing the ICCG solver for loads increasing up to failure. The behavior of the structural model 

was assessed with the aid of monitoring points: three at the top C1, C2 and C3 to read the 

applied loads, six at the bottom of the piles to read the reaction forces, and two on top piles P1 

and P2 to read vertical displacements in the cap (mnt.2 and mnt.3). The monitoring point to 

read the applied load to C3, specifically, was named mnt.1 (see Figure 127c). 
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Figure 127 – Six-pile cap NLA structural model: (a) volume elements; (b) linear elements; 
(c) monitoring points mnt.1 to mnt.3; (d) reinforcement side views.  
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6.5.2 Results: maximum simulation load 

The pile cap was loaded up to 1.8 times the design load without failing. Clearly, analysis was 

performed focusing on the cap; to that aim, columns were reinforced to really high 

reinforcement ratios so that applied loads could be attained. In a real scenario, the structural 

member could have failed due to excessive column/pile compression, or disqualified for 

excessive cracking and deformation, or insufficient load bearing capacity of the soil. Selected 

results of the numerical analysis at failure load are shown in Figure 128 and Figure 129 and 

described as follows. 

 The maximum vertical total displacement was 2.11 cm. Several layers of reinforcement 

in the x-direction yielded (fyd = 435 MPa); localized yielding of reinforcement in the y-direction 

was localized below the extremities of column C3; reinforcement in the z-direction was 

subjected to low stresses. The concrete maximum compressive stress was 13.6 MPa. Flexural 

cracks developed throughout the cap volume, along the full depth of the member; the maximum 

crack width was 0.49 mm. Plastic strains summed 0.33‰ in concrete, and 5.67‰ in the 

reinforcement in the last converged iteration. 

6.5.3 Results: design load 

Selected results at design load are shown in Figure 130 and described as follows. 

 The maximum vertical total displacement was 1.11 cm; stresses of the tensioned 

reinforcement reached 295 MPa. Concrete compressive stress reached 6.7 MPa. The maximum 

crack width was 0.26 mm. 

6.5.4 Results: service load 

Selected results at failure load are shown in Figure 131 and described as follows. 

 The maximum vertical total displacement was 0.70 cm; stresses of the tensioned 

reinforcement reached 111 MPa. Concrete compressive stress reached 4.2 MPa, and the 

maximum crack width was 0.04 mm.  
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Figure 128 – Pile cap NLA results at failure load: (a) deflections in the z-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses; (d) crack widths. 
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Figure 129 – Pile cap NLA results at failure load: (a) principal concrete stresses; (b) concrete plastic 
strains; (c) reinforcement plastic strains. 
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Figure 130 – Pile cap NLA results at design load: (a) deflections in the z-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses; (d) crack widths.  
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Figure 131 – Pile cap NLA results at service load: (a) deflections in the z-direction; (b) concrete 
principal stress σc3; (c) reinforcement stresses; (d) crack widths.  
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6.5.5 Alternative solution: structure designed by the STM 

In order to quantitatively assess the solution obtained from the SFM, the pile cap was designed 

by the STM for Load combination 1. The resistant model, presented in Figure 132, was 

conceived as follows: 

 At the bottom of the cap, ties were placed above the piles (blue lines), along with two 

diagonal struts (purple lines). 

 At the top of the cap, compressive struts connected horizontally the nodes of C1 and C2 

applied forces; two complementary diagonal struts (red lines) and two complementary ties 

were arranged to transfer the load from column C3 to the rear face of the cap (blue lines). 

 Finally, inclined struts connected the nodes at the top of the cap to the nodes corresponding 

to the supporting piles (light green lines), along with two complementary diagonal struts 

(purple lines). 

 Vertical restraint for the model was provided by spring supports with kv = 2,600/0.009 ≈ 

285,000 kN/m for each pile. Forces at each bar resulting from the analysis are presented in 

Figure 133. 

 

      

(a) (b) 

 

Figure 132 – Six-pile cap designed by the STM: (a) perspective view; (b) loads. 

 Reinforcement was then calculated to resist the tie forces. At the bottom face of the pile 

cap, the main ties in the x-direction were detailed with 11ϕ25 each, whereas the main outer ties 

in the outer y-direction ties were detailed with 11ϕ20: 
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  2
, _ inf

2
, _ inf

1,875 1.4 43.48 0.85 51.3 11 25

1,113 1.4 43.48 35.8 11 20

sx tie

sy tie

A x cm

A cm





   

   
 (6.35) 

 

 

Figure 133 – Six-pile cap designed by the STM: forces (characteristic values). 

