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Abstract

Various models of structures and structural elements use an assembly of stringers and shear panels. The normal forces in the
stringers can vary linearly and the membrane panels have constant shear. Often, these shear panels can be just rectangular but
sometimes shear panels with a non-rectangular shape need to be used. In this paper a mathematical formulation is presented for a
linear—elastic shear panel with a quadrilateral shape. The panel stiffness matrix is derived by the discrete element method, which
yields a simple and efficient computational formulation. Comparison with finite element computations shows that the stiffness matrix

is sufficiently accurate for engineering design. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Shear panel; Stringer—panel model; Discrete element method; Shear wall; Diaphragm; Membrane; Disk

1. Introduction

The structural behaviour of plates loaded in their plane
often can be described using a discrete element model
[1] consisting of stringers and shear panels. The normal
forces in these stringer elements can vary linearly and
the membrane panel elements have constant shear. For
example, models of aircraft wings and aircraft fuselages
[2], walls and floors of timber houses [3], metal plate
girders [4] and joints, reinforced concrete walls (see Fig.
1) [5-7] and framed-tube structures of high-rise build-
ings [8,9]. Normally, these models use rectangular shear
panels. The stiffness matrix of such a panel is well
known and can be easily derived [10]. Some structures
have a tapered shape or non-rectangular holes. To this
end, parallelogramic and trapezoidal shear panels have
been derived [2]. Formulations for quadrilateral shear
panels were already proposed in 1951 [11] and also
recently [12,13]. Obviously, this further extends the
potential application of shear panels and removes restric-
tions for drafting panel assemblies in a graphical user-
interface. However, these formulations appear to be
accurate only if the shape of the quadrilateral panel does
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not depart too far from a rectangle. This paper contrib-
utes to the development by presenting a simple math-
ematical formulation for a linear—elastic shear panel of
quadrilateral shape and comparing this and previous for-
mulations with accurate finite element computations.

The panel has four edge tractions (see Fig. 2) and
three independent equilibrium relations (in x direction,
in y direction and moment equilibrium). Consequently,
only one independent parameter B is available to
describe the stress field. It will be shown that each trac-
tion is accompanied by a discrete edge displacement (see
Fig. 2). So, the panel has four degrees of freedom too.
Since it has three independent rigid body motions (two
translations and one rotation) only one generalised dis-
placement e is left to describe its deformation. The
relations are displayed in Fig. 3.

Since linear—elastic material behaviour is adopted, the
panel stiffness matrix K relates the vector with panel
forces f to the discrete displacement vector u.

f=Ku 6))
As common in the discrete element method we
assume that the stiffness matrix can be de-composed as

K = B'DB )

In the next section the equilibrium vector BT is

0141-0296/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
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Fig. 1. A model of a reinforced concrete deep beam consisting of stringers and panels. The stringers represent concrete parts with concentrated
reinforcement and the shear panels represent concrete parts with distributed reinforcement.

Fig. 2. The quadrilateral shear panel with a force f and a discrete
displacement u at each edge.

K
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Fig. 3. The relations of the panel formulation according to the dis-
crete element method. After applying equilibrium and kinematic
requirements, only one relation is left to formulate the constitutive
behaviour.

derived, which relates the edge forces f;, f5, f5, f, and
the generalised stress 8 (see Fig. 3). In Section 3, it is
shown that this vector also defines the kinematic
relation, which relates the generalised strain ¢ and the
discrete edge displacements u,, u,, u; and u,. In Section
4, the constitutive relation is derived between the gener-

Fig. 4. The edge tractions on a quadrilateral shear panel. Obviously,
the forces must be in equilibrium.

alised strain e and the generalised stress 8. In Section 5
and Section 6 the derived formulation is tested and in
Section 7 a practical application is shown. In Appendix
A the computer code is included for efficient compu-
tation of the panel stiffness matrix.

Opposite to what is mentioned in literature [12], a
quadrilateral shear panel with uniform shear tractions
can fulfil all equations of elasticity theory. Of course the
field quantities are not homogeneous, and only in the
points of the vertices, the stress field becomes singular.
However, an exact closed-form solution has not been
derived as yet and as a consequence well-chosen
approximations have to be utilised in this paper. All deri-
vations are performed in a two-dimensional Cartesian
reference frame. It is noted that a three-dimensional
treatment would not be successful because a shear panel
curved out of plane is only in equilibrium when all shear
tractions equal zero (unless loaded transversely).