 Secondary rebars at the bottom of the pile cap were arranged as a uniformly distributed 

mesh for crack control. The ratio of 0.20% of the total tie cross-sectional area in the x-direction 

was considered: 

2
,inf_ sec

2
,inf_ sec

0.20 (22 5.00) 22.0 / 2.00 adopted 16 / 20

0.20 (22 3.15) 13.9 4.80 adopted 16 / 20
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

    

    
 (6.36) 

 At the top face of the pile cap, the axial forces acting on the ties were resisted by 13ϕ20 

in the y-direction; additional rebars in a ϕ12 /20 mm mesh completed the reinforcement 

distribution: 

2 2
,sup

2
, _ sup

,sec ,sup

0.20 (26 5.00) 26.0 26 / 5.20 5.0 12 / 20

(611 2) 1.4 43.48 39.3 13 20

12 / 20
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sy tie

sy ondary sx

A cm cm m

A cm

A A







      

    

 

 (6.37) 

 The reinforcement layout obtained from the STM design is presented in Figure 134. The 

proposed arrangement was quantified in terms of the sum of cross-sectional areas of rebars in 

each direction: 
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Figure 134 – Six-pile cap designed by the STM: reinforcement layout. 
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 (6.38) 

Nonlinear analysis of the alternative solution 

The STM solution was also assessed by a nonlinear analysis for comparison purposes. The 

elaborated model, ‘model B1’, was similar to the one elaborated to assess the SFM solution, 

but considered the rebar arrangement from Figure 134, which were modeled as presented in 

Figure 135. 

 

 

 

Figure 135 – Six-pile cap designed by the STM: nonlinear model – 1D elements. 

 Selected results at service load are shown in Figure 136 and described as follows: the 

maximum vertical displacement 0.74 cm; reinforcement stresses were considerably higher (334 

MPa); and, surprisingly, the maximum crack width reached 0.49 mm, which does not respect 

the limit of 0.30 mm established in the MC2010 (fib, 2013) for the least aggressive exposure 

class.  
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Figure 136 – Six-pile cap designed by the STM: NLA results at service load – (a) displacements in the 
z-direction; (b) reinforcement stresses; (c) crack widths.  
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6.5.6 Discussion 

The behavior of the pile caps is visualized in the load-displacement curves of Figure 137, where 

the ordinate plots the applied load at the top of column C1 measured by mnt.1, and the abscissa 

the relative vertical displacement (difference between measurements from mnt.2 and mnt.3). 

 Model A1 was elaborated with the reinforcement designed by the SFM, and with a material 

model for concrete with its full tensile strength (fctd = 1.33 MPa). The numerical simulation 

was performed up to a load 80% higher than the design load. Yet, the failure of the pile cap 

was not reached, which confirmed the safety of the SFM by a large margin.  

 Model A2 was elaborated with the reinforcement designed by the SFM, and with a material 

model for concrete whereby its tensile strength was artificially reduced to 20% of the 

original strength (fctd,red = 0.20 fctd = 0.27 MPa; Gf,red = 0.20 Gf = 6.67e-06). The pile cap 

did not fail in the numerical simulation. Note: the value of 20 % was defined by trial-and-

error - loss of convergence successively occurred in simulations with lower tensile strength 

due to localized effects of partially loaded regions. 

 Model B1 was elaborated with the reinforcement designed by the STM, and concrete with 

its full tensile strength (fctd = 1.33 MPa). In the numerical simulation, the pile cap failed at 

an ultimate load 68% higher than the design load. The STM, as the SFM, underestimated 

the capacity of the pile cap by not computing the concrete tensile strength. 

 Model B2 was elaborated with the reinforcement designed by the STM, and with a material 

model for concrete whereby its tensile strength was artificially reduced to 20% of the 

original strength (fctd,red = 0.2 x fctd = 0.27 MPa; Gf,red = 0.20 x Gf = 6.67e-06). The pile cap 

failed at an ultimate load 17% higher than the design load. 

 The load-displacement curves show a slightly stiffer response of the cap designed by the 

SFM. The increased strength of the cap designed by this method is attributed to the concrete 

tensile strength and to the reinforcement working in compression. 

Reinforcement consumption 

The total required reinforcement for the pile cap arranged by the SFM design was greater 

compared to the STM design: 

,sup,,inf,

,inf, ,sup,

252.0 156.0 14.7 99.4
1.46; 1.09

146.0 133.3 29.4 74.9
s SFMs SFM

s STM s STM

AA

A A

 
   

 
 (6.39) 
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Those increased values of +46% and +9% are considered justified by the increased performance 

brought by the SFM solution. 

Bar spacing in the arrangement 

Some discussion is proposed on the spacing of rebars in the SFM design. An initial macroscopic 

insight is obtained from Vincent et al. (2018, p. 555), who stated that “Provided that the spacing 

between two neighboring reinforcements is sufficiently small as compared with the size of the 

reinforced zone, the latter may be replaced by a zone where the homogenized constituent 

material obeys a macroscopic strength condition”. 

 Further information is required, however, to delimit the area of influence of individual 

rebars. For combining pure tension and flexure, the FIP Recommendations (FIP, 1999, p. 95) 

establishes an effective concrete area for crack control extending 6ϕ from the axis of a rebar. 

Inside massive elements (outside the zone influenced by the concrete cover), that would result 

in an influence length of 12 ϕ (that means, for ϕ10/12/16/20/25 rebars, influence lengths of 

12/14/19/24/30 cm, respectively). Evaluation of an effective concrete area for ultimate limit 

state homogenized behavior, however, is still missing. As an assumed guideline, however, 

spacing between layers was limited to 0.20 m, and spacing between bars within a horizontal 

grid and between vertical stirrups were limited to 0.40 m. The numerical analyses confirmed 

the adequacy of this procedure. 