2. Equilibrium relation

As drawn in Fig. 4, the quadrilateral panel is freely
positioned in a two-dimensional Cartesian reference
frame. The panel vertices are numbered 1 to 4 counter-
clockwise. At each edge a constant shear stress 7, T,, Ts,
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7, is present. The positive direction of the edge stresses
follows the vertex numbers. This specific layout can be
easily implemented in a computer program.

The panel forces have to be in equilibrium in the x
direction and y direction. ‘

0 = 1,8, cos(x,vi5) + Totl, cos(x,vy3)
+ Tatl; cos(X,v34) + Tutly cOS(X,V4) 3)
0 = 142l sin(x,y,,) + Totl, sin(x,v,3)

+ Tatly sin(x,v3,) + Tutl, sin(x,vy,)

The notation cos(x,v;,) represents the cosine of the angle
of the x-axis and the vector from vertex 1 to vertex 2.
The panel thickness is denoted ¢ and the lengths of the
edges are I;, I, I and I, as shown in Fig. 4.

Moment equilibrium yields the following equation.

0 = — 1.8l cos(x,v2)y; + Tytl; sin(x,v;)x;
— Totl, cOS(X,V23)y, + Totl, sin(x,vo3)x, 4)
= T4tl; COS(X,V34)y; T+ T3tls sin(x,vs,)x3
— Tutly cOS(X,V41)ys + Tatly SIN(X,V41)X4

Expressing the cosines and sines in the vertex co-ordi-
nates,

€1 G C3
S1 Sy 83
r | r, r3
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where the elements are defined according to

=X — X

1

S1=Y2— N

I =X Yo = XY1 1= XY3 — XaYo T3 = XV — XgY3 T4 = XaY1 — X1Y4

Cr=X3— X,

S, =Ys— Y2

C3=X4— X3

§3 =

Ca=X1— X,

Ya— Y3 S4=Y1—Ya

)
Using Cramers rule 7, can be solved,
0 Cy C3 Cy
0 Sy 83 84
0 Fy I3 Fa
4Bt 1 -1 1
T = (10)
€1 €2 €3 G4
S1 S2 53 S4
71 ra I3 Ta
-11 -11
Cy C3 C,
4B
——F, S§3 §
(12 93 54
2 I3 I
Cy C3 Cy C, C3 C4 C1 €3 Cy4 C; Cp C3
S, S3 S| +is1 83 S|+ [S1 S2 Syl + 51 ;2 85
r, 13t drp ory vl g orpyorld rp ory o

where the numerator is expanded to the first column and
the denominator to the bottom row. With the notation
for the minors

Cos@ ) = 2L sinGepyy) = 22
L L
cos(x,vy3) = xil:_x_z sin(x,v,;) = @
2 2
o B )]
COS(EPag) = 2 - gin(r,pyy) = 222
l3 l3
X =X -
COS(XYa) = T sin(rpy) = L2
l4 ) l4
the equilibrium equations can be simplified:
0 =1(x; = x1) + Tolxs — x3) + Ta(xs — X3)
+ T —x) 0=170, —y) + 0~ )
+ T30s — ¥3) + WO~y 0= T2 6)

= Xoy1) T Ta(%2ys — X3¥2) + Ta(x3¥s — X4¥3)
+ Ta(Xgy1 — X1Y4)

The generalised stress B is defined as the average of the
stresses at the panel edges times the panel thickness ¢.
This average shear flow can be interpreted as an approxi-
mation of the panel shear forces in the middle of the
panel as close as possible in the direction of the edges
(see Fig. 4).

1
ﬁ=z(_71+72_73+74)t @)
The four previous equations can be written in matrix
notation,

k3=
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and f; = [;7;¢ this can be conveniently written as
— 4k,

h

Tkttt ks

(12)
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It can be shown that the minors are invariant of the
position and orientation of the reference frame. Similar
expressions can be derived for f,, f; and f,,

4k,l — 4k,
o elB 1B 3
ki+ky+ks+k, ki+ky + ks +ky
' 4k, LB
Ny s
ki +ky+ ks + k4
From this the definition of vector BT follows:
- klll
4 kyl,
= BT BT - 14
f B ki + ko + ks + ky| — k1, (14)
kaly

Thus, the equilibrium relation is derived.

3. Kinematic relation

In this section the kinematic relation between the gen-
eralised strain e and the discrete displacements u;, u,,
us and u, is derived. A derivation with complementary
potential energy is used because it is possible to estimate
the stress field due to the simple load and geometry of
a shear panel. The total complementary potential energy
I1, in the panel is

Hc = tfHC, dA - tf‘t’lu/ dll - tffzuz’ de (15)
A ;

L 173

- tjf:;u:;l dl3 - tff4u4’ dl4
I3 Iy

where ¢ is the panel thickness, II.’ is the local comp-
lementary potential energy per volume and A is the panel
surface area. In general, the displacement components in
the direction of the edges u,’,u,’,us’,u,’ are a function
of the position along their edges l;, l,, 5, [,. The shear
tractions 7, 7,, T, 7, at the edges are defined constant.
It is assumed that an edge displacement varies linearly
along its edge so that the equation can be simplified.!

Hc = IJHC, dA - tTlulll - tT2u212 - tT3u3l3 (16)
A

-t T4u4l4

! Tt is possible to interpret a discrete edge displacement as the aver-
age along the panel edge of the displacement component in the edge
direction. In this way the approximation to arrive at Eq. (16) is not
needed. However, the authors prefer to avoid average displacements
because this concept is rather abstract for practical use and not neces-
sary in this case.

where u,, u,, us, u, are the discrete displacements of the
edge middles in the direction of the edges. Substituting
the shear tractions 7; = fi/(t],), T, =£,/(tly), T5 = fo/(tly),
T4 = f4/(tl;) and Eq. (14) in Eq. (16) gives the follow-
ing result

I, = tjﬂc’ dA ~ ef (17)
A

where the generalised strain e is defined with the kinem-
atic relation as

e = Bu (18)

4. Constitutive relation

Among all statically admissible stress fields, the actual
one minimises the complementary potential energy. So

d
dg
From Eqgs. (17) and (19) the constitutive relation

between the generalised stress 8 and the generalised
strain e can be derived.

d
B

This simple relation confirms the proper choice of the
kinematic relation Eq. (18). It is very similar to Castigli-
ano’s second rule.

The local complementary potential energy II.', of a
plane stress field in a linear—elastic material is

II. =0 19

e=

, f I’ dA 20)

A

1 1 1
I, = —0,.&, + an Yy T onyyxy 21

2
where o,,, 0,, and 0, are the normal stresses and shear
stress. &,,, €, and ¥, are the strains in the x and y-
directions and the shear strain, respectively. In general,
not only shear stresses exist in a quadrilateral shear panel
but normal stresses as well. It was found that these nor-
mal stresses can contribute considerably to the panel
deformation. The x and y directions for the local energy
are perpendicular but not related to the global reference
frame. For isotropic material the complementary poten-
tial energy evaluates to
oL’ = o5 N O — 2V0,,0,, + 02,

° 2G 2E
As Fig. 5 shows, the skew shear stress 7 at a parallelo-
gramic elementary part of a panel can be easily trans-
ferred to orthogonal directions. When these stresses are
substituted in Eq. (22) the following result is obtained.

72 1 1  4cot’a

L= &~¢' = (23)

22)
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Fig. 5. The shear stresses in a skew reference frame can be easily
transformed to orthogonal directions.

where o is the angle between the local skew directions
as shown in Fig. 5. Note that the skew shear modulus
G* is a function of a. In Fig. 6, a general shear panel
is drawn with a skew reference frame. It can be easily
observed that each subdivision can be approximated with
a parallelogramic element and that this approximation
gets better when the subdivision becomes denser. It was
observed from stress analyses on finite element models
of shear panels that the normal stress in the skew refer-
ence frame remains small even for highly-nonrectangular
panels. So, in the skew reference frame only shear
stresses are assumed to exist.

According to Eq. (20), the local complementary
potential energy in Eq. (23) should be integrated over
the panel area.

d 7
e = tjaﬁﬁdA (24)
A

The integration can be transformed to the skew co-ordi-
nates & and 7 (see Fig. 6)

1 1
d 7
e—tj JdﬁZG*Jdgd (25)
n=0&=0

where J is the determinant of the Jacobian matrix.