 The arrangement of the bottom reinforcement in a grid layout, rather than concentrated 

above the pile lines in a banded layout, did not compromise the pile cap overall strength, as 

shown by the numerical simulation. This acknowledgement assent to an experimental test 

program conducted by Kim et al. (2023) for four-pile caps which indicated that “the ultimate 

strength of the footings were comparable when the bottom mat reinforcement was properly 

developed, regardless of the type of layouts and anchorage details” (KIM et al., 2023, p. 285) 

Surprisingly, the program concluded that “The grid layout provided the best performance based 

on considerations of strength, serviceability, and constructability” (KIM et al., 2023, p.299). 
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Figure 137 – Six-pile cap NLA: load-displacement curves. 

Remarks 

The limited applicability of the STM was already signalized by Schlaich, Schäfer, Jennewein 

reviewing their proposed design approach. They stated that “The resulting models are quite 

often kinematic which means that equilibrium in a given model is possible only for the specific 

load cases” (1987, p. 93). 

 The nonlinear analyses confirmed the safety of the SFM for the ULS design of the six-

pile cap. The SFM design required more flexural and shear reinforcement but yielded a better 

performance in service conditions. It proposed a novel configuration for the arrangement of 

reinforcement inside the massive member, with reinforcement distributed uniformly in the 

horizontal planes and distributed in multiple layers over the cap depth. Reinforcement 

arrangements may yet be optimized to reduce the reinforcement consumption and the distance 

between failure and design loads.  
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6.6 Example 5: trunnion girder 

6.6.1 Structural model for the nonlinear analysis 

Concrete column and girder structure were meshed with elements with dimensions of 0.40 m, 

while steel plates were meshed with elements of 0.10 m, as presented in Figure 138. Each bar 

in the x-, y- and z-directions from the reinforcement layout presented in Section 5.6.4 was 

discretized as a linear element (see Figure 139). The complete structural model summed 

170,796 tetrahedral elements and 12,080 linear elements, and was named ‘model A1’. 

Boundary conditions were assumed as in the elastic model. The contact between anchor steel 

plates and girder, and between column and girder were modeled as master-slave fixed contacts. 

 Trunnion girder solid elements were modeled with a “solid concrete” material model (fcd 

= 20 MPa, fct = 1.33 MPa, Ec = 26,070 MPa, ag = 20 mm, εcp = -1.54‰, fco = -2.8 MPa, Wd = 5 

mm). Embedded rebars were modeled with a “1D reinforcement” material model (fyd = 435 

MPa, Es = 210 GPa, εsu = 10‰), while anchor and trunnion plates with a “solid elastic” material 

model (increased modulus of 10 x Es = 2 100 GPa, to better distribute the applied forces). 

Column elements, on the other hand, were modeled with a “reinforced concrete” material model 

with smeared reinforcement at a ratio of 4% in the x, y-, and z-directions. This reinforcement 

amount did not derive from specific calculations, but was rather assumed to avert loss of 

convergence in the column elements throughout the loading process and, therefore, to focus the 

nonlinear analysis on the trunnion girder. 

 Trunnion forces were applied with the aid of a complementary resource of the nonlinear 

software: the definition of load stages composing a loading history. In the first stage, post-

tensioning in both longitudinal and transverse directions were applied to the structure in 4 steps. 

In the second stage, the loads from the trunnion were applied sequentially in 4 steps until 

reaching the loads corresponding to Gate position #2; in the following stages, loads were 

applied to compose the sequence: Gate position #3 – Gate position #4 – back to Gate position 

#3 – back to Gate position #2 – back to Gate position #1 (for each of these 5 stages, 2 load steps 

were considered). Thereafter, the load was increased up to the maximum simulation load. 

 For nonlinear analysis of the trunnion girder, the loading history should meet predefined 

values of both post-tensioning and tainter gate applied forces, and should account for the girder 

dead load. Therefore, the arc-length method for solving the nonlinear equations was no longer 

applicable, and analysis was performed with the Newton-Raphson Method instead. 

 The behavior of the structural model was assessed with the aid of two monitoring points: 

the first one (mnt.1) was located under the FNsup closer to the column (see Figure 73), to read 
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the applied load in the x-direction; the second one (mnt.2) was located under the FNsup more 

distant from the column, to read girder displacements in the x-direction. 

 

  
(a) (b) 
 

 

Figure 138 – Trunnion girder NLA structural model: (a) volume elements; (b) trunnion girder and 
monitoring point; (c) linear elements. 

   
(a) (b) (c) 

 

Figure 139 – Trunnion girder NLA: reinforcement - (a) xy-, (b) xz-; (c) yz-plane views. 

mnt.2 
mnt.1 

mnt.3 
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6.6.2 Results: post-tensioning load 

Selected results of the numerical analysis after application of the post-tensioning forces are 

shown in Figure 140 and described as follows: the maximum displacement in the x-direction 

was 0.17 cm. Vertical cracks were formed at the upstream vertical corners of the girder, with 

widths reaching 0.10 mm. Stresses at the girder-column contact surface were about 7.0 MPa. 

The main lines of the concrete principal stress tensor clearly indicate transmission of the post-

tensioning force through the interface. 

 

(a) (b) 

 

  

 
(c) 

    

 
(d) 

         
 

Figure 140 – Trunnion girder NLA results at post-tensioning load: (a) displacements; (b) crack widths; 
(c) normal stresses σx; (d) plan view concrete stress tensor.  
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6.6.3 Results: maximum simulation load 

The girder was loaded up to 2.1 times the design load without failing. Selected results of the 

numerical analysis at the maximum simulation load are shown in Figure 142 and Figure 141 

and described as follows. 

 The accumulated displacement in the x-direction under the trunnion steel plate was 0.06 

cm. No reinforcement yielded; maximum reinforcement stress was 104 MPa. The concrete 

maximum compressive stress was 13.6 MPa. Vertical cracks developed throughout the girder 

volume, mainly behind the PT anchors and in the vicinities of the column-girder interface; the 

maximum crack width was 0.10 mm (only cracks in the first principal direction were presented 

for better visualization). Plastic strains summed 0.11‰ in concrete. 

 

(a) 

 

(b) 

    

    

 

Figure 141 – Trunnion girder NLA results at the maximum load of the simulation: (a) concrete 
equivalent plastic strain; (b) principal stress tensor.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
 

Figure 142 – Trunnion girder NLA results at the maximum load of the simulation: (a) displacements; 
(b) minimum principal stresses; (c) reinforcement stresses; (d) crack widths. 
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6.6.4 Results: design load 

Selected results at design load are shown in Figure 143 and described as follows: the 

accumulated displacement in the x-direction under the trunnion steel plate was -0.03 cm; 

stresses in the reinforcement reached 115 MPa. Principal concrete compressive stress reached 

10.4 MPa, and the maximum crack width was 0.05 mm. 

 

(a) 

 

(b) 

 

(c) (d) 

  

 

 

Figure 143 – Trunnion girder NLA results at design load: (a) displacements; (b) minimum principal 
stresses; (c) reinforcement stresses; (d) crack widths.  
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6.6.5 Results: service load 

Selected results at service load are shown in Figure 144 and described as follows: the 

accumulated displacement in the x-direction under the trunnion steel plate was -0.04 cm; 

stresses in the reinforcement reached 123 MPa. Principal concrete compressive stress reached 

10.4 MPa, and the maximum crack width was 0.05 mm. 

 

(a) 

 

(b) 

 
 
(c) (d) 

    

 

Figure 144 – Trunnion girder NLA results at service load: (a) displacements; (b) minimum principal 
stresses; (c) reinforcement stresses; (d) crack widths. 
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6.6.6 Discussion 

The behavior of the girder is visualized in the load-displacement curves of Figure 145, where 

the ordinate plots the total applied force measured by mnt.1, and the abscissa the relative 

displacement in the x-direction (difference between measurements from mnt.2 and mnt.3). 

 Model A1 was elaborated with the reinforcement designed by the SFM, and with a material 

model for concrete with its full tensile strength (fctd = 1.33 MPa). The numerical simulation 

was performed up to a load 110% higher than the design load. Yet, failure of the girder was 

not reached, which confirmed the safety of the SFM by a large margin. The increased 

strength of the girder is attributed to the concrete tensile strength and the reinforcement 

compressive strengths accounted for in the simulation. 

 Model A2 was elaborated with the reinforcement designed by the SFM, and with a material 

model for concrete where its tensile strength was artificially reduced to 1% of the original 

strength (fctd,red = 0.01 fctd = 0.01 MPa; Gf,red = 0.01 Gf = 3.33e-07). In the numerical 

simulation, the girder failed at a load 100% higher than the design load. Note: the value of 

1%, much inferior to the 20% assumed in the pile cap analyses, could be assumed without 

causing convergence issues because reinforcement was distributed throughout the girder in 

the three orthogonal directions. 

Discussion on the computational aspects for both the SFM design and the validation NLA are 

addressed as follows: 

 The linear analysis of the model described in Section 5.6.1 was performed in 40 minutes 

(on a personal computer with i5 processor, 16 Gb of RAM, and 2.90 GHz clock speed). 

 The computation of the reinforcement stresses by the application developed for this 

research was performed in additional 40 minutes. 

 Each individual nonlinear analysis in ATENA took approximately 40 minutes (on a 

personal computer with i7 processor, 32 Gb of RAM, and 3.50 GHz clock speed). More 

than thirty analyses were performed to build an adequate model, in a trial-and-error process, 

especially when convergence matters occurred. Testing of parameters for the material 

models, solution methods, solvers, and load step sizes: all these activities required critical 

reasoning. 

These numbers corroborate that the assessment of structures by NLFEA is still quite time-

consuming and computationally expensive.  
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Figure 145 – Trunnion girder NLA: load-displacement curves. 

Remarks 

In complex and massive structures, with reinforcement distributed over the volume, forces are 

equilibrated in three dimensional schemes that are not directly visualized or simplified by strut-

and-ties schemes. The SFM provided a lower bound safe solution for the ULS design of the 

trunnion girder. This fifth example demonstrated the feasibility of applying the SFM to provide 

an alternative design solution for structures with complex loading. More economical solutions 

would be obtained with more sectorized arrangements. 