Fig. 6. A skew reference frame in the panel. It is assumed that only
skew shear stresses occur in this reference frame. The points at the
middles of the edges are used for approximation of the complementary
potential energy.

1 1
J=A+ (5 - 5)(0153 = c381) + (E - n)(c‘2s4 (26)

— C452)
The cot ¢ can be derived as
cota = @n

(Mes + (1 = Dedey + (€= Dey) + s + (1 = Ds)(Esz + € = 1)s,)
(Ms; + M = Ds)Ecy + (€ = Deg) — (e + (11— De)Es + (& - 1sy)

Eq. (25) is evaluated with numerical integration. Since
the stress field 7 is not known in the interior of the panel,
it is not convenient to use Gauss integration. Instead,
Newton—-Cbtes integration was selected with integration
points at the middles of the edges. Table 1 shows the
weights for the integration points and the stresses in the
integration points, which are consistent with Eq. (14).
Note in Table 1 that differentiation of 77 to 8 can be
easily performed. Thus, the expression for e becomes

d 72
e~t§1 B 26" (28)
Finally, the constitutive equation is
D= g (29)

5. Validation

The final check of the formulation is a comparison
with dense finite element models as shown in the next
section. However, the formulation can readily be
checked using the following five properties that are
inherent to the exact behaviour of linear—elastic dis-
crete elements:

1. No strains for rigid body displacements
2. Equilibrium

3. Reciprocity

4. Independence of the reference frame

Table 1
The weights of the numerical‘integration and the shear stresses in the
integration points

Integration '3 n Weight  Shear stress 7
point i w;
1 1 0 1 B 4k,
2 4 ?k1+k2+k3+k4
2 1 1 1 B 4k,
2 4 Tk +thy+h+k
3 1 1 1 B 4k,
2 4 Thy+hy+ ks ¥ kg
4 0 1 1 B 4k,
2 4 Pk +ky+ ks + kg
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5. Reduction to exact relations for special geometries

The panel correctly complies with property 1. It also
complies with property 2, which is no surprise because
this property is imposed in the previous derivation. Pro-
perty 3 is equivalent to symmetry of the stiffness matrix.
The stiffness matrix is indeed symmetric as can be easily
\obserVed from Eq. (2). Property 4 is also fulfilled, since
the minors k, the edge lengths / and the angles o are
invariant of the reference frame. In the remainder of this
section it is shown that the derived panel formulation
agrees with property 5, too.

A rectangular shear panel has a homogeneous stress
field for which the stiffness matrix can be derived with-
out approximations [10]. When the vertex co-ordinates
of a rectangular panel with dimensions a and & are used
in the relations of the quadrilateral panel, the minors
reduce to

0 —-a 0 a -a 0
b 0 -b 0O O -b
e N i T 1
Eab Eab —z-ab Eab Eab Eab
30
a 0 O a 0 —-a
-b
N L N
Eab Eab Eab Eab Eab Eab

which are evaluated to
ki =k, = ky = ky = a?b? 3D

The o; are all 7172 so, the cot «; are all zero. The shear
stress is homogeneous 7 = /¢ and the determinant of the
Jacobian matrix reduces to panel area J = ab. Thus, the
constitutive relation becomes

Gt
== . 2
D s 32)
The B vector becomes
B=[-ab -a b (33)
and the resulting stiffness matrix is
¢ 1% _q1
b 1 b !
I
a a
K =B*DB = Gt 34)
b b
b
- - 1 - - 1 é -
a

This is indeed the stiffness matrix of a rectangular shear
panel. So, when the quadrilateral panel becomes rec-
tangular the stiffness matrix correctly reduces to the sim-
ple stiffness matrix of a rectangular panel. The same can
be shown for a parallelogramic shear panel, for which
also an exact solution exists.

6. Comparison

The accuracy of the derived stiffness matrix is determ-
ined by comparison with finite element computations for
several panel geometries. The procedure for the finite
element computations is straightforward: First, unit
values are chosen for the generalised stress 8 = 1, panel
thickness 7 = 1 and shear modulus G = 1. The elasticity
modulus E = 2.4 is consistent with Poisson’s ratio v =
0.2. The panel edge tractions are calculated by Eq. (14).
Subsequently, the deformations are computed with a lin-
ear—clastic finite element model. Finally, the generalised
strain e is calculated with the discrete displacements u
at the middle of the edges according to Eq. (18). The
finite element models for various shapes consisted of 100
linear elements with four nodes.