 The SFM automatically provided the girder with resisting mechanisms to equilibrate 

tensile forces and bending moments, combined effects of shear and torsion, and tensile stresses 

originated by the effects of three-dimensional partially loaded blocks. The concrete tensile 

strength was adequately neglected for the ULS design, as explicitly recommended for flexural 

and axial strength calculations (ACI, 2014, Section 22.2.2.2) and in the calculation of 

reinforcement for anchorage zones for post-tensioned tendons (ACI, 2019, Section 25.9.4.4). 
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7 Summary and conclusions 

7.1 Summary 

The text from Sections 7.1.1 to 7.1.3 is reproduced from Chen, Nogueira Bittencourt and Della 

Bella (2023b). 

7.1.1 Limit analysis (theory of plasticity) 

The formulation presented for the concrete design started from a stress field satisfying the 

equilibrium conditions in the structure volume and its boundary, particularly obtained from a 

linear analysis. Moreover, the stresses in concrete and steel were limited by their yield 

conditions (or plastic values). These are the two conditions required by the lower bound 

theorem of the Theory of Plasticity to guarantee that, in this way, the structure collapse load is 

equal to or greater than the design load. 

7.1.2 Limit analysis and structural concrete 

Limit analysis assumes that materials have a rigid-perfectly plastic behavior. Its application to 

reinforced concrete, which is not straightforward since concrete and reinforcement steel are 

materials of limited ductility, was carefully reviewed by several researchers. Limit analysis may 

be applied to reinforced concrete if there is “sufficient deformation capacity to develop the 

plastic stress redistribution required in the element.” Specific provisions for evaluating and 

quantifying the plastic redistribution are currently restricted to parameter δ measuring the 

change in the direction of the compression of the concrete, as proposed by Marti et al. (2002). 

Further research is required, however, to validate the proposed limit of 15 degrees, and to 

conceivably introduce complementary plastic parameters. 

7.1.3 Proposed framework of the design equations 

The design equations were initially deduced analytically for crack directions in each octant. It 

was shown that, by means of an artifice relative to the shear stress components, the equations 

for a crack direction in the first octant can be alternatively used, simplifying the application in 

design practice to a great extent. There was no need to resort to axis transformations, or to deal 

with design formulas with absolute value combinations for the shear stress components in the 
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reinforcement computation. The proposed formulas were accompanied by the physical 

interpretation of the contribution of each term of the applied stress tensor, discerning shear 

stress components increasing or alleviating the reinforcement stresses. Furthermore, limits of 

design equation were clearly defined in terms of the required reinforcement and concrete stress 

invariants. 

7.1.4 Design of structural members 

The SFM was applied to the design of five selected structural members. For each example 

important features of the design were investigated: 

 Example 1 showed all the steps completing the design of a structural member and allowed 

for discussing anchorage of reinforcement during the detailing process. It also showed that 

the method does not yield the most economical design for linear members in B-regions. 

For those elements, sectional plastic design methods remain more suitable. 

 Example 2 showed that the SFM provided a competitive solution when applied to the 

design of a simple D-region. Singularities inherent to the numerical model were adequately 

maneuvered by averaging required reinforcement between neighboring elements. 

 Example 3 showed that by assuming uncracked axial stiffness in the structural analysis safe 

results were obtained. The three beams underwent plastic deformations capable enough to 

mobilize the design forces. 

 Example 4 showed that the SFM handled complex loads and geometries with ease and 

efficiency by naturally accounting for the flow of forces three-dimensionally. It also 

showed the feasibility of provisioning reinforcement in grid and/or multiple layered layouts. 

 Example 5 showed, once more, that the SFM handled complex loads easily, and that it 

required considerably less computational effort compared to full nonlinear analyses. 

Detailing into constructive arrangements 

From the experience acquired from the design of the five worked examples, a detailing 

procedure is proposed for detailing of massive structural members: (i) identify regions with 

maximum reinforcement stresses and assure that a corresponding arrangement can be detailed; 

(ii) identify regions with zero reinforcement stress; (iii) establish a minimum arrangement and 

identify the regions covered by it; (iv) allocate supplementary rebars locally or define new 

arrangements covering the remaining regions; (v) check if code requirements of minimum 

reinforcement and detailing rules specific for the structural member being designed are fulfilled. 
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Concerning material consumption, solutions brought by the SFM indeed led to higher required 

reinforcement quantities. Lower-bound solutions might be too conservative. 

Assessment by NLA 

NLA of the structural members designed by the SFM assumed a fracture-plastic material model 

for concrete and an orthotropic smeared crack formulation. They were performed by the 

software ATENA. In all the cases, the maximum sustained load was higher than the design load. 

The reason for the increased strength of the member in the numerical simulation is attributed to 

the contribution of: (i) the concrete tensile strength; (ii) the reinforcement working in 

compression; and (iii) the assumed arrangements, which were calculated for peak values, but 

covered delimited zones where less reinforcement was required. 

 The nonlinear analyses showed that the structural members presented a good performance 

in serviceability conditions, whereby crack widths were controlled to meet prescribed 

normative limits. 

7.2 Conclusions 

“Equations for designing reinforcement based on three-dimensional stress fields have been 

deduced analytically and grouped into four main design cases according to the internal stresses 

equilibrating the applied stresses. Any applied stress state can be resisted by stresses in concrete 

and reinforcement distributed in up to three mutually orthogonal directions. A deep 

understanding of the physics of both applied and resisting stresses oriented the assemblage of 

a framework suited for implementation in design practice. The formulation for the Ultimate 

Limit State design presented herein is justified by the static method, based on the Lower Bound 

Theorem of the Limit Analysis of the Theory of Plasticity, and yields safe solutions” (CHEN; 

NOGUEIRA BITTENCOURT; DELLA BELLA, 2023a) provided that ductility requirements 

are met. 

 Further investigations are required to outline the limits of application of the method, since 

reinforced concrete is not a rigid plastic material, as idealized by the Lower Bound Theorem. 

These investigations should evaluate the plastic redistribution capacity of structural members, 

considering the necessary ductility of concrete and steel reinforcement to attain assumed stress 

plastic limits. 

 The SFM design was successfully applied to the design of structural members and the 

main relevant aspects of the detailing process were discussed, including singularities, anchorage 

of rebars, bar spacings, concrete assumed stiffnesses, load cases and load combinations, failure 
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load, and structural performance in SLS. The Partial Safety Factor method was used in the 

analysis of the design examples, but the Global Resistance Factor safety format, which assumes 

the global resistance of a structure as a random variable and requires the input of mean 

properties of materials, could have been used as well (de BOER et al., 2014). 

 The strengths of the SFM may be outlined: (i) the method does not rely on the definition 

of strut-and-tie models; (ii) it predicates that all the structural regions participate in the resisting 

scheme, differently from the STM, where stress fields are developed in idealized linear 

elements; (iii) the method does not rely on the definition of complex material models and 

nonlinear analyses; (iv) it does not require the input of predetermined reinforcement 

arrangements for the calculations; (v) it can handle complex geometries and loadings efficiently; 

(vi) it is far less computationally demanding compared to the NLFEA. 

 The weaknesses of the method are also identified. First, it is remarked that the detailing 

process from the maps of required reinforcement turned out to be a handcrafted activity. Second, 

the application of the SFM demands that ductility requirements are met; the proposed limitation 

of δi to 15 degrees is still not clear and lacks experimental confirmation. Third, the effectiveness 

factor for the concrete compressive strength, which accounts for the limited ductility of the 

material, requires further assessment. Braestrup (2021, p. 2512) explicitly states “the 

effectiveness factor for a given type of structural element will have to be evaluated by 

comparing the predictions of plastic analysis with experimental evidence.” 

 The SFM can be applied to a wide range of reinforced concrete structures. Although the 

Brazilian Code NBR-6118 (ABNT, 2023) does not recognize the method, there is background 

for its utilization in the Model Code 2010 (fib, 2013) for the general 3D case, and in Eurocode 

2 (CEN, 2004) for the specific 2D case. The method is best applied to the design of complex 

structures or structural members subjected to complex loads and various load combinations. It 

could also be applied to the design of simpler structures, such as 1D linear members in B-

regions, or 2D frame nodes in D-regions; for those elements, however, established and tested 

plastic solutions exist which yield more economical arrangements. It is noted that the method 

is not suited for members conceived to work without shear reinforcement, since the tensile 

strength of the concrete is totally disregarded in the formulation. Also, the method is not suited 

for the design of members relying on the resistance provided by aggregate interlock. 

 The SFM is a standalone method since, starting from a linear analysis, a full detailing is 

achieved. It can, however, be more efficiently used in conjunction with other design methods. 

For example, the STM may help with the visualization of rebar anchor regions in the SFM; or 
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the SFM may help with the visualization of lines of reinforcement and thus orient the 

construction of three-dimensional STM models. 

 At this point, the original research questions posed in Section 1.3 can be answered: the 

existing method based on three-dimensional stress fields (the SFM) has been rarely used in 

practice due to difficulties in dealing with and interpreting the design equations. Design tools, 

up to the moment of the conclusion of this work, were not available to help engineers automate 

the design process. The SFM provides solutions that are safe and show good performance in 

SLS in terms of crack widths. The gaps in the knowledge identified in Section 1.3 were filled: 

(i) the use of design formulas was highly simplified with the proposed rules dealing with 

positive and negative signs of the shear stresses; (ii) the physical interpretation of the formulas 

was presented; (iii) the method was applied to the design of real structural members, and (iv) 

several detailing aspects were discussed in the worked examples. 

 This dissertation originally contributes to knowledge by further extending the existing 

design method combining linear analysis and limit design for reinforced concrete structures. 

First, by deducing and interpreting the design equations of the resisting mechanism in a novel 

and simpler approach, at a point level. Second, by applying them to design real structural 

members, from the initial stage of determining the applied stresses to the last stage of 

reinforcement detailing. 

 The SFM has the potential to change the way engineers design and detail complex D-

regions. Designers need not (and should not) be restricted to a design based on sectional forces, 

or on the construction of intricate three-dimensional strut-and-tie models. Those who do not 

have access to expensive nonlinear finite element software may benefit from the method. 