The results are displayed in Table 2. Column 4
presents the compliances computed with the finite
element model. Column 5 and 6 show the compliances
of panel formulations derived by Curtis [12] and Chen
[13], respectively. The last column contains the com-
pliances computed with the proposed relation. Below the
compliances, the deviations from the finite element sol-
ution are printed. From the table it becomes clear that
the proposed formulation is substantially more accurate
for one single panel than previous derivations. The error
becomes larger when the panel deviates more from a
parallelogram but is still small for the proposed formu-
lation.

The compliances of the formulations of Curtis and of
Chen were obtained in the same way as the finite
element results. The simple formulation of Chen needed
to be supplemented with stiff bar elements at the edges
to prevent hourglass modes. The stiff behaviour of this
formulation is indirectly caused by neglecting normal
stresses in the derivation. The formulation of Curtis
shows to be rather stiff too. Perhaps the reason for this
is that in this formulation shear traction is not constant
along a panel edge. ]

Previous formulations have been validated with a
beam model consisting of stringers and panels. This is
rather unfortunate because the individual panel behav-
iour gets lost between that of the other elements. The
results are not included here, but for that beam, the
present formulation gives the same foree distribution and
approximately the same displacements as found by
others [12,13]. K

Already in 1951, a study was made on the quadrilat-
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Table 2

Comparison of the compliance of shear panel formulations with finite element computations

Shape Co-ordinates Minors e e e 1
. —= (FEM) - (Curtis —= (Chen — Eq. (28
5 5 (Curtis) 5 (Chen) 5 Ea. (28)
1 @ =0,y,=0) k; =36
x=3,y=0) k, =36 6.000 6.000 6.000 6.000
(x3=3sy3=2) k3=36
(x:=0,y,=2) ky =36 0% 0% 0%
2 (0,0) 36
3,0) 36 8.500 8.500 6.000 8.500
4.2 36
(1,2) 36 0% - 29% 0%
3 1,0 64
3,0 32 6.978 5.319 4.741 6.914
4,2) 16
0,2) 32 — 24% - 32% - 1%
4 0,0) 64
(3,0) 48 8.070 7.358 6.717 8.076
“4.2) 36
0,2) 48 - 9% - 17% 0.1%
5 (0,0 88
3,0 48 9.822 8.161 7.093 9.751
4,3) 54
0,2 99 - 17% - 28% - 1%
6 0,0) 36
(1,0 12 6.094 3.854 2.250 5.781
3,2) 4 - 37% — 63% - 5%
0.2) 12

eral shear panel by Garvey, in which an essentially
graphical method was used to obtain the stress distri-
bution [11]. Garvey makes the same approximations as
in this paper and derives a closed form expression for
the complementary potential energy. Of course, at that
time it was not possible to compare the formulation with
accurate finite element computations.

It needs to be mentioned that the compliances of the
finite element models depend somewhat on the definition
of the degree of freedom. Here, it is assumed that the
degrees of freedom are the displacements of the middles
of the edges in the direction of the edges. However, it
is also possible to define a degree of freedom as the
average of the displacement along an edge. With this
definition, the compliance of panel 3 becomes 6.501,
which is approximately 7% stiffer than the result in
Table 2. It was observed that this difference is related
to normal stresses along the edges, which particularly
occur in panel 3. Nevertheless, also for the alternative
definition of the degrees of freedom, the accuracy of the
proposed formulation will be often sufficient for engin-
eering design.