 It may take a decade until commercial software implement the SFM formulation into their 

finite element packages, and even longer until they implement the powerful graphical resources 

such as those provided by ParaView. Meanwhile, engineers need to resort to tools similar to 

those utilized in this work (an application for the automatic point-to-point design, and a 

graphical post-processor) to take full advantage of the method. 

 This dissertation is expected to contribute to draw the attention of the engineering 

community to the, albeit underestimated, practical and powerful design method based on three-

dimensional stress fields.  
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7.3 Recommendations for future work 

Future work may be developed to further improve the SFM design. 

Concerning the formulation of the resisting mechanism 

 To extend the SFM formulation for reinforcement working in compression. 

 To extend the SFM formulation for reinforcement arranged in directions other than the 

three mutually orthogonal directions coinciding with the coordinate axes: either in non-

orthogonal directions, following an inclined face of a member, for example; or in a 

complementary diagonal direction following an arbitrary prevalent inclined principal 

direction. 

 To further investigate the concrete effectiveness factor ν. 

 To further investigate the concrete plasticization criteria in the point-to-point design, in 

order to confirm the normative limitation of δi to 15 degrees. 

Concerning detailing aspects 

 To optimize reinforcement layouts from the reinforcement maps. Optimization algorithms 

could be developed to automatically delimit zones with uniform reinforcement minimizing 

the overall consumption, balancing constructive aspects. 

 To establish rigorous criteria for plasticization in the solutions obtained by the SFM, which 

would allow for adopting more spaced rebars within a horizontal grid, or more spaced 

layers along the depth of a member. 

 To establish criteria for minimum reinforcement in massive members. 

Concerning serviceability conditions 

 To implement SLS verifications in the automatic ULS routine. 

 To estimate deflections from the elastic three-dimensional stress fields. 
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APPENDIX A - Biaxial compression with reinforcement in three directions: 

crack direction in the 2nd to the 8th octants 

For a crack direction in the second octant, (ℓ1,m1,n1) = (-0.577, 0.577, 0.577). The 

reinforcement equivalent stresses, from Equation (3.9), are: 
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The invariants of the concrete stress tensor are: 
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The conditions Ic2 > 0 and Ic1 < 0 are simultaneously met for the following sign combinations: 

sgn(τ) = (-,-,+), (-,-,-), (-,+,+), or (+,-,+). The internal stresses developed in concrete and 

reinforcement are further analyzed: 

 When τxy, τxz < 0, and τyz > 0, i.e., when sgn(τ) = (-,-,+) as indicated in Figure 146a, all shear 

stress components increase the tensile stresses in the reinforcement. The results of the 2nd 

trihedron can be obtained with the expressions of the 1st trihedron if we adopt positive 

values for all shear components. 

 When sgn(τ) = (-,-,-), (-,+,+), or (+,-,+), the stress with the smallest absolute value τ1 

alleviates the tensile stresses in the corresponding reinforcement. Condition (3.24)a must 

be satisfied to guarantee that (σc1 = 0, σc2 < 0, σc3 < 0). The results of the 2nd trihedron can 

be obtained with the expressions of the 1st trihedron admitting a negative value for τ1, and 

positive values for τ2, τ3. 

For a crack direction in the third octant, (ℓ1,m1,n1) = (-0.577, -0.577, 0.577). The reinforcement 

equivalent stresses, from Equation (3.9), are: 
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The invariants of the concrete stress tensor are: 
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Conditions Ic2 > 0 and Ic1 < 0 are simultaneously met for the following sign combinations: 

sgn(τ)= (+,-,-), (-,-,-), (+,+,-), or (+,-,+). 

 When τxy > 0, and τxz, τyz < 0, i.e., when sgn(τ) = (+,-,-) as indicated in Figure 146b, all shear 

stress components increase the tensile stresses in the reinforcement. The results of the 3rd 

trihedron can be obtained with the expressions of the 1st trihedron if we adopt positive 

values for all shear components. 

 When sgn(τ)= (-,-,-), (+,+,-), or (+,-,+), the stress with the smallest absolute value τ1 

alleviates the tensile stresses in the corresponding reinforcement. Condition (3.24)a must 

be satisfied to guarantee that (σc1 = 0, σc2 < 0, σc3 < 0). The results of the 3rd trihedron can 

be obtained with the expressions of the 1st trihedron if we adopt a negative value for τ1, and 

positive values for τ2, τ3. 

 

 

Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 146 – Trihedrons defined for crack directions on the (a) second and (b) third octants. 

For a crack direction on the fourth octant, (ℓ1,m1,n1) = (0.577, -0.577, 0.577). The 

reinforcement equivalent stresses, from Equation (3.9), are: 
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The invariants of the concrete stress tensor are: 
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Conditions Ic2 > 0 and Ic1 < 0 are simultaneously met for the following sign combinations: 

sgn(τ)= (-,+,-), (+,+,-), (-,-,-), or (-,+,+). 

 When τxy, τyz < 0, and τxz > 0 (-,+,-) as indicated in Figure 147a, all shear stress components 

increase the tensile stresses in the reinforcement. The results of the 4th trihedron can be 

obtained with the expressions of the 1st trihedron if we adopt positive values for all shear 

components. 

 When sgn(τ)= (+,+,-), (-,-,-), or (-,+,+), the stress with the smallest absolute value τ1 

alleviates the tensile stresses in the corresponding reinforcement. Condition (3.24) must be 

satisfied to guarantee that (σc1 = 0, σc2 < 0, σc3 < 0). The results of the 4th trihedron can be 

obtained with the expressions of the 1st trihedron if we adopt a negative value for τ1, and 

positive values for τ2, τ3. 

For crack directions in the fifth to the eighth octants: each inferior trihedron, formed by a crack 

plane with n = -0.577 defining the crack direction, is opposite by the origin of the coordinate 

system to a superior trihedron. Both represent the same stress state. The 7th trihedron, for 

example, is constructed with a crack plane with (ℓ1,m1,n1) = (-0.577, -0.577, -0.577), as shown 

in Figure 147b. It is opposed by the origin to the 1st trihedron. The expressions for Ic2, Ic1, ftx, fty 

and ftz are the same as those obtained for the design in the 1st trihedron. 

 

 

Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 147 – Trihedrons defined for crack directions on the (a) fourth and (b) seventh octants. 
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APPENDIX B - Derivation of the equations for the plane stress state 

The equations for designing a membrane element subjected to a plane stress state can be derived 

from the general formulation presented in equation (3.9). For example, when σz = τxz = τyz = 0: 
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The economical solution is obtained when: 
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i.e., when ℓ1=± m1. For a crack direction on the first octant, ℓ1= m1=1. Retaking (B.1): 
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This case is illustrated in Figure 148. The unit vector of the crack plane is 𝑛௖ଵሬሬሬሬሬሬ⃗ =

(1 √2⁄ , 1 √2⁄ , 0). When the calculated reinforcement in the x-direction in (B.2) is smaller than 

zero, i.e., when σx < τxy. m1/ℓ1 in Equation (B.1), then ftx is set to zero, and no reinforcement is 

required in the x-direction (see Figure 149). 

1 1

1 1

/ 0

/

0

x xy

y y

tx

ty

tz

x

f m

f m

f

 


 









 

   
( )

( )

( )

a

b

c

 (B.3) 

From equation (B.3)a, it is found that the direction of principal stress σc1 is such that: 
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which, substituted in (B.1), allows calculating the reinforcement in the y-direction: 
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The last term of fty is always positive because σx is negative. Similarly, the expressions for the 

x-reinforcement may be found when fty yields negative in equation (B.1): 
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Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 148 – Plane stress state: (a) concrete stresses in 3D view and in (b) plane view; (c) equivalent 
reinforcement stresses. 

  

Source: Chen, Nogueira Bittencourt, and Della Bella (2023a). 

Figure 149 – Plane stress state and reinforcement required in one direction: (a) concrete and 
(b) reinforcement stresses. 
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APPENDIX C - Zero shear stresses and crack directions in the 2nd to the 8th 

octants 

When one shear stress component is zero, concrete is assumed to be subjected to a biaxial 

compression stress state. However, when two shear stress components are zero, concrete is 

assumed to be subjected to a uniaxial compression stress state. By comparing the sign of the 

allowable shear stress components (column 6) with the corresponding reinforcement design 

equations (col. 7) in Table C1, independently of the crack direction, shear stress components 

are observed to increase reinforcement stresses. Therefore, reinforcement is designed from 

equation (3.17) admitting the non-zero shear stresses components with positive values. 

 

Table C1 – Design equations when shear stress components are zero. 

(1) (2) (3) (4) (5) (6) (7) 
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Zero shear 
stress 
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




 (A.3) 0xz   3 xy yz    2 xy yz    (+, 0, -), (-, 0, +) (+, 0, -) 

0yz   3 xy xz    2 xy xz    (+, -, 0), (-, +, 0) (+, -,0) 

4th 

0xy   3 xz yz    2 xz yz    (0, +, -), (0, -, +) (0, +, -) 

x

tx

ty

tz

x xy xz

y y yz

z xz yz

f
f
f

  
  
  
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
 








 (A.5) 0xz   3 xy yz    2 xy yz   (+, 0, +), (-, 0, -) (-, 0, -) 

0yz   3 xy xz    2 xy xz   (-, +, 0), (+, -, 0) (-, +,0) 

2nd 

0xy xz    0 2 yz  - (0, 0,+) 

x
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ty

tz

x xy xz

y y yz

z xz yz
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f
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



 








 (A.1) 0xz yz    0 2 xy  - (─, 0, 0) 

0xy yz    0 2 xz  - (0, ─, 0) 

3rd 

0xy xz    0 2 yz  - (0, 0, ─) 

x

tx

ty

tz

x xy xz

y y yz

z xz yz

f
f
f

  
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



 








 (A.3) 0xz yz  

 0 2 xy
 - (+,0, 0) 

0xy yz  
 0 2 xz

 - (0, ─, 0)
 

4th 

0xy xz    0 2 yz  - (0, 0, ─) 

x

tx

ty

tz

x xy xz

y y yz

z xz yz

f
f
f

  
  
  





 








 (A.5) 0xz yz    0 2 xy  - (─, 0, 0) 

0xy yz    0 2 xz  - (0,+, 0) 

Note: a trihedron with crack direction in the 5th to the 8th octant yields the same design equations as 
those defined for a trihedron opposed by the origin. 
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