7. Structural application

In the introduction to the paper, references are made
to literature describing applications of shear panels. In
order to further demonstrate the potential of shear panels
an example is presented below. The large steel plate
bracket (see Fig. 7) has an opening in the web and is
loaded with a single force of 1000 kN. Stiffeners are
welded at the edges of the opening and extended to the
flanges. Fig. 8 shows the force flow in a stringer—panel
model of the bracket. Stringer forces are displayed black
in the case of tension and grey in the case of com-
pression. The width of the displayed force is a measure
for its value. The shear flow is plotted in the centres
of the panels in N/mm. The linear—elastic stringer—panel
model provides a simple yet sufficiently accurate way
to quantify the forces for dimensioning of the bracket
components. In comparison, a finite element model
would require far more mouse-clicks to draw and gener-
ate an element mesh, especially if changes need to be
made to the geometry in subsequent design cycles.
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1000 kN

3200 mm

1000 1000 800 2000
4800 mm
Fig. 7. A large steel plate bracket.
1500 kN

Fig. 8.

8. Conclusion

The force flow in the stringer—panel model for the design load.

v
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its simplicity, the formulation appears to be more accur-
ate than previously proposed formulations.

A mathematical formulation is presented of the linear—
elastic behaviour of a quadrilateral shear panel. Despite
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Appendix A, Computer Code

In order to show that the relations can be implemented
efficiently, the PASCAL code is added for computation
of the stiffness matrix of the proposed quadrilateral
panel. Note that extra attention must be given to the
computation of k7 since it has the unit [length®], which
can produce an overflow of the number memory capacity
if very small model units are chosen. The algorithm con-
sists of only 69 additions or subtractions, 117 multipli-
cations, 15 divisions and 4 square roots. The code uses
54 memory locations.

cl: =x2-x1; c2: =x3-x2; c3: =x4-x3; cd: =x1-x4;
sl: =y2~yl; s2: =y3-y2; s83: =yd-y3; s4d: =yl-v4;
rl: = x1*y2-x2*yl; ¥r2: = x2*y3-x3*y2; r3: = x3*y4d-
x4*y3; rd: = x4d*yl-x1*y4;
kl: = c2*(s3*rd-gd*r3)-s2* (c3*rd-cd*r3) + r2* (c3*
sd-c4*s3);
k2: = cl*(s3*rd-sd*r3)-sl* (c3*rd-cd*r3) + rl* (c3*
sd-c4*g3);
k3: =cl*(g2*rd-gd*r2)-sl* (c2*rd-cd*r2) + rl1*(c2*
sd-c4*s2);
kd: =cl*(82*r3-83*r2)-8l1* (c2*r3-c3*r2) + rl*(c2*
s3-c3*g2); _
if (G > 0.0) and (E > 0.0) and (k1 > 0.0) and (k2 >
0.0) and (k3 > 0.0) and (k4 > 0.0) then begin

11: = sgrt(cl*cl + sl*sl);

12: = sgrt(c2*c2 + s2*82);

13: = sqgrt(c3*c3 + s3*s3);

14: = sgrt (cd*c4 + sd*sd);

A: =0.50*(rl +r2+r3+1d);

k: =0.25*(kl +k2+ k3 +k4);

B[1]: =-k1/k*11l; B[2]: =k2/k*12;

B[3]: = -k3/k*13; B[4]: =k4/k*14;

tl: =cd-c2; t2: =s54-82; t3: =¢3-¢l; t4d: = s3-s1;

gl: = (cl*tl + sl1*t2)/(sl*tl-cl*t2);
g2: = {£3*c2 + t4d*82)/(td*c2-t3*s2);
g3: = {e3*t1l + s3*t2) /(s3*tl-c3*t2);

gd: = (£3*cd + td*sd) / (td*cd-t3*s4);

tl: =0.5%(cl*s3-c3%sl);

t2: = 0.5%(c2*s4-cd*s2);

jl: =A+t2; j2: =A-tl; j3: =A-t2; jd: =A +tl;
£l: =0.5/G; t2: =2.0/E;

pl: = tl + t2*gl*gl; p2: = tl + t2*g2*g2;

p3: =tl+ t2*g3*g3; pd: =tl + t2*gd*g4;

hl: =k1/k; hl: =hl*hl;

h2: =k2/k; h2: = h2*h2;

h3: =k3/k; h3: = h3*h3;

hd: =k4/k; hd: = hd*hd4;

s: =hl*pl*jl + h2*p2*j2 + h3*p3*j3 + hd*pd*j4;
D: =2.0*t/s;
fori:=1toddoforj:=1to4doK[i,jl:=B[i]*
D*BIj1;
end
else
fori:=1tod4doforj:=1tod4doK[i,j]:=0.0;
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